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Abstract 
In this paper, an efficient numerical method is considered for solving the fractional wave equation 
(FWE). The fractional derivative is described in the Caputo sense. The method is based on La-
guerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a 
system of ordinary differential equations, which is solved by the finite difference method. An ap-
proximate formula of the fractional derivative is given. Special attention is given to study the con-
vergence analysis and estimate an error upper bound of the presented formula. Numerical solu-
tions of FWE are given and the results are compared with the exact solution. 
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1. Introduction 
The subject of fractional calculus was planted over 300 year ago. The theory of derivative and integrals of non- 
integer order goes back to Liouville, Leibnitz, Grunwald-Letnikov, Reimann and Letnikov. In the recent years, 
fractional calculus has played a very significant role in many areas in fluid flow, mechanics, viscoelasticity, bi-
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ology, physics, science and engineering, and other applications [1]. Fractional derivatives provide an excellent 
instrument for the description of memory and hereditary properties of various materials and processes. Half-order 
derivatives and integrals are proved to be more useful for the formulation of certain electrochemical problems 
than the classical models [2]. Thus, seeking solutions of nonlinear fractional differential equations (FDEs) is still 
a significant task. Except in a limited numbers of these equations, we have difficulty to find their analytical as 
well as approximate solutions. Therefore, there have been attempts to develop the new methods for obtaining 
analytical and approximate solutions of nonlinear FDEs. Recently, several methods have drawn special attention, 
such as homotopy perturbation method [3], homotopy analysis method [4], collocation method ([5]-[9]) and fi-
nite difference method ([10] [11]). 

Our main goal in this paper is concerned with the application of Laguerre pseudo-spectral method to obtain 
the numerical solution of FWE of the following form 

( ) ( ) ( ) ( ), , , , , 0 , 0 ,ttu x t d x t D u x t s x t x a t Tν= + < < ≤ ≤                     (1) 

here the parameter ν  refers to the fractional order of spatial derivatives with 1 2.ν< ≤  The function ( ),s x t  
is a source term and ( ),d x t  is the coefficient function which is a given continues function satisfies Lipschitz 
condition. We also assume the following initial conditions 

( ) ( ) ( ) ( )0 1,0 , ,0 , 0 ,tu x u x u x u x x a= = < <                         (2) 

and the following Dirichlet boundary conditions 

( ) ( )0, , 0.u t u a t= =                                    (3) 

Note that at 2,ν =  Equation (1) is the classical wave equation 

( ) ( ) ( ) ( ), , , , .tt xxu x t d x t u x t s x t= +  

Many authors studied the numerical solutions of the introduced problem (1) using different numerical me-
thods such as, Adomian decomposition method [12] and finite difference methods ([13] [14]) and others. 

Our idea is to apply the Laguerre collocation method to discretize (1) to get a linear system of ordinary diffe-
rential equations (ODEs) thus greatly simplifying the problem, and use the finite difference method (FDM) 
([15]-[18]) to solve the resulting system. 

The structure of this paper is arranged in the following way: In Section 2, we introduce some basic definitions 
about Caputo fractional derivatives and properties of the generalized Laguerre polynomials. In Section 3, we in-
troduce the fundamental theorems for the fractional derivatives of the generalized Laguerre polynomials and its 
convergence analysis. In Section 4, we give the procedure of solution for FWE. In Section 5, numerical example 
is given to solve FWE and show the accuracy of the presented method. Finally, in Section 6, the paper ends with 
a brief conclusion and some remarks.  

2. Preliminaries and Notations 
In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus 
theory required for our subsequent development.  

2.1. The Caputo Fractional Derivative  
Definition1. 
The Caputo fractional derivative operator Dα  of order α  is defined in the following form 

( ) ( )

( ) ( )
( ) 10

1 d , 0, 0,
m

x

m

f t
D f x t x

m x t
ν

ν ν
ν − += > >

Γ − −
∫  

where 1 ,m m mν− < ≤ ∈ , ( ).Γ  is the gamma function. 
Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation 

( ) ( )( ) ( ) ( ) ,D f x g x D f x D g xν ν νλ µ λ µ+ = +   
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where λ  and µ  are constants. For the Caputo’s derivative we have 0,D Cν =  C is a constant and 

( )
( )

0

0

0, for and ;

1
, for and .

1

n
n

n n
D x n

x n n
n

ν
ν

ν

ν
ν

−

 ∈ <   


= Γ +
∈ ≥   Γ + −




                    (4) 

We use the ceiling function ν    to denote the smallest integer greater than or equal to ν , and { }0 0,1, 2,=  . 
Recall that for ν ∈ , the Caputo differential operator coincides with the usual differential operator of integer 
order. For more details on fractional derivatives definitions and its properties see ([2] [19]). 

