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Abstract 
Recently, closed-form approximated expressions were obtained for the residual Inter Symbol In-
terference (ISI) obtained by blind adaptive equalizers for the biased as well as for the non-biased 
input case in a noisy environment. But, up to now it is unclear under what condition improved 
equalization performance is obtained in the residual ISI point of view with the non-biased case 
compared with the biased version. In this paper, we present for the real and two independent qu-
adrature carrier case a closed-form approximated expression for the difference in the residual ISI 
obtained by blind adaptive equalizers with biased input signals compared with the non-biased 
case. Based on this expression, we show under what condition improved equalization performance 
is obtained from the residual ISI point of view for the non-biased case compared with the biased 
version. 
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1. Introduction 
We consider a blind deconvolution problem in which we observe the output of an unknown, possibly nonmini- 
mum phase, linear system from which we want to recover its input using an adjustable linear filter (equalizer) 
[1]-[5]. The problem of blind deconvolution arises comprehensively in various applications such as digital com- 
munications, seismic signal processing, speech modeling and synthesis, ultrasonic nondestructive evaluation and 
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image restoration [1] [2] [6]. The above mentioned possibly nonminimum phase, linear system may be considered 
for instance as a channel in the communication area. According to [3] [7] [8], the channel is not ideal due to 
reflections and delays caused by the physical environment such as ground, buildings and cables. Those reflections 
and delays cause distortion of the received signal which is referred as ISI [3] [9]. Thus, a blind adaptive equalizer 
may be used to remove the unwanted ISI of the system to produce the source signal [10]-[14]. According to [1]- 
[3] [15], the equalization performance depends on the nature of the chosen equalizer (on the memoryless non- 
linearity situated at the output of the equalizer’s filter), on the channel characteristics, on the added noise, on the 
step-size parameter used in the adaptation process, on the equalizer’s tap length and on the input signal statistics. 
Fast convergence speed and reaching a residual ISI where the eye diagram is considered to be open (for the 
communication case) are the main requirements from a blind equalizer [1]-[3] [15]. Fast convergence speed may 
be obtained by increasing the step-size parameter [1]-[3] [15]. But, increasing the step-size parameter may lead 
to a higher residual ISI which may not meet any more the system’s requirements [1]-[3] [15]. Up to recently, we 
used time consuming simulation for performance assessment. Recently, closed-form approximated expressions 
were obtained for the residual ISI valid for the noiseless and unbiased input signal case [15], noisy and unbiased 
input signal case [1], noisy and unbiased input signal case but where the gain between the equalized output and 
input signal is equal or less than one [16] and for the noisy and biased input signal case [3]. But, up to now it is 
unclear under what condition improved equalization performance is obtained in the residual ISI point of view 
with the non-biased case compared with the biased version.  

In this paper, we derive for the real and two independent quadrature carrier case a closed-form approximated 
expression for the difference in the residual ISI obtained by blind adaptive equalizers with biased input signals 
compared with the non-biased case. This expression depends on the step-size parameter, equalizer’s tap length, 
input signal statistics, channel power and signal to noise ratio (SNR). In addition, this expression is valid for 
blind adaptive equalizers where the error fed into the adaptive mechanism, which updates the equalizer’s taps, 
can be expressed as a polynomial function of order three of the equalized output and where the gain between the 
input and equalized output signal is equal to one as is in the case of Godard’s algorithm [17]. Based on this new 
derived expression we show under what condition improved equalization performance is obtained from the resi- 
dual ISI point of view for the non-biased case compared with the biased version.  

The paper is organized as follows. After having described the system under consideration in Section II, the 
condition for which improved equalization performance is obtained from the residual ISI point of view for the 
non-biased case compared with the biased version is introduced in Section III. In Section IV simulation results 
are presented and the conclusion is given in Section V. 

2. System Description  
The system under consideration is the same system as shown in [1]-[3] [15] and [16]. Thus, we recall from [3] 
the block diagram of the system illustrated in Figure 1. We adapt in the following most of the assumptions 
made in [3]: 

1) The input sequence [ ]x n  represents a two independent biased or unbiased quadrature carriers case 

constellation input where [ ]rx n  and [ ]ix n  are the real and imaginary parts of [ ]x n  respectively. 

