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Abstract 
This paper presents two transform methods for pricing contingent claims namely the fast Fourier 
transform method and the fast Hilbert transform method. The fast Fourier transform method util-
izes the characteristic function of the underlying instrument’s price process. The fast Hilbert 
transform method is obtained by multiplying a square integrable function f by an indicator func-
tion associated with the barrier feature in the real domain. This is also obtained by taking the Hil-
bert transform in the Fourier domain. We derived closed-form solutions for European call options 
in a double exponential jump-diffusion model with stochastic volatility. We developed fast and 
accurate numerical solutions by means of the Fourier transform method. The comparison of the 
probability densities of the double exponential jump-diffusion model with stochastic volatility, the 
Black-Scholes model and the double exponential jump-diffusion model without stochastic volatil-
ity showed that the double exponential jump-diffusion model with stochastic volatility has better 
performance than the two other models with respect to pricing long term options. An analysis of 
the fast Fourier transform method revealed that the volatility of volatility σ and the correlation 
coefficient ρ have significant impact on option values. It was also observed that these parameters 
σ and ρ have effect on long-term option, stock returns and they are also negatively correlated with 
volatility. These negative correlations are important for contingent claims valuation. The fast Fou-
rier transform method is useful for empirical analysis of the underlying asset price. This method 
can also be used for pricing contingent claims when the characteristic function of the return is 
known analytically. We considered the performance of the fast Hilbert transform method and 
Heston model for pricing finite-maturity discrete barrier style options under stochastic volatility 
and observed that the fast Hilbert transform method gives more accurate results than the Heston 
model as shown in Table 3. 
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1. Introduction 
The Black-Scholes model is the first successful attempt to explain the dynamics of pricing options. But some of 
its assumptions, like constant volatility or log-normal distribution of underlying price of the asset, do not find 
justification in the markets. Also strong assumptions in the Black-Scholes model makes it impossible to apply in 
practice since financial asset returns are not normally distributed. They have fatter tails than the normal distribu-
tion proposed and extreme observations are much more frequent in high-frequency financial data. The common 
big returns that are larger than six-standard deviations should appear less than once in a million years if the 
Black-Scholes framework were accurate. Squared returns, as a measure of volatility, display positive autocorre-
lation over several days, which contradict the constant volatility assumption. Therefore stochastic volatility is 
needed for option pricing [1]. More complex models, which take into account the empirical facts, often lead to 
more computations and this time burden can become a severe problem when the computation of many option 
prices is required. To overcome this problem, Carr and Madan [2] developed a fast Fourier method to compute 
option prices for a whole range of strikes. This method makes use of the characteristic function of the underlying 
asset price. The use of the fast Fourier transform method is motivated by the following reasons: The algorithm 
has speed advantage, this enables the Fourier transform algorithm to calculate prices accurately for a whole 
range of strikes. The characteristic function of the log-price is known and has a simple form for many models 
considered in literature while the density is often not known in the closed form. Stochastic volatility can be ob-
served in the option markets where smiles and skews in implied volatility occur. These properties lead to more 
refined models such as Merton, Heston and Bates models [3]. 

The Black-Scholes model and its extensions constitute the major developments in modern finance. Much of 
the recent literature on option valuation has successfully applied Fourier analysis to determine option prices such 
as [4] [5], just to mention a few. These authors numerically solved for the delta and the risk-neutral probability 
of finishing in-the-money, which can be combined easily with the underlying asset price and the strike price to 
generate the option value. Unfortunately, this approach is unable to harness the considerable computational 
power of the fast Fourier transform which represents one of the most fundamental advances in scientific com-
puting [6]. Furthermore, though the decomposition of an option price into probability elements is theoretically 
attractive as explained in Bakshi and Madan [7], it is numerically undesirable due to discontinuity of the pay-
offs. 

The Bates [8] and Scott [9] option pricing models were designed to capture two features of asset returns 
namely: the conditional volatility which evolves over time in a stochastic, but mean-reverting fashion and the 
presence of occasional substantial outliers in asset returns. The Bates and Scott models combined the Heston [10] 
model of stochastic volatility with the Merton [11] model of independent normally distributed jumps in the log 
asset price. The Bates model ignores interest rate risk, while the Scot model allows interest rates to be stochastic. 
Both models evaluate European option prices numerically, using the Fourier inversion approach of Heston. The 
Bates model also includes an approximation for pricing American options. The two models are historically im-
portant in showing that the tractable class of affine option pricing models includes jump processes as well as 
diffusion processes. 

Zeng et al. [12] considered the pricing of finite-maturity discrete timer options under different types of sto-
chastic volatility processes using the fast Hilbert transform algorithms. They also explored the pricing properties 
of the timer options with respect to various parameters, like volatility of variance, correlation coefficient be-
tween the asset price process and instantaneous variance process, sampling frequency and variance budget. 

Zeng and Kwok [13] extended the fast Hilbert transform approach for pricing barrier and Bermudian style op-
tions under time-changed Levy processes. The success of the fast Hilbert transform approach to compute the fair 
prices of barrier style derivatives in the Fourier domain lies in the mathematical identity that relates the Fourier 
transform of a price function multiplied by an indicator function to the Hilbert transform of the Fourier trans-
form of the price function. For mathematical backgrounds, transform methods in the theory of contingent claims 
and some numerical methods for options valuation see [14]-[35] just to mention a few. 

In this paper, we focus on the performance of the two transform methods under consideration for the valua-
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tion of contingent claims. 
The paper is outlined as follows: Section 2 gives a brief overview of Bates model in the theory of option pric-

ing. Section 3 presents the method of the fast Fourier transform for the valuation of contingent claims. Section 4 
presents the fast Hilbert transform method for the valuation of timer options (barrier style options). In Section 5, 
we present some numerical experiments to illustrate the performance of these transforms. Section 6 concludes 
the paper. 

2. Bates Model 
The geometric Brownian motion (Wiener process) is the building block of modern finance. In the Black-Scholes 
model, the underlying asset price is assumed to follow the dynamics of the geometric Brownian motion of the 
form: 

d d dt t t tS rS t S Wσ= +                                    (1) 

where, 
St: the underlying asset price, r: the risk-free interest rate, σ : the volatility, Wt: the Brownian motion or 

Wiener process and t: the maturity time. 
The solution to (1) is obtained as follows; 
Using the Ito’s lemma 

2
2

2
1d d d
2 t

t t t

u u u uu f g t f W
t S S S

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

                         (2) 

From (1), tf rS= , tg Sσ= , since the underlying price of the asset St is assumed to follow the process in (1) 
but we are interested in the process followed by logSt. Let 

log tu S=                                        (3) 

Differentiating u with respect to the underlying price of the asset St and maturity time t we have 
2

2 2
1 1,    ,    0

t t t t

u u u
S S S S t

∂ ∂ ∂
= = − = ∂ ∂ ∂ 

                            (4) 

Substituting (3) and (4) into (2) yields 

( )
2

d ln d d
2t tS r t Wσ σ

 
= − + 
 

                              (5) 

Integrating (5) from 0 to t, we have that 
2

0exp
2t tS S r t Wσ σ

   = − +  
   

                              (6) 

The empirical facts, however, do not confirm the model assumptions. Financial returns in this model exhibit 
much fatter tails in other models than in the Black-Scholes model. 

Bates proposed a model with stochastic volatility and jumps. This model is the combination of the Merton and 
Heston models. 

