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Abstract 
This paper extends the homotopy perturbation Sumudu transform method (HPSTM) to solve li-
near and nonlinear fractional Klein-Gordon equations. To illustrate the reliability of the method, 
some examples are presented. The convergence of the HPSTM solutions to the exact solutions is 
shown. As a novel application of homotopy perturbation sumudu transform method, the pre-
sented work showed some essential difference with existing similar application four classical ex-
amples also highlighted the significance of this work. 
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1. Introduction 
Nonlinear phenomena that appear in many areas of scientific fields such as solid state physics, plasma physics, 
fluid dynamics, mathematical biology and chemical kinetics are modeled in terms of nonlinear partial differen- 
tial equations and in many scientific and engineering applications one of the corner stones of modeling are 
partial differential equations. For example, the Klein-Gordon equation which is of the form 

( ) ( ) ( )( ) ( ), , , ,ttw x t bw x t g w x t f x t+ + =                              (1) 

with initial conditions 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.63056
http://dx.doi.org/10.4236/am.2015.63056
http://www.scirp.org
mailto:amr-mahdy85@yahoo.com
mailto:3adel@live.nl
mailto:hussanahmad65@yahoo.com
http://creativecommons.org/licenses/by/4.0/


A. M. S. Mahdy et al. 
 

 
618 

( ) ( ) ( ) ( ),0 ,    ,0tw x h x w x k x= =                                (2) 

appears in modeling of problems in quantum field theory, relavistic physics, dispersive wave phenomena, 
plasma physic, nonlinear optics and applied physical sciences. The complexity of the equations though requires 
the use of numerical and analytical methods in most cases. A broad class of analytical solution and numerical 
solution methods were used to handle these problems. The topic of fractional partial differential equations has 
attracted a great atteation in the recent years. There are several analytical have been presented in the literature to 
solve fractional partial differential equations (FPDEs), such as the Fourier transform method [1], the fractional 
Greens function method [2], the Mellin transform method and the Laplace transform method [3] [4], the Su- 
mudu transform method [5]. 

Recently, several numerical methods have been introduced for this purpose, such as: the homotopy pertur- 
bation method (HPM) has first proposed by He [6]-[8], the Modified homotopy perturbation method (MHPM) 
[9], the differential transform method (DTM) [10], the variational iteration method (VIM) [11] [12], the ho- 
motopy analysis method (HAM) [13] [14], the Sumudu decomposition method [15], the Adomian decomposi- 
tion method [16] [17]. 

The homotopy perturbation method (HPM) is extended to drive the exact solutions for linear (nonlinear) 
ordinary (partial) differential equations of fractional order. The homotopy perturbation method is also combined 
with the vartional iteration method [18], to produce ahighly effective technique for handling many nonlinear 
problems. An also the homotopy perturbation method (HPM) is also combined with the laplace transform me- 
thod [19]. The advantage of this methods for obtaining exact and approximate solutions for nonlinear equa- 
tions. 

The homotopy perturbation method (HPM) was also investigated by many researchers to handle partial 
differential equations arising in science and engineering [20] [21]. In addition, some numerical methods use a 
combination of utilizing specific transformation and obtaining series with converge to the exact solutions. An 
example of such a method is homotopy analysis Sumudu transform method (HASTD) which is a combination of 
the homotopy analysis method and the Sumudu transformation method [22]. Another such a combination is the 
which is the Sumudu decomposition method (SDM), which is constructed by combining two powerful methods, 
namely, the Sumudu transform method and Adomian decomposition method [23]. An efficent such approach is 
proposed combining the Sumudu transformation method with the homotopy perturbation method, which gives a 
new method called the homotopy perturbation Sumudu transform method (HPSTM) [24]. Recently, the ho- 
motopy perturbation Sumudu transform method (HPSTM) is frequently used for solving linear and nonlinear 
equations which are PDEs of integer order to obtain the exact solution. 

