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Abstract 
In this paper we consider of natural oscillations cylindrical bodies with external friction. Complex 
rates changes from friction parameters are shown. Rate equations are solved numerically—by 
method of Muller. 
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1. Introduction 
Simulation of vibrations of bodies located in the deformable medium is studied with many scientists and by 
various methods [1]-[4]. Study of dynamic stress-strain state of pipelines in soil medium, refers to the complex 
task of solid mechanics. In some researches [5] [6] deformable surrounding in the pipe replaced by springs and 
considered as emerging (linear and nonlinear) reducing force. In this paper, vibrations of pipelines as a cylin-
drical body with radiuses r0 and R at deformable surroundings are modeled (Figure 1). Medium was replaced 
with viscous damping in the radial and tangential direction. The main aim of the work is to study the oscillations 
of a cylinder with external friction on the edge and to compare the results of the body located in an elastic me-
dium [3]. 

2. Statement of the Problem 
Study fluctuations pipeline located in an elastic medium are considered different methods [6]-[9]. 

In this paper, fluctuations pipelines are modeled as a cylindrical body with a radius r  and R, located in a 
deformable medium (Figure 1). Medium was replaced with viscous damping in the radial and tangential direc- 
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Figure 1. Design model of cylindrical bodies with a viscous 
external friction.                                       

 
tion. The main goal of the work is to study the natural oscillations a cylinder with external friction. In the study 
mentioned above, the optimal values of damping coefficients, in which the oscillations are, damped pipelines as 
possible. 

Consider the problem of the oscillations of an infinite elastic cylinder with external friction at the interface 
(Figure 2). Closed system of equations of small oscillations of the free elastic cylindrical body has the form: 

( )
2

2
2 ;

2 ;ij ij ij

uu grad div u
t

µ λ µ ρ

σ λθδ µε

∂
∇ + + =

∂
= +



 

                               (1) 

where u —displacement vector; ,λ µ —lame coefficients; ρ —the density of the cylinder; ijσ —the stress tensor; 

ijε —strain tensor. On the part of the boundary 0r  given movement: 0;u =  apart R-Voltage: .un
t
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 As 

well as the initial conditions: 
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Consider the problem in cylindrical coordinates ( ), , .r zθ  Assuming that z coordinate does not affect the oscil- 
lation, we obtain a system of equations splits into two independent tasks [7]: 
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(a) 

 
(b) 

Figure 2. (a) The dependence of the real part of the eigenvalues of α (n = 0); 
(b) The dependence of the imaginary part of the eigenvalues of α (n = 0).       

 
With boundary conditions: 

at r R= : 
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where R-radius of the cylinder; 1 2, ,α α α -parameters of friction at 0 0 :r ε= →  

rr

rrz

z ru u
u

θ

θ

σ
σσ

< ∞
 < ∞< ∞ 

 < ∞ < ∞ 
 < ∞

                                   (2d) 

Then we call the boundary value problem (2a)-ant plane and (2b)-flat or planar problem of oscillations of a 
cylinder. 

3. Methods for Solving the Problem of Natural Oscillations 
We call the natural oscillations of an elastic cylinder solution of (2a) and (2d) (f = 0) for ant plane case types: 
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problem (2b and 2d) for the planar case types: 
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where ( ) ( ) ( ) ( ), , ,r rr r v r v rθ θσ σ -unknown function of the radial vibration modes; R Iiω ω ω= + -complex 
natural frequency of the cylinder, the real part of which characterizes the frequency of oscillation of the cylinder, 
and the imaginary part ( )Iω —the rate of decay, 0,1, 2,n =   [8]. Substituting the representation (3a), (3b) in 
Equations (2a) and (2b) and the boundary conditions (2p), (2q), we obtain the spectral problem for the (two) or-
dinary differential equations solved for the first derivatives of the radial coordinate r: For the case of plane vi-
brations 
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It can be shown that the conditions for the finiteness of all the unknowns in the center for a solid cylinder 
equivalent to the following boundary conditions-for flat cylinder oscillation: 

at 0 : 0, 0;rn v vθ= = =  

at 1: 0, 0;rr rn θσ σ= = =  

At n > 1 can be set equal to zero any set of two unknowns. Indeed, if the conditions of the limb in the center 
of the cylinder, then , , ,rr r rv vθ θσ σ  can be represented as: 
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                                  (5а) 

where , , , , 0,1, 2,i i i ia b c d i = —unknown coefficients. 
Then substituting (5a) to (4a) we obtain a system of four equations. Equating them coefficients of like powers 

of r we obtain the recurrence relation: 



