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Abstract 
The main purpose of the paper consists in illustrating a procedure for expressing the equations of 
motion for a general time-dependent constrained system. Constraints are both of geometrical and 
differential type. The use of quasi-velocities as variables of the mathematical problem opens the 
possibility of incorporating some remarkable and classic cases of equations of motion. Afterwards, 
the scheme of equations is implemented for a pair of substantial examples, which are presented in 
a double version, acting either as a scleronomic system and as a rheonomic system. 
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1. Introduction 
Nonholonomous systems are beyond a doubt more and more considered, mainly in view of the important im-
plementations they exhibit for mechanical models. 

From the mathematical point of view, the draft of the equations for such systems commonly matches the in-
troduction of the quasi-velocities and, starting from the Euler-Poincaré equations [1], several sets of equations 
have been formulated. 

The time-dependent case is probably more disregarded in literature: we direct here our attention especially to 
rheonomic systems, admitting the holonomic and nonholonomic constraints and the applied forces to depend 
explicitly on time. 

The nonholonomous restrictions are assumed to be linear, so that the equations of motion can be written in the 
linear space of the admissible displacements of the system, eliminating the Lagrangian multipliers connected to 
the constraints. 
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If on the one hand the use of quasi-velocities formally complicates calculations, on the other hand the final 
form of the system allows computing the equations merely by means of a list of particular matrices, once the 
Lagrangian function has been written and the quasi-velocities have been chosen. 

We pay attention to keep separated the various contributions to the mobility of the system; the customary sta-
tionary case can be easily recovered from the general equations we will write. 

An energy balance-type equation, which will be proposed in terms of the quasi-velocities, affirms the conser-
vation of the energy in the full stationary case and shows the contributions of the different terms in the rheo-
nomic context. 

We will conclude by presenting some applications of the developed system of equations. 
Most of the formal notation used onward is explained just below. For a given a list of variables ( )1, , ny y y=  ,  

the operator ∇y  will compute the gradient 
1

, ,
n

f ff
y y

 ∂ ∂
∇ =  ∂ ∂ 

y   of a scalar funcion f , and Jy  calculates 

the m n×  Jacobian matrix of a vector ( ) ( ) ( )( )1 , , mv v v=y y y : ( ) ,
i

i j
j

v
J

y
∂

=
∂y v , 1, ,i m=  , 1, ,j n=  . 

Anywhere, vectors are in bold type and are meant as columns: row vectors will be written by means of the  

transposition symbol T . Moreover, n0  is the null column vector 
0

0

n
 
 ∈ 
 
 

 
, ,n m  is the n m×  null matrix,  

n  the n m×  null matrix and n  the unit matrix of size n . 

2. Modelling the System 
The theoretical frame we point and expand is contained in [2]. 

Let us consider a system of n point particles ( )1 1,P m ,  , ( ),n nP m  restricted both by µ  geometrical 
constraints and by ν  kinematic constraints, 0µ ≥ , 0ν ≥ , 3nµ ν+ < : 

( ), t µ=Y X 0                                            (1) 

( ) ( )1, ,t t ν+ =X X G X 0                                  (2) 

where 3n∈X   is the representative vector of the system and, for each fixed t, ( ) 3
1, , : nY Y µ

µ= →Y    ,   
is a matrix of size 3n ν× , 1G  a vector in ν

 . The constraint equations are assumed to be independent: 

rank ,    rankJ µ ν= =XY                                  (3) 

We first make use of the ν  integer relations (1) in order to write the system configuration by means of the 
parametrisation ( ), t=X X q , where ( )1, ,q q= ∈ ⊆q 



  , 3n µ= −  are the local Lagrangian coordi-  

nates. The velocity of the system ( )J
t

∂
= +

∂q
XX X q

  agrees with (1), but it must be consistent also with the  

differential constraints (2) which are rewritten, in terms of the Lagrangian coordinates q  and of the generalized 
velocities q , as 