In this paper, we applied homotopy perturbation Sumudu transform method (HPSTM) to obtain the analytical 
exact and approximate solutions for the fractional Klein-Gordon equation with time-fractional derivatives of the 
form: 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

, , , , ,

,0 , ,0 ,t

w x t bw x t g w x t f x t
t

w x h x w x k x

α

α

∂
+ + =

∂
= =

                         (3) 

where α  is parameters describing the order of the time fractional derivatives of ( ),w x t , respectively, and 
they setisfy 1 2α< ≤ , ,  b g  is constants, ( )h x  and ( )k x  is the initial conditions and ( ),f x t  is is the 
source term and try to show the convergence of homotopy perturbation Sumudu transform method in solving 
this equation. 

The paper is organized as follows: in Section 2, we recall some definitions of fractional calculus theory. In 
Section 3, we describe the homotopy perturbation Sumudu transform method. In Section 4, contains the main 
results and an examples to show the efficiency of using HPSTM to solve fractional-time Klein-Gordon equa- 
tions. Conclusions are given in Section 5. 

2. Basic Definitions of Fractional Calculus 
In this section, we mention the following basic definitions and properties of the fractional calculus theory and 
Sumudu transform. 

Definition 1 The Riemann-Liouville fractional integral operator of order 0α > , of a function ( )f t Cµ∈ , 
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1µ ≥ − , is defined as: 

( ) ( ) ( ) ( )

( ) ( )

1

0

0

1 d ,

.

t
J f t t f

J f t f t

αα τ τ τ
α

−= −
Γ

=

∫                                 (4) 

Definition 2 The fractional derivative of ( )f t  in the Caputo sense is defined as [13] [18] 

( ) ( )

( ) ( ) ( ) ( )1

0

1             d ,

m n
t

t m m

D f t J D f t

t f
n

α α

ατ τ τ
α

−

− −

=

= −
Γ − ∫

                            (5) 

for 1m mα− < ≤ , m N∈ , 0t >  and ( )αΓ  is the Gamma function. 
Definition 3 The Mittag-Leffler function which is ageneralization of exponential function (see [25]) is de- 

fined as: 

( ) ( )0
,    0,    

1

j

j

tE t t
jα α

α

∞

=

= > ∈
Γ +∑                                  (6) 

( ) ( ),
0

,    , 0,    
j

j

tE t t
jα β α β

α β

∞

=

= > ∈
Γ +∑                               (7) 

Some special cases of the Mittag-Leffler function are as follows: 
1. ( )1 etE t =  

2. ( ) ( ),1E t E tα α=   
Definition 4 The Sumudu transform is defined over the set of functions: 

( ) ( ) ( ) [ )1 2,  , 0,  e   if  1 0,j

t
jA f t M f t M tττ τ

  = ∃ > < ∈ − × ∞ 
  

                     (8) 

by the following formula: 

( ) ( ) ( ) ( )1 20
e d ,    ,tf u f t f ut t u τ τ

∞ −= = ∈   ∫S                            (9) 

Some special properties of the Sumudu transform are as follows: 
1. [ ]1 1S = ; 

2. 
( )1

m
mtS u

m
 

= 
Γ +  

; 0m > ; 

Other properties of the Sumudu transform can be found in [26]. 
Definition 5 The Sumudu transform of the Caputo fractional derivative is defined as follows [5]: 

( ) ( ) ( ) ( )
1

0
, , 0 ,    1

m
kk

t
k

D f x t u f x t u f m mα α α α
−

− − +

=

  = − + − < ≤    ∑S S                     (10) 

3. The Homotopy Perturbation Sumudu Transform Method (HPSTM) 
To illustrate the basic idea of this method, we consider a general fractional partial differential equation with the 
initial condition of the form: 

( ) ( ) ( ) ( ), , , ,tD w x t w x t w x t g x tα + + =L N                               (11) 

with 1m mα− < ≤ , and subject to the initial condition 

( ) ( )
,

,0 ,    0,1, 2, , 1
s

s
s

w x t
w x s m

t
∂

= = −
∂

                                (12) 
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where ( ),tD w x tα  is the Caputo fractional derivative of the function ( ),w x t , ( ),g x t  is the source term, L  
is the linear differential operator and N  is the general nonlinear differential operator. 