S. I. Ibrahimovich et al. 
 

 
633 

2 2

0 0 0 0 0 1 1

2 2
2

1 0 1 1 0

0 0

0 0

0

2 0
:

0

0

nb a a knd kc nd c
k k k

b k n d k nc na
r k k k

nd c
k k

nc d

λ λ λ

λ λ λ

λ λ

−


− − + + + − − =

    
− + − + − + =    
    

− − =

 + =

 

( )

( )

( )

( )

2 2
2

1 1 1 1 1 2 2

2 2
2 2

1 1 2 2 1

1 1 1

1 1 1

1 1

1 2
: 0,1,

11

11

i i i i i i i i

i i i i i i
i

i i i i

i i i i

i a a nb knd kc nd nc c
k k k

i b b k n d k nc na d
k k kr i

i c a nd c
k k k

i d b nc d

λ λ λ ω

λ λ λ ω

λ λ

µ

+ + + + + + +

+ + + + +

+ + +

+ + +

  + = − − − + + − − +  
 

    
 + = − + − + − + +       = 


+ = − −

 + = + +

  

At 0 0r ε= →  we find that for n = 0 ,rr rθσ σ —finite, ,rU Uθ  tend to zero; at n = 1 ,rU Uθ —finite, ,rr rθσ σ
—tend to zero; for n > 1 tend to zero all unknown. 

If ant planar cylinder oscillation: the n = 0 0;rσ =  at n = 1: 0rU = , at n > 1 either of the two unknowns 
can be set equal to zero. Indeed, if the conditions of the limb in the center of the cylinder at the time: 
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                                    (5b) 

where , , 0,1, 2,i im i = —unknown coefficients. 
Substituting (5b) in (4b), we obtain a system of two equations. Equating them to obtain coefficients of the 

same recurrence relation: 
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Then for 0r ε= →  at n = 0 v  of course, rσ  tend to zero; at n = 1 rσ —of course, v —tends to zero for 
n > 1 tend to zero, both unknown. 

The general solution of the system of Equations (2a, 2, c) can be expressed in terms of Bessel and Neman 
functions n—the order: 

( )

( )

n n
s s

rr n n
s s s s

r rr AI BY
c c

r rr A I B Y
c c c c

ω ων

ω ω ω ωσ µ

    
= +    

   


       ′ ′= +              

                              (6) 

where A, B—arbitrary constants; nI —Bessel function of order n; nY —Neman function of order n. 
When substituting (6) into (2c and 2d), we obtain the characteristic equation for ω: 

n n
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Theorem. Let the Eigen values kω  boundary value problems 
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 where ku —Eigen functions of the problem (8), corresponding to 

the eigenvalues kω , Rises basis in the space 1
2 2L W⊕  [8]. 

Proof. To prove the theorem using the definition from [8]. A boundary value problem can be represented as: 
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equivalent, i.e., received (9) are linear combinations of not less than the total order. Given the total order of the 
boundary conditions (9) is called a total order of the boundary conditions, we obtain from (9) after normaliza-
tion. 

