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Abstract 
In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is 
proposed. We first linearize the constitutive and momentum equations and then apply a least- 
squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares func-
tional involves the residuals of each equation multiplied by proper weights. The corresponding 
homogeneous functional is equivalent to a natural norm. The error estimates of the finite element 
solution are analyzed when the conforming piecewise polynomial elements are used for the un-
knowns. 
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1. Introduction 
In recent years, there has been an increased interest in the least-squares finite element method for the approxi-
mation of partial differential equations, see e.g. [1]-[6]. This technique is attractive because the linear systems 
generated by the discretization are symmetric and positive definite, thus the algebraic system can be solved by 
fast direct or iterative algorithms. Moreover, in contrast to the mixed finite element method, the inf-sup or LBB 
type of conditions is naturally satisfied. However, without the weights in the least-squares functional, this me-
thod results in poor numerical solutions even for simple problems. In [7], Bochev and Gunzburger pointed that 
the weighted least-squares method was optimal for the velocity-pressure-stress formulation of the Stokes equa-
tions. The weighted least-squares method has also been used to solve other viscoelastic problems, such as the 
Oldroyd-B, Carreau, and Phan-Thien-Tanner models [1] [3] [8]. 

In the viscoelastic fluids of the differential type, the constitutive equations consist of an algebraic tensorial 
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relationship between the stress tensor and the rate of deformation tensor. The upper-convected Maxwell fluid [9] 
is the simplest, if not the easiest, representative of that class and has served as a model fluid for developing nu-
merical techniques. The purpose of this paper is to present a finite element method for the upper-convected 
Maxwell fluid which is one of the most used viscoelastic models. The nonlinear model is first approached by li-
nearizing the equations and a weighted least-squares finite element method is applied to solve the linear equa-
tions. Error estimates of the finite element solutions to the linear system are derived. 

2. Governing Equations 
Assume that Ω  is a bounded and connected domain in 2  with Lipschitz boundary Γ . We consider the 
steady incompressible flows governed by the conservation equations for mass and momentum 

0∇⋅ =u                                              (2.1) 
pρ ⋅∇ +∇ −∇ ⋅ =u u fσ                                  (2.2) 

where u  denotes the velocity vector, ρ  the constant density, p  the pressure, σ  the extra-stress tensor 
and f  the body force. 

For the upper-convected Maxwell model, the extra-stress tensor σ  satisfies the following constitutive equa-
tion 

( ) ( )1 2λ ηε+ = uσ σ                                    (2.3) 

where η  is the constant viscosity, λ  the relaxation time and ( ) ( )T 2ε = ∇ +∇u u u  the standard strain rate 
tensor. The subscript (1) denotes the upper-convected material derivative  

( ) ( )1 ,g= ⋅∇ − ∇u uσ σ σ  

and 

( ) T .,g ∇ = ∇ ⋅ + ⋅∇u u uσ σ σ  

To simplify our analysis, homogeneous boundary conditions are assumed on Γ . The results in this article can 
be extended to nonhomogeneous boundary conditions easily. Collecting (2.1)-(2.3), we obtain the steady UCM 
model 

( )( ) ( )

0, in Ω,
, in Ω,

, 2 , in Ω,

0, on .

p f
g

ρ
λ ηε

∇ ⋅ =
 ⋅∇ +∇ −∇ ⋅ =
 + ⋅∇ − ∇ =
 = Γ

u
u u

u u u

u

σ
σ σ σ

                     (2.4) 

3. Mathematical Notation and Preliminaries 
Throughout the paper, we use the standard notation and definition for the Sobolev spaces ( )sH Ω , 0s ≥ , with 
inner products and norms denoted by ( ), s⋅ ⋅  and s⋅ . For 0s = , we write ( )2L Ω , ( ),⋅ ⋅  and ⋅ . As usual, 

( )0
sH Ω  denotes the closure of ( )0C∞ Ω  with respect to the norm s⋅  and ( )2

0L Ω  denotes the space of squ- 
are integrable functions with zero mean 

( ) ( ){ }2 2
0 : d 0L p L p x

Ω
Ω = ∈ Ω =∫∶ . 

The spaces ( )sH − Ω  with positive values of s  is defined as the dual space of ( )0
sH Ω  with the following 

norm 

00

,
sup

ss
H sψ

φ ψ
φ

ψ−
≠ ∈

=                                  (3.1) 

where ,⋅ ⋅  stands for the duality pairing between ( )sH − Ω  and ( )0
sH Ω . 