2.1. Merton Model 
If an important piece of information about a company becomes public it may cause a sudden change in the 
company’s stock price. To cope with this observation, Merton proposed a model that allows discontinuous tra-
jectories of the underlying asset prices. The Merton model is one of the modern pricing models. This model ex-
tends (1) by adding jumps to the stock price dynamics, to obtain the modified price dynamics as 

d d d dt t t t tS rS t S W Zσ= + +                                 (7) 

where Zt is a compound Poisson process with a log-normal distribution of jump sizes. The jumps follow the 
same Poisson process Nt with intensity λ, which is independent of Wt. The log-jump sizes Yi are independent, 
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identically distributed random variables with mean μ and variance δ2, which are independent of both Nt and Wt. 
The model becomes incomplete which means that there are many possible ways to choose a risk-neutral meas-
ure such that the discounted price process is a martingale. Merton proposed to change the drift of the geometric 
Brownian motion and to leave the other ingredients unchanged. The underlying price of the asset dynamics is 
obtained as 

2
2

0
1

exp exp 1
2

tN

t t i
i

S S r t W Yδσ λ µ σ
=

    
=  − − + − + +          

∑                     (8) 

Setting 
2

2 exp 1
2

M r δµ σ λ µ
  

= − − + −     
                              (9) 

The underlying price (8) takes the form 

0
1

exp
tN

M
t t i

i
S S t W Yµ σ

=

 
= + + 

 
∑                               (10) 

The jump components add mass to the tail of the returns distribution. Increasing δ adds mass to both tails, 
while a negative or positive μ implies relatively more mass in the left or right tail. Let the logarithm of the un-
derlying price of the asset process be given by 

0

log t
t

S
X

S
 

=  
 

                                     (11) 

The characteristic function of Xt is of the form; 

( )
2 2 2 2

Merton exp exp 1
2 2Xt

M Mz zz t i z i zσ σϕ µ λ µ
    = − + + − + −        

                (12) 

2.2. Heston Model 
The Heston model is one of the most widely used stochastic volatility models today. Its attractiveness lies in the 
powerful duality of its tractability and robustness relative to other stochastic volatility models. 

Equation (1) can be modified by replacing the parameter σ with a stochastic process tv  which leads to 
stochastic volatility model with price dynamics given by 

d d dt t t t tS rS t v S W= +                                 (13) 

where vt is the variance process. There are many possible ways of choosing vt. 
Hull and White proposed the use of the geometric Brownian motion 

1 2d d dt t t tv c v t c v W= +                                  (14) 

However, the geometric Brownian motion tends to increase exponentially as t →∞  and this is an undesir-
able property for volatility. Volatility exhibits rather a mean reverting behavior. Therefore a model based on an 
Ornstein-Uhlenbeck-type process: 

( )d d dt t tv v t Wκ θ α= − +                                (15) 

was suggested by Stein and Stein [31]. This process, however, admits negative values of the variance vt. 
Heston [10] eliminated these deficiencies in the stochastic volatility model by introducing two Brownian mo-

tions; 1
tW  in the modified stochastic volatility model in (13) and 2

tW  in the Ornstein-Uhlenbeck-type process 
(15), and also with the assumption that  

( )1 2cov d ,d dt tW W tρ=  

where ρ is the correlation coefficient. 
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Thus (13) reduces to 

[ ]

1d d d

0,
t t t t tS rS t v S W

t T

= + 


∈ 
                                  (16) 

and (15) reduce to 
( ) 2d d dt t tv v t Wκ θ α= − +                                  (17) 

To obtain the variance process Heston set tvα σ=  in (17) to obtain 

( )
[ ]

2d d d

0,
t t t tv v t v W

t T

κ θ σ = − + 


∈ 
                              (18) 

Equation (18) is known as the Heston variance process. 
Where St and vt denote underlying price of the asset and volatility processes respectively, 1

tW  and 2
tW  are 

correlated with rate ρ. The term tv  in (18) simply ensures positive volatility. 
As the process reaches the zero bound, the stochastic part becomes zero and the non-stochastic part pushes up 

the process. The parameter k measures the speed of mean reversion or rate of reversion, θ is the long run mean 
or the average level of volatility and σ  is the volatility of volatility. 

It is clear that, in the Heston model one can implore more than one distribution by changing the value of ρ. 
We define ρ as the correlation between returns and volatility, and hence we can deduce that ρ affects the heavy 
tails of the distribution. When 0ρ < , there is an inverse proportion between underlying asset price and volatil-
ity, when 0ρ = , the skewness is close to zero and when 0ρ > , this means that as the underlying asset in-
creases, volatility increases. The conditions 0ρ < , 0ρ =  and 0ρ >  lead to increase in the heaviness of the 
right tail and squeezes the left tail as shown in Figure 1(a), Figure 1(b) and Figure 1(c). 

The risk neutral dynamics is given in a similar way as in the Black-Scholes model. Taking the exponential of 
both sides of (11) which have the underlying asset price St as 

0e tX
tS S=                                         (19) 

Using (11) and the fact that tvσ =  in (6) we obtain the stochastic differential equation 

11d d d
2t t t tX r v t v W = − + 

 
                                (20) 

The characteristic function is given by 

( )

( )
( )

2

202
0Heston

2

exp
exp

cosh
cosh sinh 2

2 2

Xt

k t i z
iztr izx z iz v

z t i zt i z t
κθ
σ

θ κ ρσ
σ

ϕ γγ κ ρσγ κ ρσ γ
γ

 −    + +  +     = −   
   + − −

+    
   

            (21) 

where 

( ) ( )22 2z iz i zγ σ κ ρσ= + + −                               (22) 

x0 is the initial value for the log-price process and v0 is the initial value for the volatility process. 
Bates combined the Merton model and Heston model to obtain (Bates model ( ) ( ) ( )Bates Heston Merton

t t tX X Xz z zϕ ϕ ϕ≈ ). 
This model, described in Bates model, adds jumps to the dynamics of the Heston model. For a non-dividend 
paying stock, the dynamics of the stock price St and its variance vt are given by 

( )

1

2

d d d d ,

d d d
t t t t t

t t t t

S rS t v W Z

v v t v Wκ θ σ

= + + 


= − + 
                              (23) 

Equation (23) can also be written for the case of dividend paying stock as: 
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{ } { }0 01,  0.01,  0.04,  0.04,  0.5,  2,  0.1,  0.8 1.2 ,  0.5 3S r v K Tθ ρ κ σ= = = = = − = = = − = −  

(a) 

 
{ } { }0 01,  0.01,  0.04,  0.04,  0,  2,  0.1,  0.8 1.2 ,  0.5 3S r v K Tθ ρ κ σ= = = = = = = = − = −  

(b) 

 
{ } { }0 01,  0.01,  0.04,  0.04,  0.5,  2,  0.1,  0.8 1.2 ,  0.5 3S r v K Tθ ρ κ σ= = = = = = = = − = −  

(c) 

Figure 1. The effect of varying the correlation coefficient ρ. 
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( )
( )

1

2

d d d d

d d d
t t t t t

t t t t

S r q S t v W Z

v v t v Wκ θ σ

= − + + 


= − + 
                              (24) 

where q is the dividend yield paid by the underlying asset price St, Zt is a compound Poisson process with inten-
sity λ  and a log-normal distribution of jump sizes independent of 1

tW  and 2
tW . If J denotes the jump size 

then 

( ) ( ) 2 21log 1 log 1 ,
2

J N χ δ δ + = + − 
 

                            (25) 

The parameters χ and δ determine the distribution of the jumps and the Poisson process is assumed to be in-
dependent of the Brownian motions. Under the risk neutral probability we obtain the equation for the logarithm 
of the underlying asset price with non-dividend and dividend yields respectively as: 

11d d d
2t t t t tX r v t v W Zλχ = − − + + 

 
                             (26) 

11d d d
2t t t t tX r q v t v W Zλχ = − − − + + 

 
                           (27) 

where tZ  is a compound Poisson process with normal distribution of jump magnitudes. 
Since jumps are independent of the diffusion part in Equation (23), then the characteristic function for the 

log-price process in which the underlying asset price pays no dividend is obtained as: 