( ) ( ) ( ) ( )( )( ) ( ) 1, , 0 ,    , , , ,    ,t t t t t J t
t

ν ν
να α × ∂

+ = = ∈ = + ∈
∂q
Xq q q q X q X q G


  β β       (4) 

and ν= 0β  in case of fixed constraints. The dynamics of the system is summarized in 3n
  by 3n− −Φ =Q F 0 , 

where ( )1, ,S n nm P m P=Q  

  represents the momentum of the system, F , 3nΦ∈  respectively all active 
forces and all constraint reactions (the i-th triplet concerning iP ). The virtual displacements of the system at 
each time t and at each position X  are the vectors in 3ˆ n∈X   such that [2] 

( )
( )

ˆ,
ˆ,

J t

t

µ

ν

 =

 =

XY X X 0

X X 0




                                    (5) 
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giving in each X , t the ( )3n µ ν− +  dimensional linear space 

( ) 3
1 1span , , , , , nY Yµ ν

⊥
= ∇ ∇ ⊂X X     , 

where 1, , ν   are the rows of  . At the same time, the assumption of smooth constraints ˆ 0Φ⋅ =X  
ˆ∀ ∈X   make us write 

1 1
j j j j

j j
f

µ ν

λ λ
= =

Φ = ∇ +∑ ∑X                                    (6) 

where jλ , jλ  are unknown multipliers. 

The projection of the dynamics equation on the subspace generated by the   vectors 
iq

∂
∂

X , 1, ,i =    (the  

columns of JqX ), although such as space strictly includes  , if 0ν > , is anyhow noteworthy: 

( ) ( ) ( )
1

T Td ,    
d

J
t

ν

λ
α λ λ

λ

 
 

− −Φ = ∇ −∇ − = =  
 
 

q q qX Q F 0






                     (7) 

where we assumed ( ), t= ∇XF X  and we defined the Lagrangian function 

( ) ( ) ( ) ( )1,    , , , , ,
2

T U T t A t t c t= + = ⋅ + ⋅ +q q q q q b q q q                        (8) 

with A  symmetric and positive definite matrix of size   and ( ) ( )( ), , ,U t t t=q X q . The   Equation (7) 
written for the ν+  unknown quantities 1, ,q q



 , 1, , νλ λ  have to be considered together with the ν  
Equations (4). 

In order to improve (7), we see from (4) and (5) that   (virtual displacements) is the set of vectors  

1

ˆˆ
i

i iq
γ

=

∂
=

∂∑ XX




  such that ναγ = 0 , 
1γ

γ
γ

 
 =  
 
 


. 

Owing to (3) and recalling (4), it is rankα ν= , hence the solution of the come last linear system, which ex-  

plicitly writes ( ),
1

, 0i j j
j

tα γ
=

=∑ q


, 1, ,i ν=   is 

( ),
1

, ,    1, ,i i j j
j

t i
σ

γ η
=

= Γ =∑ q                                 (9) 

with ,i jΓ  appropriate coefficients and ( )1, , ση η η= 
 arbitrary factors in σ

 , σ ν= − . We conclude that  

,
1 1

ˆˆ
i j j

i j iq

σ

η
= =

∂
= Γ

∂∑∑ XX




 , or, equivalently, the σ  vectors ,
1

i k
i iq=

∂
Γ

∂∑ X

, 1, ,k σ=   form a basis for  . 

At this stage, calling Γ  the matrix of size σ×  and elements ,i jΓ  and noticing that the columns of 
( )J ΓqX  give the basis for  , the projection of the dynamics equation on   gives, by virtue also of (6): 

( )( ) ( ) ( ) ( ) ( )T TT T d
d

J J
t σ

 Γ − −Φ = Γ − = Γ ∇ −∇ = 
 

q q q qX Q F X Q F 0


               (10) 

where the effect of the nonholonomic constraints (through Γ ) on the ordinary Lagrangian equations for hol- 

onomic systems is evident (in the absence of (2), say 0ν = , both (10) and (7) are ( )d
dt

∇ −∇ =q q 0




  ). 