We use the following approximation 

1 1,    ≈ ≈u u σ σ  
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to linearize the equations in (2.4). Moreover we assume that 1 0∇⋅ =u  and the approximation satisfies  

{ }1 1 1 1max , , , M
∞ ∞ ∞ ∞

∇ ∇ ≤ < ∞u u σ σ .                        (3.2) 

We introduce the replacement rules 

1 1 1 1⋅∇ ≈ ⋅∇ + ⋅∇ − ⋅∇u u u u u u u u  

1 1 1 1∇ ≈ ∇ + ∇ − ∇⋅ ⋅ ⋅ ⋅u u u uσ σ σ σ  

( ) ( ) ( ) ( )1 1 1 1, , , ,g g g g∇ ≈ ∇ + ∇ − ∇u u u uσ σ σ σ  

which result in the linearized system 

( )
( )( ) ( )

1 1

1

0, in Ω,
ˆ in Ω,

, 2 , in Ω,

0, on .

p
B

ρ
λ ηε

∇ ⋅ =


∇ + ∇ +∇ −∇ =


+ ⋅
⋅ ⋅

∇ + − =
 = Γ

⋅

u

u u u u f
u u u F

u

σ
σ σ σ

                     (3.3) 

where 

1 1
ˆ ρ= + ∇⋅f f u u  

( ) ( ) ( )( )1 1 1, , ,B g gλ= ∇ − ∇ − ∇⋅u u u uσ σ σ σ  

( )( )1 1 1 1,gλ= ∇ + ∇⋅F u uσ σ  

The velocity u , the pressure p  and the extra-stress tensor σ  belong to their respective spaces  

( ) ( ){ }1 1
0 : 0V H H

Γ
= Ω = ∈ Ω =v v  

( ) ( ){ }2 2
0 : d 0Q L q L p x

Ω
= Ω = ∈ Ω =∫  

( ) ( ){ }2Σ : ,ij ij ji ij L= = = ∈ Ωτ τ τ τ τ  

and let X V Q= × ×Σ . 
Based on [7], we define the weighted least-squares functional for the linearized system (3.3)  

( ) ( )

( )( ) ( )

22
1 1 1

2

1

ˆ ˆ, , ; ,

, 2

J p p

B

ρ

λ ηε

−
= ∇ + ∇ + ∇ +∇ −⋅ ⋅ ⋅ ⋅

⋅

∇ −

+ + ∇ + − −

u f F u u u u u f

u u u F

σ σ

σ σ σ
             (3.4) 

Now we show that the homogeneous least-squares functional of (3.4) is equivalent to the norm  

( ) 2 2 2 2
11, ,p p= + + ⋅+ ∇u u uσ σ σ . 

Theorem 1. There exist positive constants 1c  and 2c , which depend on ρ , M  and η , such that 

( ) ( ) ( )
2 2

1 2, , , , ; , , ,c p J p c p≤ ≤0 0u u uσ σ σ                     (3.5) 

hold for any ( ), ,p X∈u σ . 
Proof. The upper bound in (3.5) follows easily from the triangle inequality and (3.2). For the lower bound, we 

will show that 

( )
2

, ,p C≤ Ψu σ                                  (3.6) 

where 

( ) ( )2 22
1 1 1 1

2 pλ ηε ρ
−

Ψ = ∇ + + ∇ − + ∇ + ∇ +∇ −∇⋅ ⋅ ⋅ ⋅ ⋅u u u u u u uσ σ σ . 

Using the Green’s formula and Cauchy-Schwarz inequality, we obtain 
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( )
( )( )

1 1 1 1

1 1 11

, , , ,

            ,

p p

C p

ϕ ρ ϕ ϕ ρ ϕ

−

∇ = ∇ + ∇ +∇ −∇ − ∇ − ∇ + ∇

≤ ∇ + ∇ +∇ −∇ +

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ +

u u u u u u u u

u u u u u

σ σ

σ σ
 

for any ( )1
0Hϕ ∈ Ω . By using Lemma 2.1 in [10] as 

1p C p
−

≤ ∇  
we obtain 

( )( )1 11 11
p C p C p

− −
⋅ ⋅≤ ∇ ≤ ∇ + ∇ +∇ −∇ +⋅ +u u u u uσ σ  

which implies that  

( )1 2
1p C≤ Ψ + + uσ .                                (3.7) 

Similarly, we have 

( ) ( )
( )

1 1

1 2
1

2 2

                 .C

λ λ ηε η ε∇ ≤ + ∇ − + +

≤ Ψ

⋅

+

⋅

+

u u u u

u

σ σ σ σ

σ
                    (3.8) 

By the arguments similar to Theorem 4.1 in [11], we obtain 
1 2

1 .C+ ≤ Ψuσ                                      (3.9) 

Combining (3.7)-(3.9) yields (3.6). 
From the inequality 2 2 22α β α β+ ≥ − , we establish 

( )
( ) ( ) ( )

( ) ( )( ) ( )

( )

2 22 2
1 1 1 1

2 22 2
1 1 1 1

2

, , ; ,

2 2 ,

2

2 .