2) The mean of the input sequence [ ]x n  is [ ]E x n   , where [ ]E ⋅  is the expectation operator and  

[ ] [ ] [ ]x n x n E x n = −   .  

3) [ ] [ ]r iE x n E x n   =    . 

4) The unknown channel [ ]h n  is modeled as a non-minimum phase FIR filter, which has zeros far from the 
unit circle. 

5) [ ]c n  is a tap-delay line. 
6) The noise [ ]w n  is an added Gaussian white noise with zero mean and consists of [ ] [ ] [ ]r iw n w n jw n= +  

where [ ]rw n  and [ ]iw n  are the real and imaginary parts of [ ]w n  respectively as well as [ ]rw n  and 

[ ]iw n  are independent. Both [ ]rw n  and [ ]iw n  have zero mean and their variances are denoted as:  

[ ]2 2
rw rE w nσ  =   , [ ]2 2

iw iE w nσ  =   . 



M. Pinchas 
 

 
81 

 
Figure 1. Block diagram of a baseband communication system.             

 
7) The variance of [ ]w n  is denoted as [ ] [ ]* 2

wE w n w n σ  =   where 2 2 22 2
i rw w wσ σ σ= =  and ( )*⋅  is the 

conjugate operation on ( )⋅ . 

The transmitted sequence [ ]x n  is sent through the channel [ ]h n  and is interfered with noise [ ]w n . 

Therefore, the equalizer’s input sequence [ ]y n  may be written as:  

[ ] [ ] [ ] [ ]y n x n h n w n= ∗ +                                  (1) 

where “∗ ” denotes the convolution operation. The equalizer’s output sequence may be written as:  

[ ] [ ] [ ] [ ] [ ] [ ]z n y n c n x n p n w n= ∗ = + +                               (2) 

where p[n] is the convolutional noise that arises due to the use of non-ideal equalizer’s coefficients (blind 
equalization) instead of the ideal set and [ ] [ ] [ ]w n w n c n= ∗ . The equalizer’s update mechanism is defined by:  

[ ] [ ] [ ]
[ ] [ ]1

F n
c n c n y n

z n
µ ∗∂

+ = −
∂

                                (3) 

where µ  is the equalizer’s step-size, [ ]1c n +  and [ ]c n  are the next and current state of the equalizer's 

vector respectively, [ ] [ ] [ ]( )T
1y n y n y n N= − + , N  is the equalizer’s tap length and [ ] [ ] [ ]z n z n E z n = −   . 

The operator ( )T  denotes for transpose of the function () and the real part of 
[ ]
[ ]

F n
z n

∂

∂
 is a polynomial function 

of order three of [ ]z n . In this paper, the ISI is used as a measure of equalization performance and is defined by:  

2 2

max

2

max

m
m

s s
ISI

s

−
=
∑





 



                                    (4) 

where maxs  is the component of s , given by [ ] [ ]s c n h n= ∗ , having the maximal absolute value. 

According to [3], the residual ISI expressed in dB units may be written for biased input signals as:  

( ) [ ]( )2
10 1010 2 10log logdB pISI m E x n = −   

                           (5) 

where ( )⋅  is the absolute value of ( )⋅  and pm  is defined by: 

1 1

1 1

1 1

1 1

1 2

1 2

1 2

1 2

for 0 and 0

min ,

or for 0

max ,

p p

p p

p p

p p

m m

m m
p

m m

m m
p

Sol Sol

m Sol Sol

Sol Sol

m Sol Sol

> >

 =  

⋅ <

 =  

                               (6) 

and  



M. Pinchas 
 

 
82 

1

1

2
1 1 1 1

1
1

2
1 1 1 1

2
1

4
2

4
2

p

p

m

m

B B A C B
Sol

A

B B A C B
Sol

A

− + −
=

− − −
=

                                 (7) 

where 

( )
( ) ( )