The σ  differential Equation (10) are for the   unknown quantities q  and they have to be combined to-
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gether with the ν  Equation (4). With respect to (7), they have the advantage of not exhibiting the multipliers 
λ . 

Remark 2.1 Either Equation (7) or (10) can be employed not necessarily for discrete systems of point par-
ticles: once the Lagrangian coordinates have been selected and the Lagrangian function has been written, they 
can be the same calculated. 

The expedience of introducing quasi-velocities (or pseudovelocities) which have to be chosen in a suitable 
way in order to disentangle the mathematical problem, is by custom performed in nonholonomic systems. 

Following the adopted standpoint, the definition of the quasi-velocities steps in establishing a specific (and 
convenient) connection between η  and q  

( ) ( ) ( ) ( ) ( ) ( )1 1, 1 ,
1 1

, , ,  ,  , ,   or , ,j j j j
j j

z t q t z t q t Z t tσ σ ση ψ η ψ ψ
= =

= + = + = +∑ ∑q q q q q q q
 

 
 η         (11) 

where ,i jz  are required to guarantee that the square matrix of size   

1,1 1,

,1 ,

1,1 1,

,1 ,

z z

z z Zσ σ

ν ν

α α α

α α

 
 
 
   

=   
   
 
  
 











  





  



 is invertible. In  

this way, each set of kinetic variables q  is linked to a singular set of quasi-velocities η , and vice versa. More 
precisely, (11) and (4) give 

( )
1

and
Z Zη ψ η ψ η ψ
α α

−− − −         
= = = Γ Θ         − − −         

q q 

β β β
                 (12) 

where Γ  is the same as (9) and ( ), tΘ q  is a ν×  matrix. The first system in (12) shows both the selection 
on the coordinates q  of the tangent space JqX  necessary to fulfill the restrictions on the system’s velocity 
(leading to the subspace  ) and the kinematic conditions themselves. 

In order to express (10) as a function of the variables q , η  and to eliminate q , it suffices to extract from 
(12) 

( ) ( ) ( )( ) ( ) ( ), , , , , ,t t t t tη η ψ= Γ − −Θq q q q q q β                       (13) 

and to define 

( ) ( )( )

( ) ( ) ( ) ( )( ),

, , , , , ,

1              2 ,
2

t t t

A A A c U

η η

η ψ η ψ η ψ η ψΓ Θ Γ Θ

=

 = − ⋅ − + ⋅ − − ⋅ + ⋅ Γ − −Θ + + 

q q q q

b



 

β β β β
    (14) 

where 

( ) ( ) ( )T T T
,, , , , ,A t A A t A A t AΓ Γ Θ Θ= Γ Γ = Γ Θ = Θ Θq q q                   (15) 

By using the formulae (see (11)) 

( )
( )

T T,Z L Jη ηη ψ
η

=Γ − −Θ
∇ = ∇ ∇ = ∇ + ∇q q q q q




     
β

                   (16) 

where ( )T , ,J tη ηq q  is the σ×  matrix whose elements are, for each 1, ,i =   , 1, ,j σ=   

( )
( )

( ),T
, ,

1 1 1,

j k j
k s s s k p p

k s pi j i i

z
J

q q

σ ν

η ψ

ψ
η η ψ

=Γ − −Θ = = =

∂ ∂   = Γ − − Θ +   ∂ ∂   
∑ ∑ ∑q q



 β
β  

we can write (10) in terms of the demanded variables (we use Z IσΓ = , see (12)): 
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( ) ( )T T T Td
d

Z J
t η η ση∇ −Γ ∇ +Γ − ∇ =q q 0                             (17) 

Remark 2.2 Multiplying both sides of (17) by η  and performing the customary steps leading to the energy 
balance one finds 

( ) ( )

( )

Td
d

d 0
d

ZJ
t t t

Z Z
t t t

η η

η

η ψ η

ψη ψ

 ∂ ∂ ⋅∇ − + − Θ +Γ ⋅ ∇ + + ∇  ∂ ∂   
∂ ∂ + Γ + − Θ +Γ ⋅∇ = ∂ ∂ 

q q



   




   



β

β

                 (18) 

In the stationary circumstance = 0β , = 0ψ , ( ),= q   η  and ( )Z Z= q  the Legendre transform 
ηη ⋅∇ −    of   is conserved. 