( )

( ) ( ) ( )

( )

2

202
0Bates

2

2 2 2

exp
exp

cosh
cosh sinh 2

2 2

exp exp log 1 1
2 2

Xt

k t i z
izt r izx z iz v

z t i zt i z t

zt

κθ
σ

θ κ ρσ
λχ

σ
ϕ γγ κ ρσγ κ ρσ γ

γ

δ δλ χ

 −    + − +  +     = −   
   + − −

+    
   

    × − + + − −   
    

         (28) 

Similarly, for dividend paying stock we have: 

( )

( ) ( ) ( )

( )

2

202
0Bates

2

2 2 2

exp
exp

cosh
cosh sinh 2

2 2

exp exp log 1 1
2 2

Xt

k t i z
izt r q izx z iz v

z t i zt i z t

zt

κθ
σ

θ κ ρσ
λχ

σ
ϕ γγ κ ρσγ κ ρσ γ

γ

δ δλ χ

 −    + − − +  +     = −   
   + − −

+    
   

    × − + + − −   
    

        (29) 

Equations (28) and (29) can be written in the form ( )
t

Bates
X z D Jϕ = + , since they can be split into diffusion 

part D and jump part J. Therefore, we have respectively for (28) and (29) below 

( )

( ) ( ) ( )

( )

2

202
0Bates

2

2 2 2

exp
exp

cosh
cosh sinh 2

2 2

                  exp exp log 1 1
2 2

tX

k t i z
izt r izx z iz v

z t i zt i z t

zt

κθ
σ

θ κ ρσ
λχ

σ
ϕ γγ κ ρσγ κ ρσ γ

γ

δ δλ χ

 −    + − +  +     = −   
   + − −

+    
   

    + − + + − −   
    

         (30) 



C. R. Nwozo, S. E. Fadugba 
 

 
95 

and 

( )

( ) ( ) ( )

( )

2

202
0Bates

2

2 2 2

exp
exp

cosh
cosh sinh 2

2 2

                  exp exp log 1 1
2 2

tX

k t i z
izt r q izx z iz v

z t i zt i z t

zt

κθ
σ

θ κ ρσ
λχ

σ
ϕ γγ κ ρσγ κ ρσ γ

γ

δ δλ χ

 −    + − − +  +     = −   
   + − −

+    
   

    + − + + − −   
    

      (31) 

In Equation (30), we observe that the diffusion part is similar to (22) with difference of λχ  called risk neu-  

tral correction. Also (12) has a similar structure as the jump part in (30), where ( )
2

log 1
2
δµ χ= + − . Since the  

jumps are assumed to be independent, the characteristic function is the product of Heston model ( )Heston
tX zϕ  and 

the jump part in (30). Figure 2 shows that adding jumps makes it easier to introduce curvature into the volatility 
surface, at least for short maturities. 

Remark 1:  
Assuming that the previous dynamics represent the evolution of the state process ( ),t tS v  under a risk-neu- 

tral measure, then the pricing equation of a European contingent claim c on S is given by 

( ) ( )
2 2 2

2 2
2 2

1 1 0
2 2

c c c c C cvS v vS r q S v rc c
t S v S vS v

σ ρθ λχ κ θ ψ∂ ∂ ∂ ∂ ∂ ∂
+ + + + − − + − − + =

∂ ∂ ∂ ∂ ∂∂ ∂
       (32) 

where 

( ) ( ) ( ) ( )

( ) ( )

( )

0

2
2

2

2

, , , , , , d

1 1exp log
22π

1: log 1
2

: exp
2

c S v t c S v t c S v t g

g m

m

k
m

ψ λ ξ ξ ξ

ξ ξ
δδξ

χ δ

δ

∞ 
= −   


 = − −    

= + − 


  =   +  

∫

                      (33) 

Equation (32) holds for [ )0,S ∈ ∞ , with the assumption that [ ]max0,v v∈ . The partial differential equation is 
usually given along with a proper payoff. In the case of vanilla European call option we have that: 

( ) ( ) ( ), max ,0c S v S K S K+= − = −                             (34) 

where K is the strike price or exercise price. It should be noted that closed form solutions of problem (32) for 
vanilla-option payoff do exist. Nevertheless, direct numerical integration of (32) is important when dealing with 
non-trivial payoff functions. 

3. Fast Fourier Transform Method in the Theory of Contingent Claims 
This section presents some fundamental properties of Fourier transform and the fast Fourier transform method 
for the valuation of European options. 

3.1. Fourier Transform 
The Fourier transform is a generalization of the complex Fourier series and is given by 

( )( )( ) ( ) ( ) 2πe dikxF f x k f k f x x
∞

−

∞

= = ∫                            (35) 
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0100,  0.02,  0.02,  0.09,  0.09,  0,  1,  0,  0.1,  0,  0.3S r q v θ ρ κ σ λ µ δ= = = = = = = = = = =   

(Volatility of volatility is zero, as the jump mean) 
(a) 

 
0100,  0.02,  0.02,  0.09,  0.09,  0,  1,  0,  0.1,  0.1,  0.1S r q v θ ρ κ σ λ µ δ= = = = = = = = = = − = −   

(More asymmetry) 
(b) 

 
0100,  0.02,  0.02,  0.09,  0.7,  0,  1,  0,  0.1,  0,  0.3S r q v θ ρ κ σ λ µ δ= = = = = = = = = = =  

(c) 

 
0100,  0.02,  0.02,  0.09,  0.7,  0.3,  1,  0,  0.1,  0.1,  0.3S r q v θ ρ κ σ λ µ δ= = = = = = − = = = = − =  

(d) 

Figure 2. Bates model: recreating the implied volatility surface. 
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where 

( ) ( ) ( ) ( )2π 2πe d and e dikx ikxf x f k k f k f x x
∞ ∞

−

−∞ −∞

= =∫ ∫                        (36) 

are square integrable and characteristic functions respectively. In the form (35) we have the forward (−i) Fourier 
transform. The inverse (+i) Fourier transform is given by 

( )( )( ) ( ) ( )1 2π1 e d
2π

ikxF f k x f x f k k
∞

−

−∞

= = ∫                            (37) 

Some Fundamental Properties of Fourier Transforms 
Let the Fourier transform of ( )f x  be defined as ( )( ) ( )F f x f k=   then the following fundamental properties 
hold as follows: 
• Scaling Property 

( )( ) ( ) 2π 1e dik kF f cx f cx x f
c c

∞
−

−∞

 = =  
 ∫                             (38) 

 
• Shifting/Translation Property 

( )( ) ( ) ( ) ( )

( ) ( )

0

0 0

2π2π
0

2π 2π2π

e d e d

e e d e

ik u xikx

ikx ikxiku

F f x a f x x x f u x

f u u f k

∞ ∞
− +−

−∞ −∞

∞
− −−

−∞

− = − =

= =

∫ ∫

∫ 

                   (39) 

• Fourier Transform of Derivatives 

( ) ( ) ( ) ( ) ( )2πd 2π e d 2π
d

ikxF f x k ik f x x ikf k
x

∞
−

−∞

  = = 
  ∫                      (40) 

This process can be iterated for the nth derivative to yield 

( ) ( ) ( ) ( ) ( ) ( )2πd 2π e d 2π
d

n
n nikx

nF f x k ik f x x ik f k
x

∞
−

−∞

 
= = 

 
∫                   (41) 

Thus, a differentiation converts to multiplication in Fourier space. 
• Convolution Property 

( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )

2π

2π2π

2π2π

e d d

e d e d

e d e d

ikx

ik x xikx

ik x xikx

F f x g x k f x g x x x x

f x x g x x x

f x x g x x x

F f x F g x f k g k

∞ ∞
−

−∞ −∞

∞ ∞
′− −′−

−∞ −∞

∞ ∞
′− −′−

−∞ −∞

′ ′ ′∗ = −

′ ′ ′= −

′ ′ ′= −

= =

∫ ∫

∫ ∫

∫ ∫




              (42) 