Applying the Sumudu transform (denoted in this paper by S ) on both sides of Equation (11), we get 

( ) ( ) ( ) ( ), , , ,tD w x t w x t w x t g x tα  + + =           S S L S N S                        (13) 

Using the differentiation property of the Sumudu transform and the initial conditions in Equation (12), we 
have 

( ) ( ) ( ) ( ) ( ) ( )
1

0
, ,0 , , ,

m
kk

k
w x t u w x u g x t u w x t w x tα α α

−
− +

=

= + − +          ∑S S S L N                 (14) 

Operating with the Sumudu inverse on both sides of Equation (14) gives 

( ) ( ) ( ) ( ) ( )1, , , , ,w x t G x t u w x t w x t g x tα−  = − + −   S S L N                       (15) 

where ( ),G x t  represent the prescribed initial conditions. Now we apply the HPM. 

( ) ( )
0

, ,n
n

n
w x t p w x t

∞

=

= ∑                                         (16) 

and the nonlinear term can be decomposed as 

( )
0

, n
n

n
w x t p A

∞

=

= ∑N                                          (17) 

for some Adomian’s polynomials nA  that are given by [27] 

0 0

1 d ,    0,1, 2,
! d

n
i

n in
i p

A p w n
n p

∞

= =

  = =  
  
∑N                               (18) 

Substituting Equation (16) and Equation (17) in Equation (15), we get 

( ) ( ) ( ) ( )1

0 0 0
, , , ,n n n

n n n
n n n

p w x t G x t p u p w x t p A g x tα
∞ ∞ ∞

−

= = =

    = − + −         
∑ ∑ ∑S S L             (19) 

Equating the terms with identical powers of p , we can obtain a series of equations as the follows: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0
0

1 1
1 0 0

2 1
2 1 1

1
1 1

: , , ,

: , , , ,

: , , , ,

and similarly

: , , , ,n
n n n

p w x t G x t

p w x t u w x t A g x t

p w x t u w x t A g x t

p w x t u w x t A g x t

α

α

α

−

−

−
− −

=

 = − + −   
 = − + −   

 = − + −   

S S L

S S L

S S L

                       (20) 

proceeding in the same manner, the rest of the components ( ),nw x t  can be completely found and the series 
solution is thus entirely determined. We approximate the analytical solution ( ),w x t  by truncated series as: 

( ) ( )
0

, lim ,
N

n
nN n

w x t p w x t
→∞ =

= ∑                                     (21) 

4. Applications 
In this section, in order to asses the applicability and the accuracy of the fractional homotopy Sumudu transform 
method the following four examples. 

Example 1 Consider the time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2

,
, , ,    1 2t

w x t
D w x t w x t

x
α α

∂
= − < ≤

∂
                            (22) 
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subject to the initial conditions 

( ) ( ),0 0,    ,0tw x w x x= =                                     (23) 

Taking the Sumudu transform on both sides of Equation (22), thus we get 

( ) ( ) ( )2, , ,t xD w x t D w x t w x tα   = −   S S  

and 

( ) ( ) ( ) ( ) ( )1 2,0
, ,0 , ,x

w x
u w x t u w x u D w x t w x t

t
α α α− − − ∂ 

 − + = −      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (23), we have 

( ) ( ) ( )2, , ,xw x t xt u D w x t w x tα  = + −    S S                            (24) 

Operating with the Sumudu inverse on both sides of Equation (24) we get 

( ) ( ) ( )1 2, , ,xw x t xt u D w x t w x tα−   = + −     S S                           (25) 

By applying the homotopy perturbation method, and substituting Equation (16) in Equation (25) we have 

( ) ( ) ( )1 2

0 0
, 1 ,n n

n x n
n n

p w x t xt p u D p w x tα
∞ ∞

−

= =

   = + −   
   

∑ ∑S S                     (26) 

Equating the terms with identical powers of p , we get 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

0
0

1
1

1

2 1
2

2

3 1
3

3

1

: , ,

: , ,
2

: , ,
2 2

: , ,
3 2

 

1
: , .