2.2. The Definition and Properties of the Generalized Laguerre Polynomials 

The generalized Laguerre polynomials ( ) ( )
0n n

L xα ∞

=
 
  , 1α > −  are defined on the unbounded interval ( )0,∞   

and can be determined with the aid of the following recurrence formula 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 2 1 0, 1,2, ,n n nn L x x n L x n L x nα α αα α+ −+ + − − − + + = =                (5) 

where, ( ) ( )0 1L xα =  and ( ) ( )1 1 .L x xα α= + −  
The analytic form of these polynomials of degree n is given by [20] 

( ) ( ) ( )
( )

( )
0 0

1
,

1 ! !

kkn n
kk

n
k kk

nn nxL x x
n n kk k

α α α
α= =

− −+ +   
= =   −+   

∑ ∑                      (6) 

( ) ( )0 .n

n
L

n
α α+ 

=  
 

 These polynomials are orthogonal on the interval [ )0,∞  with respect to the weight func-

tion ( ) ( )
1 e

1
xw x xα

α
−=

Γ +
. The orthogonality relation is 

( )
( ) ( ) ( ) ( )

0

1 e d .
1

x
m n mn

n
x L x L x x

n
α αα α

δ
α

∞ − + 
=  Γ +  

∫                        (7) 

Also, they satisfy the differentiation formula 

( ) ( ) ( ) ( ) ( )1 , 0,1, , .k kk
n n kD L x L x k nα α+

−= − =                           (8) 

Any function ( )u x  belongs to the space [ )2 0,wL ∞  of all square integrable functions on [ )0,∞  with weight 
function ( )w x , can be expanded in the following Laguerre series 

( ) ( ) ( )
0

,n n
n

u x c L xα
∞

=

= ∑                                   (9) 

where the coefficients nc  are given by 

( )
( )

( ) ( ) ( )
0

1
e d , 0,1, .

1
x

n n
n

c x L x u x x n
n

αα

α
∞ −Γ +

= =
Γ + + ∫ 

                   (10) 

Consider only the first ( )1m +  terms of generalized Laguerre polynomials, so we can write 

( ) ( ) ( )
0

.
m

m n n
n

u x c L xα

=

= ∑                                 (11) 

For more details on Laguerre polynomials, its definitions and properties see ([21] [22]). 

3. The Approximate Fractional Derivatives of ( ) ( )nL xα  and Its Convergence 
Analysis 

The main goal of this section is to introduce the following theorems to derive an approximate formula of the 
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fractional derivatives of the generalized Laguerre polynomials and study the truncating error and its conver-
gence analysis. 

Theorem 1 [23] 
Let ( )u x  be approximated by the generalized Laguerre polynomials as (11) and also suppose 0ν >  then, 

its Caputo fractional derivative can be written in the following form 

( )( ) ( )
, ,

m i
k

m i i k
i k

D u x c w xνν ν

ν ν

−

= =      

= ∑ ∑                             (12) 

where ( )
,i kw ν  is given by 

( ) ( )
( ),

1
.

1

k

i k

i
w

i kk
ν α

ν
− + 

=  −Γ + −  
                              (13) 

Theorem 2 
The Caputo fractional derivative of order ν  for the generalized Laguerre polynomials can be expressed in 

terms of the generalized Laguerre polynomials themselves in the following form 

( ) ( ) ( )

0
( ), , 1, , ,

ki

i ijk j
k j

D L x L x i m
ν

α αν

ν
ν ν

−  

= =  

≅ Ω = +      ∑ ∑                   (14) 

where 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0

1 ! 1 1
.

! ! ! 1 1 1

r kj

ijk
r

j i k r
r j r i k k k r

α α ν
ν α α

+

=

− Γ + + Γ + − + +
Ω =

− − Γ − + Γ + + Γ + +∑  

Proof. See [24]. 
Theorem 3 [25]. 
The error in approximating ( )D u xν  by ( )mD u xν  is bounded by 

( ) ( )
( )

2

1

1
, e , 0, 0, 0,1, ,

!
j x

T i
i m

E m c i j x j
jν

α
α

∞

= +

+
≤ Π ≥ ≥ =∑                 (15) 

( ) ( )
( )

2

1

1
, 2 e , 1 0, 0, 0,1, ,

!
j x

T i
i m

E m c i j x j
jν

α
α

∞

= +

+ 
 ≤ Π − − < ≤ ≥ =
 
 