2 ,

,

J p

B p

p B

B

λ ηε ρ

λ ηε ρ

−

−

⋅ ⋅ ⋅ ⋅ ⋅

⋅

≥ ∇ + + ∇ − − + ∇ + ∇ +∇ −∇

≥ ∇ + + ∇ − + ∇⋅ ⋅ ⋅+ ∇ +∇ − ⋅∇ −  

Ψ −=

0 0u

u u u u u u u u

u u u u u u u u

u

σ

σ σ σ σ

σ σ σ σ

σ

  (3.10) 

Note that 

( ) ( ) ( ) ( )2 2 2 22 2 2
1 1 1 1, , ,B g g C Mλ λ= ∇ − ∇ −⋅ ∇ ≤ +u u u u uσ σ σ σ σ  

and, using (3.10), 

( ) ( )
( ) ( )( ) ( )

2 22 2
1

2 22 22 2
11

, , ; , 2

                       , , , , ,

J p C M

C p M c p

λ

λ

≥ Ψ − +

≥ − + ≥

0 0u u

u u u

σ σ

σ σ σ
 

where 1 0c >  for λ  and M  chosen sufficiently small. This completes the proof. 
However the least squares functional ( )ˆ, , ; ,J pu f Fσ  is not practical. The negative order Sobolev norm  

1−⋅  leads to difficulties in the assembly of the linear algebraic equations. In [7], Bochev and Gunzburger used 
the weighted norm h ⋅  where h  denotes some parameter of the finite element space instead of the norm 

1−⋅ . Hence we will consider the mesh dependent functional in which the residuals of each equation in 2L
-norm are multiplied by proper mesh dependent weights. 

4. Finite Element Approximations 
We assume that the domain Ω  is a polygon, and h  is a triangulation of Ω  made of triangular elements 
T  with ( ){ }max diam : hh T T= ∈ . Thus, the computational domain is given by 

{ }: hT TΩ = ∪ ∈ . 
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We assume that the partition h  is regular and satisfies the inverse assumption. Let ( )lP T  denote the 
space of polynomials on T  of degree less or equal to l . We define the finite element spaces for the approxi-
mation of ( ), ,pu σ  as follows 

( ) ( ){ }1

2
1: ,h h h h

l
T

V V C P T T+= ∈ ∩ Ω ∈ ∀ ∈v v  

( ) ( ){ }2 1: ,h h h h
lT

Q q Q C q P T T+= ∈ ∩ Ω ∈ ∀ ∈  

( ) ( ){ }3

2 2
1: ,h h h h

l
T

C P T T×
+Σ = ∈Σ∩ Ω ∈ ∀ ∈τ τ . 

Let h h h hX V Q= × ×Σ  be a finite dimensional subspace of X with the following approximation properties: 

( )inf ,    
h h

h m m k
m kk

Ch H
ϕ

ϕ ϕ ϕ ϕ +
+∈Φ

− ≤ ∀ ∈ Ω                       (3.11) 

where ( ) ( ){ }1: ,h h h h
lT

C P T Tϕ ϕ +Φ = ∈ Ω ∈ ∀ ∈  and 0,1k = . The space Σh  admits the property 

( )( ) ( )
Σ

inf
h h

h h m
m mCh

τ ∈
− + ∇ − ≤⋅ + ∇ ⋅τ τ τ τ τ τ                   (3.12) 

with ( )mH∈Σ Ω∩τ  and ( )mH∇⋅ ∈ Ωτ . The properties hold for finite element spaces consisting of conti-
nuous piecewise polynomials based on quasi-uniform triangulations [11] [12]. 

The mesh dependent least squares functional is defined by the weighted sum in 2L -norms of the residuals of 
the equations in (3.3) 

( ) ( )( ) ( )

( )

222 2
1

2

1 1                   

ˆ, , ;

         ˆ  

, , 2

 ,

hJ p Lh h B F

p

λ ηε

ρ

− −= ∇ + + ∇ + − −

+ ∇ + ∇

⋅

+∇

⋅

⋅ ⋅ ⋅−∇ −

u f F u u u u

u u u u f

σ σ σ σ

σ
        (3.13) 

where L  is a positive constant. The least squares finite element problem is to minimize this functional over Xh: 
seek ( ), , h

h h hp X∈u σ  such that 

( )
( )

( )
, ,

ˆ ˆ, , ; , inf , , ; ,
h

h h h
h h h h h h h h

q X
J p J q

∈
=

v
u f F v f F

τ
σ τ . 