2

n n
n

n

p w x t xt

xtp w x t

xtp w x t

xtp w x t

xt
p w x t

n

α

α

α

α

α

α

α

α

+

+

+

+

=

−
=
Γ +

=
Γ +

−
=
Γ +

−
=

Γ +



 

Thus the solution of Equation (22) is given by 

( ) ( )

( ) ( ) ( )
( )
( )
( )

0

1 2 1 3 1

1

0

,2

, lim ,

           
2 2 2 3 2

1
           

2

           ,

N
n

nN n

n n

n

w x t p w x t

t t tx t

xt
x

n

xtE t

α α α

α

α
α

α α α

α

→∞ =

+ + +

+∞

=

=

 
= − + − +  Γ + Γ + Γ + 

−
=

Γ +

= −

∑

∑



                     (27) 

If we put 2α →  in Equation (27) or solve Equations (22) and (23) with 2α = , we obtain the exact solu- 
tion 

( ) ( )
( )

1

0

1
, sin .

2

n n

n

xt
w x t x x t

n

α

α

+∞

=

−
= =

Γ +∑  
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Which is in full agreement with the result in Reference [28]. 
Example 2 Consider the inhomogeneous linear time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2

,
, , 2sin ,    1 2t

w x t
D w x t w x t x

x
α α

∂
= − + < ≤

∂
                           (28) 

subject to the initial conditions 

( ) ( ) ( ),0 sin ,    ,0 1tw x x w x= =                                   (29) 

Taking the Sumudu transform on both sides of Equation (28), thus we get 

( ) ( ) ( ) ( )2, , , 2sint xD w x t D w x t w x t xα   = − +   S S  

and 

( ) ( ) ( ) ( ) ( ) ( )1 2,0
, ,0 , , 2sinx

w x
u w x t u w x u D w x t w x t x

t
α α α− − − ∂ 

 − + = − +      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (29), we have 

( ) ( ) ( ) ( ) ( )2, sin , , 2sinxw x t x t u D w x t w x t xα  = + + − +    S S                     (30) 

Operating with the Sumudu inverse on both sides of Equation (30) we get 

( ) ( ) ( ) ( ) ( )1 2, sin , , 2sinxw x t x t u D w x t w x t xα−   = + + − +     S S                   (31) 

By applying the homotopy perturbation method, and substituting Equation (16) in Equation (31) we have 

( ) ( ) ( ) ( ) ( )1 2

0 0
, sin 1 , 2sinn n

n x n
n n

p w x t x t p u D p w x t xα
∞ ∞

−

= =

   = + + − +   
   

∑ ∑S S                 (32) 

Equating the terms with identical powers of p , we get 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

0
0

1
1

1

2 1
2

2

3 1
3

3

1

: , sin ,

: , ,
2

: , ,
2 2

: , ,
3 2

 

1
: , .