Our next step is writing (17) explicitly, sorting the terms in a suitable way: we start from the calculation 

( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )( )

T
,

T T T
,

T T T
,

T T

, , ,

1 1, ,
2 2
1 1                      
2 2

                      .

t A A

t J A J A J A

J A J A J A

J J c U

η Γ Γ Θ

Γ Γ Γ Θ

Θ Θ Γ Θ

∇ = − − + Γ

 ∇ = − + − − − 
 
 + + + 
 

 + Γ − −Θ + Γ − −Θ +∇ +∇ 

q q q q

q q q

q q q q

q b

q

b b









η η ψ β

η ψ η ψ β η ψ

β β ψ β

η ψ β η ψ β

           (19) 

so that (17) takes the structure 

( ) ( ) ( ) ( ) T
,, , , , , ; , , , ; , ,A t Q t t N t A A c U

t t t σΓ Γ Γ Θ
∂ ∂ ∂ + + Λ + − − −Γ ∇ +∇ − = ∂ ∂ ∂ 

q q
bq q q b q b 0

ψ βη η η β ψ β ψ  (20) 

Provided that ( )kM  means the k -th column of any matrix M  and defining for any 1, ,k =    the opera-
tion 

( ) ( )
T

k
k

k k

Z MM M J Z
q q

  ∂ ∂
= − Γ +  ∂ ∂   

q                             (21) 

for a matrix ( )M q  of size N σ× , the terms in (20) are defined by the following expressions, where ( )kv  
means the k -th component of any vector v  and , ,A AΘ Γ Γ Θ= : 

( ) ( ) ( ) ( )( )( )T

1 1

1, ,
2

r
k rk

k r
Q t A J A

σ

ηΓ Γ
= =

 = Γ − Γ 
 
∑ ∑ qq


η η η  

( ) ( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( )

T

1 1

TT

, , ,
1 1

1 1

1, , ; , ,
2

                              

1                              
2

r
k rk

k r

p
p kk

p k

k rk
k r

t A J A A J

A J A J J A A

A J A

σ

ν

σ

ψ η

β η

η

Γ Γ Γ
= =

Γ Θ Γ Θ Γ Θ Γ
= =

Γ Γ
= =

 Λ = − Γ − Γ + Γ 
 
 

− Γ − Γ − Γ + Θ 
 

− Γ −

∑ ∑

∑ ∑

∑ ∑

q q

q q q

q

q b












η β ψ ψ ψ

β β β

η ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

T

,
1

TTT

1 1

T

                              

                              ,

r
kk

k

r
k rk

k r

A

J J J

A ZA
t t

σ

η η

η

Θ Γ
=

= =

Γ
Γ

 Γ − Γ 
 

    + Γ − Γ + Γ Γ − Γ Γ       
 ∂ ∂  + + Γ  ∂ ∂   

∑

∑ ∑q q qb b b









ψ η β

η
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( ) ( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( )( ) ( )( )( ) ( ) ( )

( ) ( )( )

TT

, ,
1 1

TT

1 1

T

, ,
1

1, ; , ,
2

1                           
2

                           

p
p kk

p k

r
r kk

r k

p
p

N t A J A J J A A

A J A J J A A

A J A J J

ν

σ

ν

β

ψ

β

Γ Θ Θ Θ Θ Γ
= =

Γ Γ Γ Γ
= =

Γ Θ Γ Θ
=

 
= Θ− Γ − Γ + Θ 
 
 + Γ − Γ − Γ + Γ 
 

+ Γ − Γ −

∑ ∑

∑ ∑

∑

q q q

q q q

q q

q b








β ψ β β β β

ψ ψ ψ ψ

β β ( )( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( ){ }
( )( )

T

,
1

T

, ,
1

T TTT

1

                           

                           