Similarly, 
( ) ( )( ) ( ) ( )F f x g x f k g k= ∗

                              (43) 

• Linear Property 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2π

2π 2π

e d

e d e d

ix

ix ix

F af x bg x k af x bg x x

a f x x b g x x af k bf k

∞
−

−∞

∞ ∞
− −

−∞ −∞

+ = +

= + = +

∫

∫ ∫  

           (44) 
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3.2. The Fast Fourier Transform 
The fast Fourier transform is an efficient algorithm for computing the discrete Fourier transform of the form; 

( )
1

1

2πexp ,    1, 2,3, ,
N

j
j

im p pj x p N
N

−

=

− = = 
 

∑                           (45) 

where N is typically a power of two. Equation (45) reduces the number of multiplications in the required N 
summations from an order of N2 to that of ( )2lnN N , a very considerable reduction. Let p and j be written as 
binary numbers i.e. 1 02p p p= +  and 1 02j j j= +  with { }1 0 1 0, , , 0,1j j p p ∈ , then (45) becomes 

( ) ( ) ( ) ( )

( )( )
( )

( )
( )

1 0
0 1

1 0 1 0 0 1 00 1
1 0 1 0

0 1 0 1

1 1

1 0 1 0 1 0 ,
0 0

1 1 1 1
2 2 22

, ,
0 0 0 0

2π, exp 2 2 j j
j j

p p j j j p pp j
j j j j

j j j j

im p p p p j j x
N

A x A A x

= =

+ + +

= = = =

− = + + 
 

= =

∑ ∑

∑ ∑ ∑ ∑
               (46) 

The fast Fourier transform can be described by the following three steps as 

( ) ( )

( ) ( ) ( )

( ) ( )

0 1
0 1

1

0 1 0

1

1
21

0 0 ,
0

1
22 1

0 0 0 0
0

2
0 1 0 1

,

, ,

, ,

p j
j j

j

j p p

j

m p j x A

m p j m p j A

m p p m p p

=

+

=

= 



= 

= 


∑

∑                             (47) 

The basic idea of the fast Fourier transform is to develop an analytic expression for the Fourier transform of 
the option price and to get the price by means of Fourier inversion. 

The Fast Fourier Transform Method for the Valuation of European Call Option 
The Fast Fourier transform method is a numerical approach for pricing options which utilizes the characteristic 
function of the underlying instrument’s price process. The Fast Fourier transform method assumes that the 
characteristic function of the log-price is given analytically. 

Consider the valuation of European call option. Let the risk neutral density of log TS S=  be ( )T Tf S . The 
characteristic function of this density is given by 

( ) ( )2πe divS
T v f S Sϕ

∞
−

−∞

= ∫                                  (48) 

The price of a European call option with maturity T and exercise price K denoted by ( )TC p  is given by 

( ) ( )( ) ( )exp e dS
T

p

C p rT K f S S
∞

= − −∫                            (49) 

where p is the log of the strike price K i.e. 

elog e pp K K= ⇒ =                                   (50) 

Substituting (50) into (49) yields 

( ) ( )( ) ( )exp e e dS p
T

p

C p rT f S S
∞

= − −∫                            (51) 

( ) ( )( ) ( ) 0lim lim exp e e dS p
Tk k

p

C p rT f S S S
∞

→−∞ →−∞

 
= − − =  

 
∫                      (52) 

From (52), it is clearly seen that European call price given by (51) is not square integrable function. We con-
sider a modified version of (51) given by 
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( ) ( )e ,    0p
T Tc p C pα α= >



                                (53) 

Equation (53) is square integrable in p over the entire real line. Using (36) and (37), we have that 

( )( ) ( ) ( )2πe dikp
T TF c p c k c p p

∞
−

−∞

= = ∫                             (54) 

( )( ) ( ) ( )1 2π1 e d
2π

ikp
T TF c p c p c k k

∞
−

−∞

= = ∫                           (54a) 

Substituting (54a) into (53) and solving further, then we obtain a new call value given by 

( ) ( ) ( )2π 2π

0

1 1e e d e e d
2π π

p ikp p ikp
T T TC p c k k c k kα α

∞ ∞
− − − −

−∞

= =∫ ∫


                     (55) 

(56) is a direct Fourier transform and lends itself to an application of fast Fourier transform method. (54) is 
computed as follows: 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )( )

2π

2π

2π

2π 2π

e exp e e d d

e e e e e d d

e e e e e d d

e ee e e d
2π 2π 1

ikp S p
T

p

rT p S p ikp

p

rT p S p ikp

p

S SS S
ik p ik prT

c k rT f S S p

f S S p

f S p S

f S S
ik ik

α

α

α α

α α

∞ ∞
−

−∞

∞ ∞
− −

−∞

∞ ∞
− −

−∞

∞
+ +−

−∞ −∞−∞

= − −

= −

 
= −  

 
 

= − + + + 

∫ ∫

∫ ∫

∫ ∫

∫



            (56) 

Since ( )2πlim e 0ik p

p

α+

→−∞
=  with 0α > , then the last equation in (56) becomes 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )( )
( )2 2 2

exp 1 2π exp 1 2π
e d

2π 1 2π

exp 1 2π
e d

2π 1 2π

e 2π 1
4π 2π 2 1

rT
T

rT

rT
T

ik S ik S
c k f S S

ik ik

ik S
f S S

ik ik

k i
k ki

α α
α α

α
α α

ϕ α
α α α

∞
−

−∞

∞
−

−∞

−

+ + + + 
= − + + + 

 + +
=   + + + 

− +
=

+ − + +

∫

∫



 

Finally we have 

( )
( )( )

( )2 2 2

e 2π 1
4π 2π 2 1

rT
T

T

k i
c k

k k i
ϕ α

α α α

− − +
=

+ − + +
                           (57) 

Setting 2πv k= , then (57) becomes 

( )
( )( )
( )2 2

e 1
2 1

rT
T

T

v i
c v

v v i
ϕ α

α α α

− − +
=

+ − + +
                              (58) 

The corresponding put values can be obtained by defining ( ) ( )e p
T Tp p P pα−=



, 2πv k= , 0α >  with Fou-
rier transform 

( )
( )( )
( )2 2

e 1
2 1

rT
T

T

v i
p v

v v i
ϕ α

α α α

− − − +
=

− − + − +
                            (58a) 

where Tϕ  is the Fourier transform of ( )f S . A sufficient condition for ( )Tc p  to be square-integrable is 
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given by ( )0Tc  being finite. This is equivalent to ( )1Q
TE Sα + < ∞ . 

Substituting (58) into (56) with 2πv k= , we have 

( )
( )( )
( )2 2

0

e 11e e d
π 2 1

rT
Tp ivp

T

v i
C v v

v v i
α ϕ α

α α α

−∞
− −

 − +
=   + − + + 

∫


                     (59) 

Similarly, for the price of put option we have that: 

( )
( )( )
( )2 2

0

e 11e e d
π 2 1

rT
Tp ivp

T

v i
C v v

v v i
α ϕ α

α α α

−∞
− −

 − − +
=   − − + − + 

∫


                    (59a) 

For the put formula to be well defined, is suffices to choose an appropriate 0α >  in a way that 
( )Q

TE S α− <∞ . 
The European call values are calculated using (59). Carr and Madan [2] established that if 0α =  the de-

nominator of (59) vanishes when v = 0, inducing a singularity in the integrand. Since the fast Fourier transform 
evaluates the integrand at v = 0, the use of the factor e pα  is required. 