2 2 2 2 2
1 3 3 12 1 3 12 1 12

2 2 2
3 12 3 3 12 12

45 18 6 9 2

2 3 45 18 9
r r r

r

x x x

w

A B a a a a a a a a

a a B a a a a

σ σ σ

σ

= + + + +

− + + + +

  



                    (8) 

( ) ( )(
( ) ) ( )

2 22 2 2 2 2 2 4 2 4
1 3 12 12 1 3 1 12 1 3 3 12

4 2 2 2 2 2 4
12 1 3 12 3 3 12 12

2 2 2 2 2
3 3 12 1 3 12

12 6 12 4 15 2

2 3 45 18 9

90 36 12 18

r r r r

r r r

r r r

x x x x r r

r x x w

x x

x

x

B B a a a a a a a a E x a E x a a

E x a a a a B a a a a

B a a a a a a

σ σ σ σ

σ σ σ

σ σ σ

   = + + + + + +   

   + − + + + + +   

+ + + +

   

  

 





 



( )( ) 2
1 12 12 34 2 6

rwa a a a σ+ − −


   (9) 

( )( )
( ) ( )

22 2 2 4 2 4 2 2 4 6 2
1 1 12 1 3 12 12 1 3 3

2 2 6 2 2 2 2 2 4
3 3 12 12 3 3 12 1 3 12 1 12

2 2 2
1 1 3 1 12

2 2 2

15 6 3 45 18 6 9 2

12 4 15

r r r r

r r r r r

r r

x x r x r x r r

w x x x w

x x

C a a a E x a a E x a E x a a E x a

a a a a a a a a a a a a

a a a a a

σ σ σ σ

σ σ σ σ σ

σ σ

       = + + + + +       

+ + + + + + + +

+ + + +

   

    

 

   

( )(
( ) )

22 4 2
3 3 12

24 2 4 2 2 2
3 12 12 12

12

2 6

r

r r

r x

r r x w

a E x a a

a a E x a E x a

σ

σ σ

  + 

   + + +   



 



 

    (10) 

[ ]

[ ]

2

2
21

0

0.5
rw R

k

E x n

SNR h k
σ

−

=

 
  

∑


                               (11) 

[ ]( ) [ ]
[ ] 2

12 22

0

R

x
k

E x n
B N E x n h k N

SNR
µ σ µ

−

=

 
   + +  ∑



                   (12) 

R  is the channel length, 1a , 12a , 3a  are properties of the chosen equalizer and found by:  

[ ]
[ ] ( ) ( ) ( )( )( )23

1 3 12r r r i

F n
Re a z a z a z z

z n
 ∂

= + +  ∂ 
   



                    (13) 

where ( )Re ⋅  is the real part of ( )⋅  and rz , iz  are the real and imaginary parts of [ ]z n , 2
rxσ


 is the variance 

of [ ]rx n  ( [ ]rx n  is the real part of [ ]x n ), 2
xσ


 is the variance of [ ]x n  and SNR  is given by:  

[ ] 2

2
w

E x n
SNR

σ
=                                   (14) 

Please note that (5) can be also applied for the non-biased case by substituting [ ] 0E x n  =  . For biased input 

signals we have that [ ] 2
E x n  is higher than for the non-biased input signal case. Thus, it is reasonable to think  

according to (5) that improved equalization performance may be obtained from the residual ISI point of view for 
biased input signals compared to the non-biased version. But, on the other hand, the expression for pm  in (5) 
may be much higher for biased input signals compared to the non-biased case due to the bias of the input 
sequence (namely, [ ]E x n   ) in the expression of B  (12) which causes B  (12) to be higher for biased input 
signals compared to the non-biased case. Please note that B  (12) has a direct impact also on 1A  (8) and 1B  
(9). Thus, from (5) it is unclear if improved or degraded equalization performance is obtained in the residual ISI 
point of view for biased input signal case compared to the non-biased version. 
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3. Condition for Improved Equalization Performance  
In this section, we first derive a closed-form approximated expression for the difference in the residual ISI 
obtained by blind adaptive equalizers with biased input signals compared to the non-biased case. Then, based on 
this new derived expression, we derive the condition for which improved equalization performance is obtained 
from the residual ISI point of view for the non-biased input case compared to the biased version. In the 
following we denote dBISI , 1A , 1B , B  and SNR  for the non-biased case (by substituting [ ] 0E x n  =   into 
(5), (8), (9), (12) and (14)) as nbISI , 1nb

A , 1nb
B , nbB  and nbSNR  respectively. In addition, for the biased 

case, we denote (5), (8), (9), (12) and (14) as bISI , 1b
A , 1b

B , bB  and bSNR  respectively. To facilitate reading, 
we denote [ ]E x n    as m . 