                           

p
kk

k

kk
k

r
r

r

A A

A J A J A

J J J J

J
σ

ψ

Γ Θ Γ
=

Γ Θ Γ Θ Γ
=

=

 
Γ + Θ 

 
 + Θ− Γ + Γ 
 

 −Γ − Γ +Θ + Γ Γ + Θ Γ  

+ Γ Γ

∑

∑

∑

q

q q

q q q q

q

b b b









β ψ

ψ ψ ψ β

ψ β ψ β

( )( ) ( ) ( )
T T

1 1

T T TT
,

,                           .

p
kk

p k
J

A AZ Z ZA A
t t t t t t

ν

νβ
= =

Γ Θ Γ
Θ Γ Γ

   + Θ Γ − Γ +Θ Γ    
     ∂ ∂∂ ∂ ∂Γ ∂          − + Γ − + Γ + + Γ Γ          ∂ ∂ ∂ ∂ ∂ ∂               

∑ ∑q b

b



ψ β

β ψ

 

Equation (20) is sorted on the strength of the quasi-velocities η : Q  is quadratic with respect to 1, , ση η , 
Λ  is linear with respect to the same variables and Z  does not contain η . 

Since A is a positive-definite square matrix and rank σΓ = , even TA AΓ = Γ Γ  is a positive-definite σ σ×   

symmetric matrix. Hence, system (20) + (13) can be written in the normal form ( ), , t 
= 

 
Y q

q
η

η , where Y  is  

a list of σ+  functions, whose regularity allows us to apply the standard theorems on existence and unique-
ness of solutions to first-order equations with given initial conditions. 

Before commenting Equation (20), we remark that the Nσ ×  entries of the matrix ( )k M  defined in (21) 
are, for each 1, ,k =   : 

( )( ) ,, ,
, ,,

1 1
,    1, , ,   1, ,j ir h r k

k j r h ii j
h r k h k

Mz z
M M i j N

q q q

σ

σ
= =

∂∂ ∂ 
= − Γ + = = ∂ ∂ ∂ 
∑∑


             (22) 

We see now that a certain number of significant cases are encompassed by (20): 
• merely geometric constraints, corresponding to σ =  , 0ν = , so that (4) are not present and all the terms 

containing β , Θ  and the related quantities AΘ  ,AΓ Θ  must be dropped in (20). Furthermore: 
○ selecting = qη  (quasi-velocities are the generalized velocities) in (11) and (13) means 

, ,Z A AΓ= Γ = = = 0
 

ψ  

so that in (20) are written with as 

( ) ( )( ) ( )T T

1

1 , ,
2

k
k k k q q

k

AQ q A q J A J J N
t=

∂   = − Λ = − + =   
∂   

∑ q q b b q 0


    

thus the Lagrangian equations for geometric constraints (bearing in mind (22)) 

, , ,
,

1 , 1 1

1 0
2

i r r s i ri ir
i r r r s r

r r s rs i r i i i

a a ab bb c Ua q q q q
q q q q t q q t= = =

∂ ∂ ∂   ∂ ∂∂ ∂ ∂
+ − + − + − − + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∑ ∑ ∑
  

     

1, ,i =   , are achieved. 
○ establishing (11) as A= ∇ = +q q b



η  (quasi-velocities are the generalized momenta) means 
1, , ,Z A A A−

Γ= Γ = = Γ = bψ  

In this case (13) together with (20) are the Hamiltonian equations for  
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( ) ( ) ( ) ( ) ( )1, , , , , ,
2

H t t t c U= ⋅ − = Γ − ⋅ − − −q q q q b b

 η η η η η η : 

indeed the first one is ( ) H= Γ − = ∇q b ηη , whereas (20) reduces to 

( ) ( ) ( ) ( ) ( ), , , , , ; , ;t Q t t N t c UΓ + + Λ + −Γ ∇ +∇ =q qq q q b q b 0