Now, we obtain the desired option price in terms of Tc  using Fourier inversion of the form: 

( ) ( )
0

1e e d
π

p ivp
T TC p c v vα

∞
− −= ∫



                              (60) 

Using basic trapezoidal rule, (60) can be computed numerically as: 

( ) ( )
1

0

1e e
π

N
p ivp

T T j
j

C p c vα η
−

− −

=

= ∑


                             (61) 

where 
,    0,1,2,3, , 1,   0j jv j Nη η= = − >                           (62) 

We are interested in (at the money call values) ( )TC p


, the case where the strikes near the underlying spot 
price of the asset. This type of options is traded most frequently. The fast Fourier transforms method returns N 
values of p and we then consider a uniform spacing of size 0>  for the log-strikes around the log-spot price 
S0 of the form: 

,    0,1,2, , 1uk a u u N= + = −                              (63) 

Equation (63) gives us log-strike levels ranging from −a to a, where 

2
Na = −
                                      (64) 

Substituting (63) and (64) into (61), we have 

( ) ( )
1

0

1exp exp
2 π 2

N

T u T j
j

N NC k u iv u c vα η
−

=

−      = − − +            
∑



 


                (65) 

Now, the fast Fourier transforms method can be applied to xi in (45) provided that 2π
Nη

= . Hence the inte-  

gration (60) is an application of the summation (45). 
Remark 2: 

• For an accurate integration with larger values of η  we apply basic Simpson’s 1
3

 rule weightings into (65) 

with the condition 2π
Nη

= , then the accurate call price which is the exact application of the fast Fourier 

transform method is obtained as: 

( ) ( ) ( )( )
1

1
0

1 2πexp exp 3 1
2 π 3

N j
T u j T j j

j

N iC k u u iav c v
N

ηα δ
−

−
=

−    = − + + − −        
∑






          (66) 
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where uk a uρ= + , 0,1, 2, , 1u N= −  and jδ  is called the Kronecker delta function expressed as: 

0, if 0
1, if 0j

j
j

δ
≠

=  =
                                   (67) 

• For in-the-money and at-the-money options prices, call values are calculated by an exponential function to 
obtain square integrable function whose Fourier transform is an analytic function of the characteristic func-
tion of the log-price. Unfortunately, for very short maturities, the call value approaches to its non-analytic 
intrinsic value causing the integrand in the inversion formula of Fourier transforms to vary above and below 
a mean value and therefore remains tedious to be integrated numerically. We use the alternative approach 
called the “Time Value Method” proposed by Carr and Madan [2] to mitigate this numerical inconvenience. 
This approach works with time values only, which is quite similar to the previous approach. But in this con-
text the call price is obtained by means of the Fourier transform of a modified time value, where the modifi-
cation involves a hyperbolic sine function instead of exponential function. 

Let ( )Tz k  represent the time value of out-of-the-money (OTM), that is, for S k<  we have the call price 
for ( )Tz k  and for S k>  we have the put option for ( )Tz k . Setting 0 1S =  for simplicity, ( )Tz k  is de-
fined by 

( ) ( ) ( ) ( ) ( ), 0 , 0e e e d e e e drT S k rT S k
T k S k k S kz k f S S f S S

∞ ∞
− −

> < < >
−∞ −∞

= − Ι + − Ι∫ ∫              (68) 

where ( )f S  is the risk-neutral density of the log-price S and I denotes the indicator function. Let the Fourier 
transform of ( )Tz k  be defined by 

( ) ( )e divk
T Tv z k kυ

∞

−∞

= ∫                                  (69) 

The prices of OTM options can be obtained by the inversion formula of the Fourier transform of (69) of the 
form 

( ) ( )e divk
T Tz k v vυ

∞
−

−∞

= ∫                                 (70) 

By substituting (68) into (69) and writing in terms of characteristic functions then (69) becomes 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

, 0 , 0e e e e d e e e d d

e ee
1 1

ivk rT S k rT S k
T k S k k S k

rT rTrT
T T

v S S f S S k

i v i
iv iv iv iv

υ

ϕ ϕ

∞ ∞ ∞
− −

> < < >
−∞ −∞ −∞

− −−

 
= − Ι + − Ι 

 
− −

= − −
+ +

∫ ∫ ∫
          (71) 

There are no issues regarding the integral of this function in (71) as k →−∞  or ∞ , the time value at k tends 
to zero can get rather steep as T tends to zero and this can make the Fourier transform to be wide and oscillatory. 
By considering the damping function ( )sinh kα , the time value follows a Fourier inversion: 

( ) ( ) ( )1 e d
πsinh

ivk
T Tz k v v

k
ζ

α

∞
−

−∞

= ∫                             (71a) 

where 

( ) ( ) ( )e sinh divk
T Tv k z k kζ α

∞

−∞

= ∫                               (72) 

Solving (72) further and replace ( )sinh kα  by e e
2

k kα α−− , then we have 

( ) ( ) ( ) ( )e ee d
2 2 2

k k
T Tivk

T T
v i v i

v z k k
α α υ α υ α

ζ
∞ −

−∞

+ −  −
= = − −  

   
∫                 (73) 
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The use of the fast Fourier transform for calculating out-of-the-money option prices is similar to (66). The 
only differences are that they replace the multiplication by  

( ) ( )( )exp exp exp
2u

Nk a u uρα α ρ α ρ  − = − + = −  
  

 

with a division by ( )sinh kα  and the function call to ( )T jc v  be replaced by a function ( )T vζ . Hence the 
formula for out-of-the-money option price is given by 

( ) ( ) ( ) ( ) ( )( )
1

1
0

1 2πexp exp 3 1
πsinh 3

N j
T u u j T j j

ju

iC k k u iav v
k N

ηα ζ δ
α

−

−
=

− = − + + − − 
 

∑


        (74) 

where 
2u

Nk a u uρρ ρ = + = − 
 

, 0,1, 2, , 1u N= −  and jδ  is called the Kronecker delta as given by (67). 

3.3. A Closed Form of European Option Pricing under Double Exponential Jump-Diffusion 
Model with Stochastic Volatility 

We derive a closed-form solution of a European call option pricing under double exponential jump-diffusion 
model with stochastic volatility. The corresponding European put option can be obtained easily by means of put- 
call parity. For this purpose, we need the following results. 

Lemma 3.3.1 
Suppose that the variance process vt follows a square root process of the form: 

( )
0 0d d d ,    t t t t tv v t v W v vθ κ σ= − + =                            (75) 

and s1, s2 are any complex, one has 

( ) ( )

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 0
0

0.5

2 2
2

1 2 2

2
2

2 2
1

exp d exp

2 2 elog
2 e 1 e

1 e 2 1 e

2 e 1 e

2

T

t t t

T

T T

T T

T T

E s v t s v A T B T v

A T
s

s s s
B T

s

s

κ γ

γ γ

γ γ

γ γ

θ γ
σ γ κ γ σ

κ γ

γ κ γ σ

γ κ σ

−

− −

− −

− −

  
− − = −      

  


  =  + + + − 
 − − + −  =  + + + −  


= + 

∫

                     (76) 

Remark 3: 
This result shows that (76) holds because of the affine structure of the variance process. 
Lemma 3.3.2 [13] 
Suppose the underlying price of the asset follows: 

1 1

1 2

log 1
1 1t t t t

p qS X t rtη η
λ ξ ς

η η
 

= − + − + + + − + 
                        (77) 

and z is any complex, then 

( )

( ) ( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )

1 1 1 1

1 2 1 2 0

0.5
1 2 2

2 2 2
2 2

exp log

  exp 1 1 1
1 1

1 e 2 1 e2 2 e      log
2 e 1 e 2 e 1 e

T

T

T TT

T T T T

E rt z S

p q p qz rT T z T z V T
z z

s s s

s s

γ γκ γ

γ γ γ γ

η η η η ρσλ λ θ
η η η η σ

κ γθ γ
σ γ κ γ σ γ κ γ σ

− −−

− − − −

− +  
    = − + + − − + − − +    − + − +    

   − − + −
  + +
  + + + − + + + −  

0v
    

     (78) 

where 
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( )( )2 2 2 2
0 0 0 0