The minimizer of (3.13) necessarily satisfies the Euler-Lagrange equation given by 

( ) ( )( ) ( ) ( ), , , , , ,  , ,, ,  hp q q q X= ∀ ∈ u v v vσ τ τ τ                    (3.14) 

where 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

2

2
1 1

1 1 1 1

, , , , ,

                                    , 2 , 2

                                    d ,

p q Lh

h B B

p q x

λ ηε λ ηε

ρ ρ

−

Ω

−

= ∇ ∇

+ + ∇ + − + ∇ + −

+ ∇ + ∇ +∇ −∇

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∇ + ∇⋅ ⋅ +∇ −∇⋅ ⋅

∫ u v u v

u u u u v v

u u u u v u u v

σ τ

σ σ σ τ τ τ

σ τ
 

( ) ( )( ) ( )( ) ( )( )2
1 1 1

ˆ, , : , 2 dq h B q xλ ηε ρ−

Ω
= + ∇ + − + ∇ + ∇ +∇ −⋅ ⋅ ⋅ ⋅ ⋅∇∫ v F u v v f v u u vτ τ τ τ τ  

and the double-dot product is defined as 

,: .ij iji j= ∑σ τ σ τ  

Based on Theorem 1, we establish the ellipticity of the functional hJ  in Theorem 2. 
Theorem 2. For any ( ), , hp X∈u σ , there exist positive constants 1c  and 2c , which depend on λ , η  

and ρ , such that 

( ) ( ) ( )
2 22

1 2, , , , ; , , ,hc p J p c h p−≤ ≤0 0u u uσ σ σ ,                    (3.15) 

for 1h < . 
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Proof. The first inequality in (3.15) is straightforward from Theorem 1. To prove the upper bound, we assume 
that the spaces hQ  and Σh  satisfy the following inverse inequalities 

1p Ch p−∇ ≤  

and 
1Ch−⋅∇ ≤σ σ . 

From the triangle inequality, we obtain 

( )

( )( ) ( ) ( )

( )
( )

2 222 2
1 1 1

2 2 2 2 2 2 22 2 2 2
11 1 1

2 2 2 22
2 11

, , ; , ]

, 2

.

hJ p

Lh h B p

Lh Ch p

c h p

λ ηε ρ

λ ρ

− −

− −

−

= ∇ + + ∇ + − + ∇ + ∇ +∇ −∇

≤ + + ∇ + + + +

≤ + + +

⋅ ⋅ ⋅ ⋅ ⋅

⋅

∇⋅

0 0u

u u u u u u u u

u u u u

u u

σ

σ σ σ σ

σ σ σ

σ σ  

This completes the proof of the theorem. 
By virtue of Theorem 2 and the Lax-Milgram theorem, we establish the following theorem. 
Theorem 3. For any 1h < , the functional (3.13) has the unique minimizer out of hX , i.e., there exists a 

unique solution satisfies the Euler-Lagrange equation (3.14). 
Now we derive error estimates for the least-squares finite element solution ( ), ,h h hpu σ  which satisfies 

(3.14). 
Theorem 4. Assume that ( ), ,p X∈u σ  is the solution to (3.3), then the least-squares finite element solution 

( ), ,h h h hp X∈u σ  satisfies 

( ) ( )1
1, ,h h h m

m m m mp p Ch p−
+

− − − ≤ + + + ∇ ⋅u u uσ σ σ σ ,              (3.16) 

for 1m l≤ + . 
Proof. From Theorem 2, we obtain the following bound 

( )
( )

( )12

, , 1

, , inf , ,
h

h h h

h h h h h h

q X

cp p h p q
c

−

∈
− − − ≤ − − −

v
u u u v

τ
σ σ σ τ . 

Combining the properties (3.11) and (3.12), we have 

( ) ( )( )
( )

1
11

1
1

, ,

                                         ,

h h h h h h h

m
m m m m

p p Ch p q

Ch p

−

−
+

− − − ≤ − + − + − + ∇ −

≤ +

⋅

+ ∇ ⋅+

u u u v u

u

σ σ σ τ σ τ

σ σ
 

This completes the proof of the theorem. 

5. Conclusion 
In this paper, we have proposed and analyzed a weighted least-squares method for the approximate solution of 
the upper-convected Maxwell fluid. The weights in our least-squares functional involve mesh dependent weight 
and mass conservation constant. The homogenous functional is shown to be equivalent to a natural norm. A 
prior error estimate is given for the finite element solutions. An adaptive least-squares finite element method for 
this viscoelastic fluid model will be discussed in the future. 
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