η η η                (23) 

with 

( ) ( ) ( )( ) ( )( )T T

1 1

1, ,
2

k k
kk

k k
Q t J A Jη

= =

= − Γ Γ Γ − Γ Γ∑ ∑q qq
 

η η η η  

( ) ( ) ( )( ) ( ) ( )( )T TT

1 1

1, , ; , ,
2

k k
k k

k k
t J J J Aψ η

= =

Λ = −Γ Γ − Γ Γ + Γ Γ Γ∑ ∑q q qq b b b b
 

η β η η  

( ) ( ) ( )( )TT

1

1, ;
2

k
k

k
N t J b J

=

= Γ Γ + Γ Γ Γ∑q qq b b b


 

(actually from AΓ =


  one deduces ( ) ( )( )Tk
k J AΓ = −Γ Γq  and A A

t t
∂ ∂Γ

Γ = −
∂ ∂

 so that, also considering  

=b ψ , many terms are cancelled). 

Since ( )( ) ( ) ( )( ) ( )T Tk h h kJ A J AΓ = − Γq q  for any , 1, ,h k =   , it is 

( ) ( )( ) ( ) ( ) ( ) ( )
T T

1

1 1
2 2

k
k k q

k
Q N b J Jη

=

   + Λ + = Γ − Γ − Γ − = Γ∇ Γ − ⋅ −   
  

∑ q qb b b b


η η η  

therefore (23) is HΓ = −Γ∇qη , as stated. 
• Stationary case, where the different contributions producing the dependence on t  must be dropped. If one 

is dealing with a scleronomic system (covering many of common instances), the constraints (1), (2) reduce to 

( ) µ=Y X 0                                       (24) 

( ) ν=X X 0                                      (25) 

Conditions (24) entail ( )=X X q  and ( ) ( ) ( )1,
2

A U= ⋅ +q q q q q q    (if even the forces are independent of  

time), on the other hand (25) implies = 0β . 
Equation (11), if one reasonably chooses = 0ψ  and Z  independent of t  (otherwise, changes will be ob-

vious), is ( )Z= q qη . Since N σΛ = = 0 , system (20) + (13) drastically simplifies to 

( ) ( )
( )

T, ,
,

A Q U σΓ + −Γ ∇ =


= Γ

qq q 0
q q





η η
η

                           (26) 

or, index by index, calling ,i jb  the entries of the matrix AΓ , , 1, ,i j σ=   and having in mind (22) 

( )

( )

, , ,
1 , 1 1

, 1
1

0, 1, , ;

, , , 1, , .

i
i r r r s r s h i

r r s h h

p p j j
j

Ub i
q

q q q p

σ σ

σ

η η η σ

η

= = =

=

∂
+ − Γ = =

∂

= Γ =

∑ ∑ ∑

∑









  


                     (27) 

where ( )i  is, for each index i , the square matrix of order σ  

( ) ( ) , , , ,
, 1 , , , , ,

, 1 1

1, ,
2

j k j hi r i r s
r s k i h s r j h s h i

h k j h k h h

z z b b
q q b

q q q q

σ

= =

 ∂ ∂ ∂ ∂ 
= Γ Γ − + Γ − Γ   ∂ ∂ ∂ ∂  
∑ ∑
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Equations (27) are identified with the Boltzmann-Hamel Equations (17) for the Lagrangian function  

( ) 1,
2

A UΓ= ⋅ +q η η η  (see [3] [4]). In this case the Legendre transform 1
2

A UΓ⋅ −η η  is a first integral of  

motion, see Remark 1.2. 
• Reduced Lagrangian function for geometric constraints: in case of ν cyclic variables 1, ,q qσ + 

 , σ ν= − , 

(4) can play the role of the ν  relations derived from the first integral of motion i
i

p
q
∂

=
∂ 
 , 1, ,i σ= +   ,  

that is ,
1

0i j j i i
j

a q b p
=

+ − =∑


 , 1, ,i σ= +   . Assuming that ( ),det 0r sa =/ , , 1, ,r s σ= +   , it is possible  

to acquire, according to (13), ( ), ,
1

i i j j i j j j
j

q q b p
σ

=

= Γ −Θ −∑  , 1, ,i σ= +   , where ,i jΓ , ,i jΘ  and bj depend  

only on ( )1, , ,q q tσ
. At this point, setting 1 1qη =  ,  , qσ σ= η  we have, with respect to (11) and (12), 