1 2

1 1
,    

2 2

z z z
s z s

ρ σ ρσ κ ρ σ ρσ
σ σ

− − −  
= − − = − 

 
 

Lemma 3.3.3 [35] 
Suppose ( )exp logu tE iu Sϕ  =    is the characteristic function of log tS , then 

( ) ( )
( )2

2

0
2

0

1 1 1 1
0

1 2 1 2

2 exp log
2 1 e

1 1
1 1

u tT

T iu Tiu S
iu

p q p qT iu iurT v
iu iu

θ
σ

δ

θ κ δ θσ ρδϕ
σ σδ κ δ ρσσ

η η η ηλ ε
η η η η

−

  −
 = × + − + − − −  

   + + − − + − + +   − + − +    

          (79) 

where 

( ) ( )
( ) ( )

( ) ( )

2 2 2
0 0

2

0

1

1 1 e

2 1 e

T

T

iu iu iu

iu iu

iu

δ

δ

δ κ ρσσ σ σ

σ
ε

δ κ δ ρσσ

−

−

= − + − 
− −

= 
+ − − − 

                          (80) 

Theorem 3.3.4 
Let k denote the log of the strike price K, logT Tx S=  and ( )TC k  the desired value of a T-maturity call op-

tion with strike ek. Assume that, under martingale probability measure P*, the underlying asset price St with 
dividend paying stock q and its components are given by: 

( )
( )

( )
0

1 1

0

1 1 0 2 2 0 1 2

1 1 2 1
1 2 1 2

1 1 2 1

d d d

d d d ,    

e e ,    , 0

exp 1 ,    ,  0,  1

c c c
t t t t t

t t t t t

y y
y y

t t

c
t t t

S r q S t v S W

v v t v W v v

f y p p

p pJ x t p p p p

S S J

η η
γ

σ

θ κ σ

η η η η

η ηλ
η η

− −
≥ <

− +


= − + 
= − + = 
= Ι + Ι > 


   = − + − > + =      
= 

                  (81) 

( )uϕ  is the characteristic function of xT, ( )h x  is the probability density of xT given by  

( )
( )( )

( )
2π 1 1

1

1 e ,    1, ,
π

N i j k
N

j
h x u k Nϕ

 − − − 
 

=

= =∑                           (82) 

then the initial call value ( )TC k  is written as 

( ) ( ) ( ) ( )
0

e 1 e1 1e e e e d
2 π

iuk iuk
T TqT rT qT rT

T t t

u u
C k S K S K u

iu iu
ϕ ϕ∞

− − − −
    −

= − + ℜ − ℜ            
∫          (83) 

where [ ]ℜ ⋅  represents the real part. 
Proof: 
From the risk-neutral theory, we have for the case of dividend yield q, the call price of the form 

( ) ( ) ( ) ( )

( ) ( )

0

1 2

e e e e d

e e e d e eT

rT rqT rT qT
T t t t t

xrT qT qT rT

k

C k E S K S K h S S

K h x x S

∞
+ +− − − −

∞ +− − − −

 = − = −  

= − = Π − Π

∫

∫
                 (84) 

Introducing a change of martingale probability measure from P* to Q* by a Radon-Nikodym derivative, we 
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get 

d e
d e

T

T

x

x

Q
P E

∗

∗ =
  

 

We can write that 

( )
( )

e TiuxQ u i
E

u
ϕ
ϕ

∗ −
  =                                   (85) 

Because of the no-arbitrage condition, we can obtain 

( )
( )1

0

e1 1 d
2 π

iuk
T

T

u i
u

iu i
ϕ
ϕ

−∞  −
Π = + ℜ 

−  
∫                             (86) 

From the Fourier transform formula, the probability density for this model is given by 

( ) ( )
0

1 e d
π

iukh x u uϕ
∞

−= ∫                                 (87) 

Hence, 

( )2
0

1 e d d
π

iuk

k

u u xϕ
∞ ∞

− 
Π =  

 
∫ ∫                               (88) 

Therefore, (88) becomes 

( )
2

0

e1 1 d
2 π

iuk
T u

u
iu
ϕ−∞  

Π = + ℜ 
  

∫                              (89) 

From (84), (86), (89) and (96), we can obtain the required Theorem 3.3.4. 
Remark 4: 
For the of non-dividend yield, see [35]. 

4. Fast Hilbert Transform in the Theory of Contingent 
The Hilbert transform of integrable function f is well defined by the following Cauchy principal value integral 

( )( ) ( )
( )

1 d
π

f y
H f x PV y

x y

∞

−∞

=
−∫                               (90) 

Let the Fourier transform of f be defined as 

( ) ( )( ) ( )e di xf F f x f x xψψ
∞

∗

−∞

= = ∫                             (91) 

Suppose that f ∗  is also integrable, a well-known identity in Fourier analysis that is crucial for the applica-
tion of Hilbert transform is the following; 

( )( ) ( )sgnF f iHfψ ψ∗⋅ =                                 (92) 

Here ( )sgn x  is a signum function defined by 

( )
1, 0

Sgn 0, 0
1, 0

x
x x

x

− <
= =
 >

                                 (93) 

Using the translation property of the Fourier transform, it is very easy to obtain the following identities for 
one dimensional case if ( )pf L∈   with 1 p< < ∞  or with 1p =  and ( )1 ,f L∗ ∈   ; 
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( )( )( ) ( ) ( )( )( ),
11 e e
2 2

i m i m
m

iF f f H fψ ηψ ψ η ψ∗ − ∗
∞ ⋅ = +                     (94) 

( )( )( ) ( ) ( )( )( ),
11 e e
2 2

i u i u
u

iF f f H fε ηε ε η ε∗ − ∗
−∞ ⋅ = −                     (95) 

Thus, 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ), ,1 1 e e e e
2 2

i m i m iu i u
u m

i iF f F f H f H fε η ψ ηε ψ η ε η ψ− ∗ − ∗
−∞ ∞⋅ − ⋅ = +       (96) 

Remark 5: 
The Hilbert transform on [ ]0,2πT =  is defined as 

( )( ) ( )
2π

0

1 cot d
2π 2

x yH f x PV f x y− =  
 ∫                          (97) 

4.1. Some Fundamental Properties of the Hilbert Transform 
It follows directly from the definition of the Hilbert transform that the associated operator is linear. Another 
slightly less obvious property is that Hilbert transform commutes with translations and positive dilations. For 
example, let bτ  be the translation operator defined by ( ) ( )b f x f x bτ = − , and let bS  be the dilation operator 
given by ( ) ( )bS f x f bx=  for 0b > . By a simple change of variable, we have that 

( )( ) ( )
( )

( )
( ) ( )( )

( )( ) ( )
( )

( )
( ) ( )( )

1 1d d
π π

1 1d d
π π

b b

b b

f y b f u
H f x PV y PV u H f x

x y x b u

f by b f u
H S f x PV y PV u S H f x

x y bx u

τ τ
∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

− 
= = = − − − 


− = = = − − 

∫ ∫

∫ ∫
            (98) 

If we now let R be the reflection operator given by ( ) ( )Rf x f x= − , then we have that  

( ) ( )
( )

( )
( ) ( )1 1d d

π π
f y f u

HRf x PV y PV u RHf x
x y x u

∞ ∞

−∞ −∞

−
= = − = −

− − −∫ ∫                 (99) 

There is no simple formula for the Hilbert transform of product of two functions. However we consider here 

the special cases of the Hilbert transform of ( )xf x  and ( )f x
x

 as follows; 