∑             (16) 

where, ( )
0

,
ki

ijk
k j

i j
ν

ν
ν

−  

= =  

Π = Ω∑ ∑  and ( ) ( ) ( ) .T mE m D u x D u xν ν= −  

4. Solution of the Fractional Wave Equation 
Consider the fractional wave equation of type given in Equation (1) in the interval ( )0,1 . In order to use 
Laguerre collocation method, we first approximate ( ),u x t  as 

( ) ( ) ( ) ( )
0

, .
m

m i i
i

u x t u t L xα

=

= ∑                               (17) 

From Equations (1), (17) and Theorem 1, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

,2
0

d
, , ,

d

m m i
i k

i i i k
i i k

u t
L x d x t u t w x s x t

t
α ν ν

ν ν

−

= = =      

= +∑ ∑ ∑                  (18) 

we now collocate Equation (18) at ( )1m ν+ −     points px , 0,1, ,p m ν= −   
 as 

( ) ( ) ( ) ( ) ( ) ( ) ( ),
0

, , .
m m i

k
i i p p i i k p p

i i k
u t L x d x t u t w x s x tα ν ν

ν ν

−

= = =      

= +∑ ∑ ∑                  (19) 

For suitable collocation points we use roots of shifted Laguerre polynomial ( ) ( )1mL xα
ν+ −  

. 
Also, by substituting Equations (17) and (11) in the boundary conditions (3) we can obtain ν    equations as 
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follows 

( ) ( )
0 0

0, 0,
m m

i i i i
i i

u t u t
= =

= =∑ ∑                               (20) 

where ( ) ( ) ( ) ( )0 , 1 .i i i i

i
L L

i
α αα+ 

= = = 
 

   

Equation (19), together with ν    equations of the boundary conditions (20), give ( )1m +  of ordinary dif-
ferential equations which can be solved, for the unknowns iu , 0,1, ,i m=  , using the finite difference method, 
as described in the following section.  

5. Numerical Results 
In this section, we implement the proposed method to solve FWE (1) with 1.8ν = , of the form 

( ) ( ) ( ) ( )1.8, , , , , 0 1, 0,ttu x t d x t D u x t s x t x t= + < < >  

where the coefficient and the source functions are ( ) ( ) 1.8, 1.2d x t x= Γ  and ( ) ( )2, 4 1 e ,ts x t x x −= −  the initial 
and Dirichlet conditions are ( ) ( )2,0 1u x x x= − , ( ) ( )2,0 1tu x x x= − , ( ) ( )0, 1, 0.u t u t= =  The exact solution 
to this problem is ( ) ( )2, 1 e .tu x t x x −= −  

We apply the method with 3m = , and approximate the solution as follows 

( ) ( ) ( ) ( )
3

3
0

, .i i
i

u x t u t L xα

=

= ∑                                (21) 

Using Equation (19) we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3

1.8 1.8
,

0 2 2
, , , 0,1,

i
k

i i p p i i k p p
i i k

u t L x d x t u t w x s x t pα −

= = =

= + =∑ ∑∑               (22) 

where px  are roots of Laguerre polynomial ( ) ( )2L xα , i.e. 0 0.427124x =  and 1 3.07288.x =  
By using Equations (20) and (22) we obtain the following system of ODEs 

( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 3 1 2 2 3 0 ,u t k u t k u t R u t R u t s t+ + = + +                       (23) 

( ) ( ) ( ) ( ) ( ) ( )0 11 1 22 3 11 2 22 3 1 ,u t k u t k u t R u t R u t s t+ + = + +                      (24) 

( ) ( ) ( ) ( )0 0 1 1 2 2 3 3 0,u t u t u t u t+ + + =   
                        (25) 

( ) ( ) ( ) ( )0 0 1 1 2 2 3 3 0,u t u t u t u t+ + + =                             (26) 

where i  and , 0, ,3i i =   are defined in (20) and 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 2 3 0 11 1 1 22 3 1, , , ,k L x k L x k L x k L xα α α α= = = =  

( ) ( ) ( ) ( ) ( )1.8 1.8 1.80.2 0.2 1.2
1 0 2,2 0 2 0 3,2 0 3,3 0, , , ,R d x t w x R d x t w x w x = = +   

( ) ( ) ( ) ( ) ( )1.8 1.8 1.80.2 0.2 1.2
11 1 2,2 1 22 1 3,2 1 3,3 1, , , .R d x t w x R d x t w x w x = = +   