Rewrite Equation (8a) and boundary conditions (8b) in the form (9). To make the replacement is necessary, so 
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χ = 1 – total order. 
The characteristic equation for (9) has the form: 

1
11 1 1 1 0n n

n nnp p h pω ω ω−
− −+ + + − + =                            (12) 

Its roots are denoted 1, , .nω ω  substituting the coefficients we obtain: 

( ) ( )22
1 21 0, 1 , 1a a aω ω ω− − = = − = − −                          (13) 

If the roots of the characteristic Equation (12) is simple, and the coefficients 1
1 1
r s

sp W Lν
ν

− + +∈ . Then from [8] 
that the complex plane can be divided into sectors 2h 1 2, , ,hs s h n≤  in each of which Equation (9) has a  
fundamental system of solutions ( ) ( )1 , , , ,nу x у xλ λ  where these solutions and their derivatives up to order n ‒ 1 
shall be permitted λ →∞  in these sectors asymptotic expansions: 
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, , 1 0, ,r
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νη ν− +∈ =   and the first expansions-function ( ) ( ), , ,k s k sx xθη η∈  do not depend on s. 

In [8] it is also noted that the functions ( ), , ,k s xνη  involved in the expansions (14) do not depend on the choice  
of sector and the sequence of the system of recurrence equations. 

We represent the solution of our problem in the form (14): 
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The eigenvalues of the problem (9), (10) are determined by the zeros of the characteristic determinant ( ) ,λ∆  
which has the form: 
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We introduce the definition of [8]. 
Definition 3. Boundary value problem (9), (10) is said to be regular if all the coefficients ( )sp xν  in Equa-



S. I. Ibrahimovich et al. 
 

 
636 

tion (9)—summing functions and numbers 0
jkF  in the expansions 

0

ikF    corresponding corner points jkµ  

different from zero. 
Let M denote the smallest convex polygon containing the point jkµ  our case M-segment. Point jkµ  that 

were on the boundary of the polygon M, called a boundary, and the points that lie at the vertices of M-the cor- 
ner. 

Definition 4. Regular boundary value problem is said to be strongly regular if the zeros of the characteristic 
determinant ( )λ∆  asymptotically simple and separated from each other by a positive number 0δ > . 

01 020 if 1, 0 if 1.F Fα α≠ ≠ ≠ ≠ −  

And obtained Equation (9), the coefficients ( )sp xν -enterable functions. Hence when 1α ≠  и 1α ≠ −  our 
problem is regular. We show that it is a regular hard task. We find the asymptotic approximation of zeros of the 
determinant ( ).iω∆  To do this, we introduce the notation ( )1 a iz ω−=  . The (15) can by written as: 
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At 1α ≠ −  there exists a countable set of eigenvalues determined by a multi-valued function of the loga-
rithm: 
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Hence the zeros of the characteristic determinant ( )iω∆  asymptotically simple and separated from each 
other by a positive δ  their identical real parts and imaginary spaced on 2π . So the problem (8a) and (8b) in-
creasingly regularly. From the corollary of the theorem in [8] for a regular hard task gets basis function  

k
k

k k

u
у

i uω
 

=  
 

 in space 1
2 2 .L W⊕  

4. The Numerical Results of the Problem of Their Own Ant Planar  
Oscillations of the Cylinder 

The results of calculations are given in dimensionless system of units in which the value of the shear modulus µ, 
density cylinder ρ , radius of the cylinder Requal to one. Poisson's ratio ν  is assumed to by 0.25. In the case 
of 0α =  roots of Equation (7) correspond to the natural frequencies of vibration of the free elastic cylinder. 
For small α  solution of the characteristic equation was found method of a small parameter, i.e., it was as-
sumed that 

0 1 1ω ω α ω= + +                                    (17) 

Then, after the stand (17) (7) have: 

0 0
1 1 0 1

r ri Y Y
cs cs
ω ω

ωα α ω    ′=    
   

                            (18) 

where 0ω —solution of the problem on their own ant planar oscillations of elastic cylinder with 0α = . In the 
case where α  cannot be considered “small” parameter, a direct solution of the transcendental characteristic 
equation is solved by Muller [9]. For small α  numerical solution coincides with the solution by the method of 
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the small parameter, see Figure 2: dotted line-solution to the problem of the small parameter method of, the 
solid line-solution to the problem method of Mueller; Figure 2 shows the relationship α ; Figure 2—the im-
aginary part numbers are marked on the charts rooms mod. At α →∞  the roots of the characteristic Equation 
(7), obtained by numerical method, tend to the natural frequencies of elastic vibrations, fixed on the outer sur-
face of the cylinder. In all of these cases, the solution of the spectral problem (7), in contrast to the composite 
semi-infinite rod, exists for any of the parameters of friction. 