( )( ) ( )
( )

( )
( )

( )
( ) ( )( ) ( )

1 d d
π π

1 1 d d
π π

yf y f yxH xf x PV y PV y
x y x y

f x y
PV y xH f x f y y

x y

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

= =
− −

−
= − = −

−

∫ ∫

∫ ∫
               (100) 

Comparing (90) and (100) we have that 

( )( ) ( )
( ) ( )( ) ( )1 1d d

π π
f x y

H f x PV y xH f x f y y
x y

∞ ∞

−∞ −∞

−
= − = −

−∫ ∫  

Dividing both sides of the last equation by x and rearrange we have that 

( ) ( )( ) ( )( )0H f x H ff x
H

x x
− 

= 
 

                           (101) 

The Hilbert transform is an anti-self adjoint operator relative to the duality pairing between ( )pL R  and dual 
space ( )qL R  where p and q are Holder conjugate and 1 p q< < < ∞ . Symbolically , ,Hu v u Hv= − , 

( )pu L R∈ , ( )qv L R∈ . 
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4.2. Fast Hilbert Transform Method for the Valuation of European Options 
Suppose the dynamics of the underlying price of the asset is given by the following under a given equivalent 
martingale measure 

0e tX
tS S=                                      (102) 

where Xt is a stochastic process starting at 0. Consider a European put option with exercise price K and maturity 
T. The payoff function for the European put option is given by 

( )max ,0TP K S= −                                  (103) 

Let the risk neutral expectation of discounted payoff be denoted by PE which is defined as 

[ ]e rT
EP E P−=                                    (104) 

Substituting (102) and (103) into (104) yields 

( ) ( )
( )( ) ( ){ }( )0

0 0

0 0 ln ln

e max e ,0 e e

e ln ln e 1

t t

t
T

X XrT rT
E

XrT
T X K S

P E K S E K S

KP X K S S E

+− −

−
≤ −

  = − = −    

 = ≤ − −
 

                 (105) 

Equation (105) is called the value of European put option under the risk neutral expectation where r is the risk 
free interest rate. 

The following results enable the derivation of the fast Hilbert transform method for the valuation of European 
standard put option: 

Theorem 4.2.1 [32] 
Let ( )F x  and ( )φ ψ  be the cumulative distribution function and the characteristic function of a continuous 

distribution. Suppose that ( )1Lφ ∈  . Then 

( ) ( )( )( )1 e 0
2 2

i xiF x H ε φ ψ−= −                             (106) 

Remark 6: 
This theorem shows that the cumulative distribution function can be computed from the characteristic func-

tion through the Hilbert transform. 
Theorem 4.2.2 [32] 
Let X be a random variable such that eaXE   < ∞   and φ  be the characteristic function of X such that
( ) ( )1ia Lφ ε − ∈  . Then 

{ }
( ) ( )( )( )e 1 e 0

2 2
aX i b

X b

ia iE H iaψφ
φ ψ−

≤

−  = − −                       (107) 

Remark 7: 
This theorem shows the expectation for the Hilbert transforms representation. 
From the two theorems above we obtain the Hilbert representation of European standard put option price as 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0
0 0 0

0
0 0

e ln ln ln ln
2 2 2

e ln ln
2 2 2

rT
E

rT

SK iP i S H K S i KH K S

SK ii H K S S i K

φ φ ψ φ

φ φ ψ φ ψ

−

−

 = − − + − ⋅ − − − ⋅ 
 
 = − − + − ⋅ − − 
 

          (108) 

Similarly European call option price with the same exercise price and maturity can be obtained by means of 
put call parity of the form; 

0 e rT
E EC P S K −= + −                                  (109) 

Substituting the last equation in (108) into (109) we have 

( ) ( ) ( ) ( )( )0
0 0 0e ln ln e

2 2 2
rT rT

E
SK iC i H K S S i K S Kφ φ ψ φ ψ− − = − − + − ⋅ − − + − 

 
         (110) 



C. R. Nwozo, S. E. Fadugba 
 

 
107 

The results below summarize the derivation of the Hilbert transform method for the valuation of European 
options. 

Lemma 4.2.3 
Suppose the underlying price of the asset satisfies the martingale condition of the form 

( )0e e eTXrT rT
TE S S E iφ−    = ⇒ = −    . Define the following probabilities ( ) ( )( )( )0ln ln

1
1 e 0
2 2

i K Sip H ψ φ ψ− −= − , 

( ) ( )
( ) ( )0ln ln

2
1 e 0
2 2

i K S iip H
i

ψ φ ψ
φ

− − −
= −   − 

. Then the fast Hilbert transform method for the valuation of European  

call and put options with non-dividend yield i.e. ( )0q =  are given by 0 2 1e rT
EC S p K p−= −  and  

1 0 2e rT
EP K p S p−= −  respectively. 
Lemma 4.2.4 
Suppose the underlying price of the asset satisfies the martingale condition of the form 

( )0e e eTXrT rT
TE S S E iφ−    = ⇒ = −    . Define the following probabilities ( ) ( )( )( )0ln ln

1
1 e 0
2 2

i K Sip H ψ φ ψ− −= − , 

( ) ( )
( ) ( )0ln ln

2
1 e 0
2 2

i K S iip H
i

ψ φ ψ
φ

− − −
= −   − 

. Then the fast Hilbert transform method for the valuation of European  

call and put options with dividend yield q are given by 0 2 1e eqT rT
EC S p K p− −= −  and 1 0 2e erT qT

EP K p S p− −= −  
respectively. 

Remark 8: 
• The Lemma 4.2.3 and Lemma 4.2.4 give the fast Hilbert transform for the valuation of European call and put 

options with non-dividend and dividend yields respectively. 
• The fast Hilbert transform method can also be used for the valuation of timer option which is similar to its 

European counterpart, except with uncertain expiration date. This type of option is referred to as a barrier 
style option in the volatility space. 

5. Numerical Examples and Discussion of Results 
This section presents some numerical examples and discussion of results: 

5.1. Numerical Examples 
Example 1 
Consider the pricing of a contingent claim using fast Fourier transform method with the following parameters 

0 03,  1.24,  0.04,  0.00035,  0.055,  0.023,  1.17,  0.16k v S rµ θ σ ρ= = = = = = = =          (111) 

The exercise or strike prices and maturities are generated in MATLAB codes. 
The results obtained are shown in the figure below: 
Example 2 [35] 
We consider European options pricing with double jumps and stochastic volatility using the following pa-

rameters: 

1 2

0 0 0

0.3,  40,  40,  0.6,  10,  0.6,  0.25,
1.0,  0.8,  100,  0.05,  0.16

p
v S r
κ η η λ θ σ

ρ σ
= = = = = = = 

= = − = = = 
                 (112) 

We compare both the short-term and long-term probability densities of the double exponential-jump diffusion 
model with a stochastic volatility (SVDEJD), double exponential-jump diffusion model without a stochastic 
volatility (DEJD) in the context Black-Scholes model (BS) with the maturity time T = 3 months and T = 2 years. 
The results obtained are shown in the Figure 3. 

Example 3 
We consider the pricing of “in-the-money (ITM) and at-the-money (ATM)” and “out-of-the-money (OTM)” 

European call option with the following parameters given: 
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Figure 3. Pricing of a contingent claim using the fast fourier 
transform method. 

 

{ } { }
{ }

0 00.5,  0.5,  0.25,0.50 ,  0.8,  0.2,0,0.2 ,  50,

0.05,  0.5,  10,20,30,40,50,60,70,80,90,100

v S

r T K

κ θ σ ρ= = = = = − = 


= = = 
            (113) 

We examine the effects of correlation coefficient, strike price and volatility of volatility; on option values us-
ing the fast Fourier transform method. The results generated are shown in the Table 1 and Table 2 for “in-the- 
money (ITM) and at-the-money (ATM)” and “out-of-the-money (OTM)” European call options respectively. 