2

n n
n

n

p w x t x t

tp w x t

tp w x t

tp w x t

t
p w x t

n

α

α

α

α

α

α

α

α

+

+

+

+

= +

−
=
Γ +

=
Γ +

−
=
Γ +

−
=
Γ +



 

Thus the solution of Equation (36) is given by 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

0
1 2 1 3 1

1

0

,2

, lim ,

           sin
2 2 2 3 2

1
           sin

2

           sin ,

N
n

nN n

n n

n

w x t p w x t

t t tx t

xt
x

n

x tE t

α α α

α

α
α

α α α

α

→∞ =

+ + +

+∞

=

=

= + − + − +
Γ + Γ + Γ +

−
= +

Γ +

= + −

∑

∑



                      (33) 
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If we put 2α →  in Equation (33) or solve Equations (28) and (29) with 2α = , we obtain the exact so- 
lution 

( ) ( ) ( )
( )

( )

1

0

1
, sin

2

           sin sin .

n n

n

xt
w x t x

n

x t

α

α

+∞

=

−
= +

Γ +

= +

∑  

Which is in full agreement with the result in Reference [28]. 
Example 3 Consider the non-linear time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2 2 2 4 4
2

,
, , 2 2 ,    1 2t

w x t
D w x t w x t x t x t

x
α α

∂
= − + − + < ≤

∂
                       (34) 

subject to the initial conditions 

( ) ( ),0 0,    ,0 0tw x w x= =                                     (35) 

Taking the Sumudu transform on both sides of Equation (34), thus we get 

( ) ( ) ( )2 2 2 2 4 4, , , 2 2t xD w x t D w x t w x t x t x tα   = − + − +   S S  

and 

( ) ( ) ( ) ( ) ( )1 2 2 2 2 4 4,0
, ,0 , , 2 2x

w x
u w x t u w x u D w x t w x t x t x t

t
α α α− − − ∂ 

 − + = − + − +      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (35), we have 

( ) ( ) ( )2 2 2 2 4 4, , , 2 2xw x t u D w x t w x t x t x tα  = − + − +    S S                       (36) 

Operating with the Sumudu inverse on both sides of Equation (36) we get 

( ) ( ) ( )1 2 2 2 2 4 4, , , 2 2xw x t u D w x t w x t x t x tα−   = − + − +     S S                      (37) 

By applying the homotopy perturbation method, and substituting Equations (16) in (37) we have 

( ) ( ) ( )
2

1 2 2 2 4 4

0 0 0
, , , 2 2n n n

n x n n
n n n

p w x t p u D p w x t p w x t x t x tα
∞ ∞ ∞

−

= = =

      = − + − +    
       

∑ ∑ ∑S S             (38) 

Equating the terms with identical powers of p , we get 

( )

( ) ( )

( )
( ) ( ) ( ) ( )

0
0

2
1

1

2 4 3 2 4 4
2

2 2 3

: , 0,

2: , ,
1

4 4 2: , ,
1 11 1

 

p w x t

x tp w x t

t x t t x tp w x t

α

α α α α

α

α αα α

+ +

=

=
Γ +

 
= − − + 

Γ + Γ +Γ + Γ +  


 

Thus the solution of Equation (34) is given by 

( ) ( )

( ) ( ) ( ) ( ) ( )

0
2 2 4 3 2 4 4

2 3

, lim ,

2 4 4 2           .
1 1 11 1

N
n

nN n
w x t p w x t

x t t x t t x tα α α α α

α α αα α

→∞ =

+ +

=

= + − − + +
Γ + Γ + Γ +Γ + Γ +

∑



                  (39) 

If we put 2α →  in Equation (39) or solve Equations (34) and (35) with 2α = , and so on, we can find that 

( ), 0,    1nw x t n= >  
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we obtain the exact solution 

( ) 2 2,w x t x t=  

Which is in full agreement with the result in Reference [28]. 
Example 4 Consider the one-dimensional linear inhomogeneous fractional Klein-Gordon equation 

( ) ( ) ( ) ( )
2

3 3 3
2

,
, , 6 6 6 ,    0,  ,  1 2t

w x t
D w x t w x t x t x x t t x

x
α α

∂
= − + + − > ∈ < ≤

∂
           (40) 

subject to the initial conditions 

( ) ( ),0 0,    ,0 0tw x w x= =                                     (41) 