Figure 2 and Figure 3 show the dependence of the real (a) and imaginary (b) parts of the eigenvalues of the 
spectral problem (9), (18) the parameter α  and n = 0.4 respectively. The numbers marked on the charts num-
ber of oscillations in the ascending order of the real part of the Eigen values. In all cases, except for the first 
mode and the second mode (n = 4) for the real parts of these curves have the form of smooth decreasing steps 
with a maximum angle of inclination of the tangent to the segment [ ]0.85;1.0α ∈  corresponding imaginary 
parts have a characteristic maximum. 

With the growing number of fashion maximum value increases, the value of α, to which he achieved increases, 
while remaining less than one. Meaning α, which peaks are shown in Table 1 and Table 2. In the zeros har-
monic for any α there is zero eigenvalue and α smaller units exist purely imaginary eigenvalues, which tends to 
infinity when approaching the unit on the left. Zero eigenvalue corresponds to the motion of the cylinder as a ri- 
gid body. In the case of n = 1, 2 for the first mode, there are critical values 1 20.90, 0.97α α= =  respectively, 
starting from which complex eigenvalues becomes purely imaginary, i.e. oscillatory process is replaced by a perio- 
dic (Figure 4(a) and Figure 4(b)). At α  big data critical values of the imaginary part of the bifurcated, 

 

 
(a) 

 
(b) 

Figure 3. (a) The dependence of the real part of their own values of α (n = 4); 
(b) Dependence of the imaginary parts of the eigenvalues values of α (n = 4).   
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(a) 

 
(b) 

Figure 4. (а) The dependence of the real part of their own values of α (n = 1, 
2); (b) Dependence of the imaginary parts of the eigenvalues values of α.      

 
Table 1. The values of the attenuation coefficient depending on the number of harmonics.                             

Model number 
The rooms of harmonics 

0 1 2 3 4 

1    0.90 0.86 

2 0.94 0.94 0.93 0.90 0.95 

3 0.98 0.98 0.98 0.92 0.95 

4 0.99 0.99 0.98 0.97 0.96 

 
Table 2. The values of the maximum oscillation damping depending on the number of harmonics.                       

Mode number 
The rooms of harmonics 

0 1 2 3 4 

1    2.795 2.506 

2 1.319 1.561 1.871 2.371 2.246 

3 1.635 1.760 1.903 2.039 2.012 

4 1.796 1.906 2.021 2.142 2.200 
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with one branch tend to zero α  tends to infinity, and the second increases indefinitely. (See Figure 4, the 
numbers marked on the charts numbered harmonics.) 

For n = 3 also exists a critical value 3 0.92α = , branch from which the first and second modes are merged 
into one, and when minimum Eigen values of becomes red. Near the critical point at 3α α<  the imaginary part 
of the first two events there is a maximum in excess of the maximum of the other modes considered. In addition, 
the segment [ ]0.9864;0.990α ∈  discovered purely imaginary roots, depending on which α  shown in Figure 
5.  

A similar case is obtained for n = 4. At the critical value 4 0.95α =  branches of the second and third modes 
are merged, while 4α α>  second eigenvalues becomes a multiple. Near the critical point at 4α α<  the im-
aginary part of the second mode has a maximum exceeding the maximum of the rest of the considered modes. 
On the interval [ ]0.992;0.995α ∈  also found purely imaginary roots, whose dependence on α . 

Thus for all n there is considered imaginary branch of the natural frequencies of the parameter α , which in 
the vicinity of the unit is broken continuity. 

 

 
(a) 

 
(b) 

Figure 4. (а) The dependence of the real part of their own values of α (n = 1, 2); (b) De-
pendence of the imaginary parts of the eigenvalues values of α.                         