Example 4 [33] 
Consider the pricing of finite-maturity discrete timer options via Monte Carlo method based on 20 Million 

simulation runs and 800 time steps per year under Heston model and the fast Hilbert transform approach with 
the following parameters: 

0

0

0.087,  0.09,  0.375,  2,  300,
0.087,  0,  0.015,  1.5,  100

v v N
B q r T S

η λ= = = = = 
= = = = = 



                     (114) 

The results obtained are shown in Table 3. 

5.2. Discussion of Results 
From Figure 1(a), Figure 1(b) and Figure 1(c) can see that conditions 0ρ < , 0ρ =  and 0ρ >  have effect 
on the heaviness of the left and right tails. When 0ρ < , there is an inverse proportion between underlying asset 
price and volatility, when 0ρ = , the skewness is close to zero and when 0ρ > , this means that as the under-
lying asset increases, volatility increases. 

Figure 2 shows that adding jumps makes it easier to introduce curvature into the volatility surface, at least for 
short maturities. 

Figure 3 builds the volatility surface based on the parameters of the model and enhances an intuitive under-
standing of the Heston model. It can be seen from Figure 3 above that there is change in volatility perception. 
Volatility smile shape has been changed yet volatility for in-the-money and at-the-money options is high and 
also for out-of-the money options volatility is low. It can be seen from Figure 4 that the long density curves still 
show significantly different pricing structures between the Black-Scholes model (BS) and its two counterparts 
(SVDEJD and DEJD). But, more importantly, the densities of the double exponential jump-diffusion model with 
stochastic volatility and the double exponential jump-diffusion model without stochastic volatility also exhibit 
different shapes. The SVDEJD density has higher peak and assigns more weight to both the entire lower tail and 
far upper tail, but less weight to those payoffs than the DEJD [35]. 

Table 1 and Table 2 show the effect of correlation coefficient ρ, volatility of volatility σ  and strike price K 
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on ITM, ATM and OTM options values using fast Fourier transform. The price of option and the time value for 
six-month call options associated with volatility of volatility 0.25σ =  and 0.50σ =  are relatively close as 
we can see from Table 1 and Table 2 for ITM, ATM and OTM respectively. The effect of correlation coeffi-
cient depends on the relationship between the current underlying price of the asset and strike price. For a posi-
tive correlation coefficient, the price of out-of-the-money call option becomes lower. For negative correlation 
coefficient, the price of in-the-money and at-the-money call options becomes higher. When the correlation coef-
ficient is zero, the effect of volatility of volatility is negligible. 

Table 3 shows the comparative results analysis of the fast Hilbert transform and Heston model. It also shows 
that the relative percentage errors between the fast Hilbert transform and Heston model results are always less 
than 0.2%. This reveals high level of accuracy of the fast Hilbert transform algorithm. 

 

 
Figure 4. Comparison of the short-term and long-term probability densities of the double exponential-jump diffusion model 
(DEJD) without a stochastic volatility, double exponential-jump diffusion model with a stochastic volatility (SVDEJD), in 
the context Black-Scholes model (BS). 

 
Table 1. The effects of correlation ρ, exercise price K and the volatility of volatility σ “on in-the-money (ITM) and at-the- 
money (ATM) European options values”. 

K 
0.2ρ = −  0ρ =  0.2ρ =  

0.25σ =  0.50σ =  0.25σ =  0.50σ =  0.25σ =  0.50σ =  

10 39.9917 40.0061 39.9974 39.9721 39.9574 39.9347 

20 30.9783 31.0157 30.9487 30.9585 30.9181 30.8975 

30 23.2417 23.2645 23.2079 23.1979 23.1730 23.1271 

40 17.1381 17.1100 17.1282 17.0895 17.1183 17.0685 

50 12.5756 12.4911 12.6052 12.5492 12.6352 12.6091 

60 9.2644 9.1442 9.3294 9.2743 9.3948 9.4051 

70 6.8318 6.6941 6.9255 6.8819 7.0188 7.0680 

80 5.1232 4.9858 5.2324 5.2043 5.3407 5.4192 

90 3.8049 3.6758 3.9242 3.9136 4.0424 4.1468 

100 2.8751 2.7605 2.9957 2.9996 3.1152 3.2345 
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Table 2. The effects of correlation ρ, exercise price K and the volatility of volatility σ on “out-of-the-money (OTM) Euro-
pean options values”. 

K 
0.2ρ = −  0ρ =  0.2ρ =  

0.25σ =  0.50σ =  0.25σ =  0.50σ =  0.25σ =  0.50σ =  

10 40.4751 40.4830 40.4754 40.4715 40.4681 40.4686 

20 31.0556 31.0412 31.0418 31.0298 31.0034 30.9899 

30 23.2531 23.2751 23.2122 23.2210 23.1881 23.1456 

40 17.1308 17.1024 17.0839 17.1220 17.1132 17.0653 

50 12.5614 12.4767 12.5361 12.5916 12.6223 12.5975 

60 9.2479 9.1277 9.2586 9.3134 9.3792 9.3905 

70 6.8147 6.6769 6.8652 6.9086 7.0023 7.0521 

80 5.1064 4.9690 5.1878 5.2157 5.3243 5.4130 

90 3.7884 3.6583 3.8973 3.9079 4.0262 4.1310 

100 2.8592 2.7446 2.9839 2.9799 3.0995 3.2191 

 
Table 3. The comparative results analysis of the fast Hilbert transform approach and Heston model for pricing finite-ma- 
turity discrete timer call options varying exercise prices K and correlation coefficients ρ. 

K ρ Fast Hilbert transform 
approach Heston model Relative percentage  

error 

90 −0.5 17.6905 17.6927 −1.24E−02 

90 0 17.5517 17.5551 −1.94E−02 

90 0.5 17.4910 17.4882 1.60E02 

100 −0.5 12.3996 12.4099 −7.82E−02 

100 0 12.2804 12.2909 −8.54E−02 

100 0.5 12.2647 12.2692 −3.67E−02 

110 −0.5 8.4147 8.4313 −1.97E−01 

110 0 8.3503 8.3634 1.57E01 

110 0.5 8.3716 8.3774 −6.92E−02 

6. Conclusions 
In this work we consider the performance measure of fast Fourier transform for the valuation of contingent 
claims. The fast Fourier transform method is used because of its advantages when compared to the analytic solu-
tion. Using the fast Fourier transform with risk neutral approach provides simplicity in calculations. Heston 
model is one of the most popular stochastic volatility option pricing models. This model is motivated by the 
widespread evidence that volatility is stochastic and that the distribution of risky asset return has tails heavier 
than that of a normal distribution. 

The stochastic volatility model incorporates several important features of stock returns. We derive a closed 
form solution for at-the-money; in-the-money and out-of-the-money European call options using fast Fourier 
transform method. We also derived a closed form solution for pricing European option under double exponential 
jump-diffusion with stochastic volatility model. The comparison of the probability densities of the SVDEJD, the 
Black-Scholes model and the double exponential jump-diffusion model without stochastic volatility shows that 
SVDEJD model has better performance than the two other models on pricing long term options. An analysis of 
the fast Fourier transform method reveals that the volatility of volatility σ  and the correlation coefficient ρ  
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have significant impact on option values, especially long-time option, stock returns and negatively correlated 
with volatility and these negative correlations are important for contingent claims valuation. The numerical ex-
ample demonstrates high levels of accuracy of the fast Hilbert transform algorithms. 

Finally, we can say that fast Fourier transform method is a technique that increases the speed of computation. 
It is considerably faster than most available methods such as Heston and Bates models. The Hilbert transform 
method is good for pricing finite-maturity discrete timer options 
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