Theorem:  

10 2

2
1

10 2

2
1

1
10log

1 1

1
10log

1 1

b

nb

nb

nb
nb

x

nb

x

b
B

ISI ISI
mbb

B

b
B

ISI
mbb

B

σ

σ

 
 + 

= +  
   
 + +        

⇓
 
 + 

∆ =  
   
 + +        





                         (15) 

where ISI∆  is the closed-form approximated expression for the difference in the residual ISI obtained by blind 
adaptive equalizers with biased input signals compared to the non-biased case and  

[ ]
1 22

0

R

k
b N m h kµ

−

=

= ∑                                    (16) 

( )
( ) ( )

4 2

2 22 2 2 2 2 2
3 12 12 1 3 1 12 1

4 2 4 4 2
3 3 12 12

2 2
3 3 12 12
2 2 2 2 2
3 3 12 1 3 12 1 12

12 6 12 4

15 2

45 18 9

90 36 12 18 4

r r

r r r r

r r r

w w

x x x x

r r r

x x x

bb b a r q

a a a a a a a a a

E x a E x a a E x a

r a a a a

q a a a a a a a a

σ σ

σ σ σ σ

σ σ σ

= + +

= + + + +

     + + +     
= + +

= + + + +

 

   

  

                    (17) 

Proof: 
Based on (14) we have:  

2 2 22 2

2 2 2 21 1x x
b nb

w w x x

m m m
SNR SNR

σ σ
σ σ σ σ

   +
   = = + = +
   
   





 

                     (18) 

With the help of (11) and (18) we may write:  

( )
[ ] [ ]

[ ] [ ]

22 2 2
2

1 2 22 1 2

20
0

22
2

1 12 2

0 0

1 1 1
2 2

1

1
2

r

r
r

x x
w R

Rx
b

nbk
kx

xx
w R R

nb nb
k k

m m

mSNR h k SNR h k

SNR h k SNR h k

σ σ
σ

σ

σ

σσ
σ

−
−

=
=

− −

= =

+  
 = = +
      +

 
 

⇓

= =

∑ ∑

∑ ∑

















               (19) 
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From (19) we may conclude that 1C  (10) has the same value for the biased and non-biased input case. Next, 
we wish to find the relationship between bB  and nbB  and between 1b

B  and 1nb
B . For that purpose we use 

(12) and (18) to obtain:  

( ) [ ]
( )

[ ]

2
2

22 221 12 222 2
2 2

0 0

2

1

1

1

x
R Rx x

b x x
k kb x

nb
x

m
N

N m m
B N m h k N h k

SNR m
SNR

µ σ
µ σ σ

µ σ µ σ
σ

σ

− −

= =

 
 +
 +     = + + = + +

      +
 
 

∑ ∑






 





     (20) 

From (20) we have:  

[ ]
2 21 22

2
0

1
R

x
b x

k nbx

m N
B N h k

SNR
µ σ

µ σ
σ

−

=

 
 = + +
 
 

∑ 





                              (21) 

Next by substituting 0m =  into (12) and using (18), we may write (21) as:  

[ ]
1 22

0

R

b nb nb
k

B B N m h k B bµ
−

=

= + = +∑                                (22) 

where  

[ ]
21 22

0

R
x

nb x
k nb

N
B N h k

SNR
µ σ

µ σ
−

=

= +∑ 



                                 (23) 

and b is given in (16). Based on (22) we may write:  

1b nb
nb

bB B
B

 
= + 

 
                                        (24) 