Taking the Sumudu transform on both sides of Equation (40), thus we get 

( ) ( ) ( ) ( )2 3 3 3, , , 6 6 6t xD w x t D w x t w x t x t x x tα    = − + + −   S S  

and 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 3 3,0
, ,0 , , 6 6 6x

w x
u w x t u w x u D w x t w x t x t x x t

t
α α α− − − ∂   − + = − + + −      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (41), we have 

( ) ( ) ( ) ( )2 3 3 3, , , 6 6 6xw x t u D w x t w x t x t x x tα  = − + + −    S S                     (42) 

Operating with the Sumudu inverse on both sides of Equation (42) we get 

( ) ( ) ( ) ( )1 2 3 3 3, , , 6 6 6xw x t u D w x t w x t x t x x tα−   = − + + −     S S                   (43) 

By applying the homotopy perturbation method, and substituting Equation (16) in Equation (43) we have 

( ) ( ) ( ) ( )1 2 3 3 3

0 0
, 1 , 6 6 6n n

n x n
n n

p w x t p u D p w x t x t x x tα
∞ ∞

−

= =

   = − + + −   
   

∑ ∑S S              (44) 

Equating the terms with identical powers of p , we get 

( )

( ) ( )
( )

( )

( )
( )

( )
( )

( )

0
0

3 33 1
1

1

3 2 1 3 2 3
2

2

: , 0,

6 66: , ,
2 4

6 6 6 12
: , ,

2 2 2 4

 

p w x t

x x tx tp w x t

x x t x x t
p w x t

αα

α α

α α

α α

++

+ +

=

−
= +
Γ + Γ +

 − −
 = − +

Γ + Γ +  


 

Thus the solution of Equation (40) is given by 

( ) ( )

( )
( )

( )
( )

( )
( )

( )

0

3 3 3 2 1 3 2 33 1

, lim ,

6 6 6 6 6 126           .
2 4 2 2 2 4

N
n

nN n
w x t p w x t

x x t x x t x x tx t
α α αα

α α α α

→∞ =

+ + ++

=

 − − −
 = + − + +

Γ + Γ + Γ + Γ +  

∑



          (45) 

If we put 2α →  in Equation (45) or solve Equations (40) and (41) with 2α = , we obtain the exact so- 
lution 

( ) 3 3 3 7 7, 0.0019047619 0.01428571429w x t x t x t xt= − + +  

Which is in full agreement with the result in Reference [29]. 
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As it is presented above in Example 4 we obtained homotopy perturbation Sumudu transform solution of 
Equation (40) for values of 2α = , 1.5α = , 1.75α = . Figures 1-4 show the approximate solutions for 
Equation (40) obtained for the three different values of α  using the homotopy perturbation Sumudu transform  
method (HPSTM). The values of 2α =  is the only case for which we know the exact solution ( ) 3 3,w x t x t=  
and the results of (HPSTM) are in excellent agreement with the exact solution. 

 

 
Figure 1. Profiles of w(x, t) when α = 2: Exact solution of (40).     

 

 
Figure 2. Profiles of w(x, t) when α = 2: Approximate solution of (40).  



A. M. S. Mahdy et al. 
 

 
626 

 
Figure 3. Profiles of w(x, t) when α = 1.5: Approximate solu-
tion of (40).                                            

 

 
Figure 4. Profiles of w(x, t) when α = 1.75: Approximate solution 
of (40).                                                  

5. Conclusion 
In this paper, we have introduced a combination of the homotopy perturbation method and the Sumudu 
transform method for time fractional problems. This combination builds a strong method called the HPSTD. 
This method has been successfully applied to one-dimensional fractional equations and also for problems of 
linear and nonlinear partial differential equations. The HPSTD is an analytical method and runs by using the 
initial conditions only. Thus, it can be used to solve equations with fractional and integer order with respect to 
time. An important advantage of the new approach is its low computational load. 
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