S. I. Ibrahimovich et al. 
 

 
640 

 
Figure 5. The dependence of the imaginary part of its own values of α (n = 4).        

5. Numerical Solution of the Problem on Its Own Plane Oscillations of a Cylinder 
Solution of the resulting task was carried out by separation of variables and note to the solution of the transcen-
dental equation. All results of the calculations are given in dimensionless system of units in which the value of 
the shear modulusµ, density cylinder ρ , radius of the cylinder Rconsidered to be equal to unity. Poisson’s ratio 
ν  is assumed to be 0.25. In case 1 0α =  и 2 0α =  the roots of the natural vibration frequencies of the free 
elastic cylinder. At 1 0α = , 2α →∞  or 2 0α = , 1α →∞  roots, obtained by numerical method tend to own 
oscillating elastic fixed to the outer surface of the cylinder. In all of these cases, the solution of the spectral 
problem, unlike composite semi-infinite rod, exists for any of the parameters of friction, as in the case ant planar 
cylinder oscillation. 

Figure 6 and Figure 7 show the dependence of the real (a) and imaginary (b) parts of the eigen values of the 
spectral problem of the parameter 1α  ( )2 0α = . Figure 8 and Figure 9 2α  ( )1 0α =  –n = 0 to 3, respectively. 
The numbers in the graphs denote the eigenvalues in ascending order of their real parts. 

For n = 0 the problem is divided into two independent tasks. In this case, as in the case ant planar cylinder os-
cillation, depending on the real parts of the eigen values have the form of smooth decreasing steps with a maxi-
mum angle of inclination of the tangent in the case of radial oscillations in the interval  [ ]1 1.6;1.8α ∈  (Figure 
6(b)), torsions in the interval [ ]2 0.9;1.1α ∈  (Figure 8(a)). In these segments corresponding imaginary parts have 
a characteristic maximum maxImω  at 1 1Mα α=  ( )2 0α =  (Figure 6(b)), 2 2Mα α=  ( )1 0α =  (Figure 8(b)). 

As in the case anticline, with increasing numbers of harmonics increases the maximum value, except for the 
first radial root (see Table 3). It differs from the rest of the eigen values of the fact that the real part vanishes 
that corresponds to the motion of the cylinder as a rigid body. 

For all the above cases, for n > 1, there is a clear separation of the roots into two types. The differences be-
tween these types of roots appear as a character of the dependence of the eigen values of the parameters of the 
external friction, and in the value of the form. For example, for the first root of the first harmonic-“twist”, the 
maximum value of the real part of the radial component of the voltage waveform is about three times smaller 
than the value of the real part component forms torsion stresses. For the second root of the first harmonic-“radial” 
—the maximum value of the real part of the radial component of its own form of stress three times more than 
the maximum torsion component (see Figure 10(a), the first root; Figure 10(b), the second). Actual own forms 
part of the deformation, on the edge of the cylinder, characterized by two times (see Figure 11). The imaginary 
parts of their own forms of valid order of magnitude smaller and do not have such a pronounced difference. If 
you change depending on the real parts of the eigen values of the first type-“radial”—the parameter of friction 
have the form of smooth decreasing steps with a maximum angle of inclination of the tangent to the range 

[ ]1 1.6;1.8α ∈  except for the first mode of the second, third, fourth harmonics. Depending on the real parts of 
the eigenvalues of the second type—“torsion” have in this case the form is close to the line (see Figure 7(a)). In 
case of change 2α . Depending on the real parts “tensional” eigenvalues have the form of decreasing levels of 
smoothed with a maximum angle of inclination of the tangent to the range [ ]2 0.9;1.1α ∈ , with the exception of 
the second mode of the second, third, fourth harmonics; a dependence of the real parts of the “radial” eigen val- 
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(a) 

 
(b) 

Figure 6. (a) The dependence of the real part of the eigenvalues of α; (b) The 
dependence of the imaginary part of the eigenvalues of α.                   