Now, in order to use FDM to solve the system (23)-(26), we will use the notations it iτ=  to be the integra-
tion time 0 it T≤ ≤ , T Nτ = , for 0,1, , .i N=   Define ( )n

i i nu u t= , ( )n
i i ns s t= . Then, the system (23)-(26), 

will discretize in time and take the following form 
1 1 1 11 1

1 1 10 0 0 3 3 31 1 1
1 2 1 2 2 3 02 2 2

2 22
,

n n n n n nn n n
n n nu u u u u uu u uk k R u R u s

τ τ τ

+ − + −+ −
+ + +− + − +− +

+ + = + +         (27) 

1 1 1 11 1
1 1 10 0 0 3 3 31 1 1

11 22 11 2 22 3 12 2 2

2 22
,

n n n n n nn n n
n n nu u u u u uu u uk k R u R u s

τ τ τ

+ − + −+ −
+ + +− + − +− +

+ + = + +        (28) 

1 1 1 1
0 0 1 1 2 2 3 3 0,n n n nu u u u+ + + ++ + + =   

                           (29) 
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1 1 1 1
0 0 1 1 2 2 3 3 0,n n n nu u u u+ + + ++ + + =                               (30) 

we can write the above system (27)-(30) in the following matrix form as follows 
12 2

01 1 2 2
2 2

111 11 22 22

20 1 2 3

30 1 2 3

0 01 2 1 2

1 111 22 11 22

2 2

3 3

1
1

2 2 0 2 1 0
2 2 0 2 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

n

n

uk R k R
uk R k R
u
u

u uk k k k
u uk k k k
u u
u u

τ τ
τ τ

+ − −  
  − −  
  
     

      
      
      = −
     
     

      

   

   
1 1

0

12 .
0
0

n ns
s

τ

− +
 
 
 +

  
  

 

             (31) 

The above system can be rewritten in a matrix form as follows 
1 1 1 1 1 1 1 1 1, or ,n n n n n n n nAU BU CU S U A BU A CU A S+ − + + − − − − += − + = − +            (32) 

where ( )T

0 1 2 3, , ,n n n n nU u u u u=  and ( )T2 2
0 1, ,0,0 .n n nS s sτ τ=  

The obtained numerical results by means of the proposed method are shown in Table 1 and (Figure 1 and 
Figure 2). In Table 1, the absolute errors between the exact solution uex and approximate solution uapprox at m = 
3 and m = 5 with the final time T = 2 are given. Also, in Figure 1 and Figure 2, comparison between the exact 
solution and the approximate solution at T = 1 with time step τ = 0.0025, and m = 3, m = 5 respectively are pre-
sented.  

6. Conclusion and Remarks 
This article is devoted to introducing an accurate numerical technique for solving the fractional wave equation. 
The prosed method depends on the approximate formula for the Caputo fractional derivative of the generalized 
Laguerre polynomials derived above. In the proposed method, the properties of the Laguerre polynomials are 
used to reduce FWE to solve a system of ODEs which solved by using FDM. The results show that the intro-
duced algorithm converges as the number of m terms is increased. The solution is expressed as a truncated La-
guerre series and so it can be easily evaluated for arbitrary values of time using any computer program without 
any computational effort. Although we only considered a model problem in this paper, the main idea and the  
 

Table 1. The absolute error between the exact solution and 
the approximate solution at m = 3, m = 5 and T = 2. 

x ex approxu u−  at m = 3 ex approxu u−  at m = 5 

0.0 3.753964e−03 3.147852e−05 

0.1 4.756213e−03 5.587900e−05 

0.2 5.159753e−03 4.524873e−05 

0.3 1.987123e−03 8.258963e−05 

0.4 7.032516e−03 7.654872e−05 

0.5 3.147852e−03 6.000214e−05 

0.6 2.954621e−03 6.753951e−05 

0.7 0.753951e−03 5.987456e−05 

0.8 1.654789e−03 2.225544e−05 

0.9 5.123456e−03 0.159753e−05 

1.0 6.002547e−03 0.025467e−05 
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Figure 1. Comparison between the exact solution and the approx-
imate solution at T = 1 with τ = 0.0025, m = 3.  

 

 
Figure 2. Comparison between the exact solution and the approx-
imate solution at T = 1 with τ = 0.0025, m = 5.  

 
used techniques are also applicable to many other problems. It is evident that the overall errors can be made 
smaller by adding new terms from the series (21). In the end, from our numerical results using the proposed 
method, we can see that, the solutions are in excellent agreement with the exact solution. All computations are 
made by Matlab. 
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