Next we turn to find the relationship between 1b
B  and 1nb

B . From (9) we may write:  

( )4 2
1b r rb b w b wB B a s B r B q dσ σ= − + + −

 

                               (25) 

where a , r  and q  are given in (17) and  

( )2 2
1 3 12

12 3

2 3

2 6
r rx xs a a a

d a a

σ σ= + +

= +

                                     (26) 

From (25) and (24) we may have:  

( )

( )

4 2 2
1

4 2 21

b r r r

r r r

b w w w

nb w w w
nb

B B a r q d s

bB a r q d s
B

σ σ σ

σ σ σ

= + + − −

 
= + + + − − 

 

  

  

                          (27) 

which can be also written as:  

( )4 2
1 1 1 1

1

1
b nb r r nb nb

nb

w w
bbB B b a r q B bb B
B

σ σ
 

= + + + = + = +  
 

 

                    (28) 

where bb  is given in (17) and 1nb
B  is obtained by substituting 0m =  into (9):  

( )4 2 2
1nb r r rnb w w wB B a r q d sσ σ σ= + + − −

  

                             (29) 

The solution for pm  given in (6) is acually based on the following second order equation with respect to 
pm  [15]:  

2
1 1 1 0p pA m B m BC+ + =                                     (30) 
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According to [15], pm  may be very small in the convergence state so that the part of 2
1 pA m  may be 

neglectable compared to 1 1pB m BC+ . If this is the case then the solution for pm  is:  

1

1
p

BCm
B

= −                                           (31) 

Simulation results carried out in [15] have shown that better accuracy is obtained when using (6) over (31) for 
the non-biased case which is not surprising. But, the difference in the accuracy is not so high making the 
solution for pm  given in (31) acceptable. In the following we denote pm  as 

bpm  and 
nbpm  for the biased 

and non-biased input case respectivaly. By using (31), (28) and (24) we may have:  

1 1
1 1

1 1 1
1

1 1 1

1 1 1 1

1 1 1
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nb nb nb
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     (32) 

where  
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1
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B
= −                                         (33) 

Next, by using (5) we may have:  
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Now we substitute (32) into (34) and obtain:  
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where  

( ) ( )2
10 1010 log 2 10log

nbnb p xISI m σ= −


                             (36) 

This completes our proof. 
bISI  as well as nbISI  (15) hold negative values. Perfect equalization performance in the residual ISI point 

of view is achieved for the biased case if bISI → −∞ . In addition, perfect equalization performance in the 
residual ISI point of view is achieved for the non-biased case if nbISI → −∞ . Thus, if ISI∆  (15) is positive 
( )0ISI∆ >  it implies that improved equalization performance is obtained in the residual ISI point of view for 
the non-biased case compared with the biased version. In other words, according to (15), if  
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                                 (37) 

then improved equalization performance is obtained from the residual ISI point of view for the non-biased input  

case compared to the biased version. In the following we will show the relationship between 
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b
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By using (16) and (23) we have:  
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              (38) 

Thus, according to (38), we may conclude that if 
1

0
nb

bb
B

>  then improved equalization performance is ob-  

tained from the residual ISI point of view for the biased input case compared to the non-biased version. Please 
note that (37) depends on the step-size parameter, equalizer’s tap length, input signal statistics, channel power, 
signal to noise ratio and on the properties of the chosen blind equalizer via 1a , 12a  and 3a  from (13).  

4. Simulation  
In this section, ISI∆  (15) was tested via simulation by using Godard’s algorithm [17]. Please note that if 

0ISI∆ >  then improved equalization performance is obtained in the residual ISI point of view for the non- 
biased input case compared with the biased version. The equalizer’s taps for Godard’s algorithm [17] were updated 
according to:  
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     (39) 

where, Gµ  is the step-size. The values for 1a , 12a  and 3a  corresponding to Godard’s [17] algorithm are 
defined as 1

Ga , 12
Ga  and 3

Ga  respectively and are given by:  
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  −    = − = =
  −    

                        (40) 

A biased 16QAM, a modulation using ±{1, 3} levels for in-phase and quadrature components in addition to a 
given bias was considered. The bias for the real and imaginary axes were the same. In our simulation we used  
the channel given in [18]: ( )10 for 0; 0.4 for 0; 0.84 0.4 for 0n

nh n n n−= < − = ⋅ > . 