 

 
(a) 



S. I. Ibrahimovich et al. 
 

 
642 

 
(b) 

Figure 7. (a) The dependence of the real part of the eigenvalues of α; (b) The 
dependence of the imaginary part of the eigenvalues of α.                   

 

 
(a) 

 
(b) 

Figure 8. (a) The dependence of the imaginary part of the eigenvalues of α; 
(b) The dependence of the imaginary part of the eigenvalues of α.             
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(a) 

 
(b) 

Figure 9. (a) The dependence of the real part of the eigenvalues of α (n = 3); (b) The 
dependence of the imaginary part of the eigenvalues of α.                        

 

 
(a) 
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(b) 

Figure 10. (a) The dependence of the real part of the eigenvalues of α; 
(b) The dependence of the imaginary part of the eigenvalues of α.        

 

 
Figure 11. The dependence of the real part of the eigenvalues of α.  

 
Table 3. The values of the maximum oscillation damping depending on the mode number.                             

Mode number maxImω  1Mα  maxImω  2Mα  

1 10.3 1.7 0.9 0.95 
2 4.08 1.7 1.09 0.95 
3 4.1 1.7 1.23 0.95 
4 4.12 1.7 1.46 0.98 

 
ues-lose to a linear form (see Figure 8(a) and Figure 9(a)). Actual part allocated in both cases the eigenvalues 
corresponding to the above defined ranges, reaches certain values and then decreases to zero. When changing 

1α  imaginary part of the “radial” eigenvalues have a characteristic maximum in the interval [ ]1 1.6;1.8α ∈ , the 
value of which is ten times the value of the imaginary parts of the “tensional” eigenvalues on the whole interval 
under consideration (i.e., [ ]1 0;α ∈ +∞ , 2 0α = ) (see Figure 7(b)). When changing 2α  behave similarly im-
aginary part of the “tensional” eigenvalues, reaching a maximum in the interval [ ]2 0.9;1.1α ∈  (see Figure 8(b) 
and Figure 9(b)). The imaginary parts of the selected eigenvalues at the vanishing real part of the bifurcated, 
one rushes to the root +∞  (see Figure 8(b) and Figure 9(b)). The imaginary parts of the selected eigen values 
at the vanishing real part of the bifurcated, one rushes to the root ( )Im Mω  calculated as n increases and shifts 
to the right along the axis α , split in two when pα α=  (see Table 4). Unlike the case of Ante plane  
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Table 4. The values of the maximum oscillation damping depending on the number of harmonics.                        

Values 
Considering the first mode Considering the second mode 

Im Mω  ( )1 2 0pα α =  Im Mω  ( )2 1 0pα α =  

1 3.287 1.7 8.218 0.905 

2 12.415 1.717 16.272 0.952 

3 25.48 1.727 27.39 0.978 

 
vibrations of the cylinder there is no expression of the growth of the maximum values with increasing mode and 
shift it to the axis α . 

6. Conclusions 
For all the cases considered flat fluctuations atn > 1, there is a clear separation of the roots into two types. The 
differences between these types of roots appear as a character of the dependence of the eigen values of the pa-
rameters of the external friction, and in the value of the form. For example, for the first root of the first harmon-
ic-“twist”, the maximum value of the real part of the radial component of the voltage waveform is about three 
times smaller than the value of the real part component forms tensional stresses. 

The imaginary parts of their own forms of valid order of magnitude smaller and do not have such a pronounced 
difference. When changing 1α  depending on the real parts of the eigenvalues of the first type—“radial”—the 
parameter of friction have the form of smooth decreasing steps with a maximum angle of inclination of the tan-
gent to the range [ ]1 1.6;1.8α ∈  except for the first mode of the second, third, fourth harmonics. Depending on 
the real parts of the eigen values of the second type—“torsion” have in this case the form is close to linear. 

For all cases considered anti plane oscillations n there imaginary branch of the natural frequencies of the pa-
rameter α , which in the vicinity of the unit is broken continuity. 
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