Figures 2-5 are the simulated performance of (39) for the biased 16QAM input case, namely the ISI as a 
function of iteration number for various SNR values and two different biases, compared with the non-biased 
case. Figures 6-9 are the zoomed versions of Figures 2-5 respectively. According to Figure 6 the simulated  
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Figure 2. Simulated ISI performance comparison between the biased 16QAM input case and the non-biased 
version using (39) for [ ]30 dBbSNR = . The averaged results were obtained in 100 Monte Carlo trials. 

13N =  and 617 10Gµ
−= × . The bias was set to 6 6 j+ .                                                     

 

 
Figure 3. Simulated ISI performance comparison between the biased 16QAM input case and the non-biased 
version using (39) for [ ]25 dBbSNR = . The averaged results were obtained in 100 Monte Carlo trials. 

13N =  and 617 10Gµ
−= × . The bias was set to 6 6 j+ .                                                     

 

 
Figure 4. Simulated ISI performance comparison between the biased 16QAM input case and the non-biased 
version using (39) for [ ]30 dBbSNR = . The averaged results were obtained in 100 Monte Carlo trials. 

13N =  and 617 10Gµ
−= × . The bias was set to 4 4 j+ .                                                      
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Figure 5. Simulated ISI performance comparison between the biased 16QAM input case and the non-biased 
version using (39) for [ ]20 dBbSNR = . The averaged results were obtained in 100 Monte Carlo trials. 

13N =  and 617 10Gµ
−= × . The bias was set to 4 4 j+ .                                                     

 

 
Figure 6. Zoomed version of Figure 2.                            

 

 
Figure 7. Zoomed version of Figure 3.                             
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Figure 8. Zoomed version of Figure 4.                          

 

 
Figure 9. Zoomed version of Figure 5.                                 

 
difference in the residual ISI between the biased and non-biased case is 1.7ISI∆ ≅  while according to (15) we 
have 1.92ISI∆ ≅ . 

According to Figure 7 the simulated difference in the residual ISI between the biased and non-biased case is 
1.9ISI∆ ≅  while according to (15) we have 2.102ISI∆ ≅ . 

According to Figure 8 the simulated difference in the residual ISI between the biased and non-biased case is 
0.7ISI∆ ≅  while according to (15) we have 0.73ISI∆ ≅ . 

According to Figure 9 the simulated difference in the residual ISI between the biased and non-biased case is 
0.75ISI∆ ≅  while according to (15) we have 0.77ISI∆ ≅ . 

Based on Figures 6-9, the simulated results for ISI∆  and those results obtained from (15) for ISI∆  are 
very close. Thus, the expression for ISI∆  (15) is accurate enough for saying that if 0ISI∆ >  then improved 
equalization performance is obtained in the residual ISI point of view for the non-biased input case compared to 
the biased version. Please note that according to Figures 2-5, improved equalization performance was obtained 
in the residual ISI point of view for the non-biased input case compared to the biased version which was also 
confirmed by the expression for ISI∆  (15) since ISI∆  was found to be positive for all the mentioned cases. 

5. Conclusion  
In this paper, we derived for the real and two independent quadrature carrier case a closed-form approximated 
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expression for the difference in the residual ISI obtained by blind adaptive equalizers with biased input signals 
compared to the non-biased case. This expression depends on the step-size parameter, equalizer’s tap length, 
input signal statistics, channel power, SNR and chosen equalizer via 1a , 12a  and 3a . It is applicable for blind 
adaptive equalizers where the error fed into the adaptive mechanism, which updates the equalizer’s taps, can be 
expressed as a polynomial function of order three of the equalized output and where the gain between the input 
and equalized output signal is equal to one as is in the case of Godard’s algorithm. Based on this expression, we 
have shown under what condition improved equalization performance is obtained from the residual ISI point of 
view for the non-biased case compared with the biased version. 
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