( )Z σ ν σ×=    and , ,r s r sδΓ =  (Kronecker’s delta), , 1, ,r s σ=  . Equation (20), which writes simply 

( ) Td
dt

∇ = Γ ∇q
  η , are the equations of motion for the reduced Lagrangian 

( )( ) ( ) ( )( ) ( )( )( )1, , , , , , , , , , ,t q t q t tσ σ σ σ
σ +=q q q q





 
 η η η η , 

with ( )1, , ση η= η , ( ) ( )1, ,q qσ
σ=q  ; on the other hand, ( )( ) ( ), ,

1
, ,i i j j i j j j

j
q t b p

σ
σ η η

=

= Γ −Θ −∑q  for  

1, ,i σ= +   , are the so called reconstruction equations. 

3. Some Applications 
We adopt now Equation (20) in order to formulate a couple of remarkable mechanical systems, each of them in 
a double form, as scleronomous and rheonomous model. 

3.1. Pendulum on a Skate 
Consider a system of four points { }, , ,F B S DP P P P , FP  and BP  equidistant and lying on a horizontal plane, 

SP  equidistant from FP  and BP , DP  oscillating around 1O , equidistant from FP  and BP  and coplanar to 
the latter points and BP  (see Figure 1). 

The system represents a simple model for the motion of a bicycle, as exhibited in [5]: the mass in SP  is 
added on order to sketch the rigid structure of the bicycle (just as FP  and BP  represent the front and the back 
wheels), as well as the pendulum DP  simulates the movement of a driver. 

Let O  be a fixed point on the horizontal plane containing FP  and BP , k  the ascending vertical versor, 
C  the midpoint of the segment B FP P  and 1O C  perpendicular to the same segment: the geometrical con-
straints (1) are written by means of the constant assigned values ρ , κ , 1κ  as 

( ) ( )
( ) ( ) ( ) ( )

1 12 , , ,    0, 0,

0,    0
F B S D F B

S F B D F B

P P P C O P P O P O

P C P P P C P P

ρ κ κ= = = − ⋅ = − ⋅ =

− ⋅ − = − ⋅ − =

k k
           (28) 

Since the constraints are independent and 4n = , we have 7µ = , 5= . Setting a fixed reference system 
{ }, , ,O i j k  and the angle φ  between F BP P−  and i , the angle θ  between SP C−  and k , the angle 1θ  
between 1DP O−  and −k , one defines the orthonormal versors 

cos sinφ φ φ= +e i j , sin sin sin cos cosθ θ φ θ φ θ= − + +e i j k , 
1 1 1 1sin sin sin cos cosθ θ φ θ φ θ= − + −e i j k  

so that 2F BP P φρ− = e , 1SP C θκ− = e , ( )1 1 2O C θκ κ− = + e , 
12 1P O θκ− = e  and choose the five parameters 

( )1, , , ,C Cx y φ θ θ=q  as Lagrangian coordinates, where C Cx y C O+ = −i j . 
Opting for considering the segment B FP P  as a rigid bar of mass M (instead of a discrete point system, although 

not significant), the Lagrangian function (8) is written with 0b = , 0c = , 1 1cos cosDU g m gυ θ κ θ= − +  and 
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Figure 1. A simple model for the motion of a bicycle. 

 
( )
( )

( ) ( ) ( )
( )

( )

1 1 1 1

1 1 1 1

1 1 1 1 2 1

1 1 2 3 1
2

1 1 3 1

0 , cos cos sin cos sin
0 , sin cos cos cos cos

, cos , sin , 0 0
cos sin cos cos 0 cos
cos sin cos cos 0 cos

T D

T D

D D D

M F m
M F m

A F F F

m m m

θ θ φ υ θ φ κ θ φ
θ θ φ υ θ φ κ θ φ

θ θ φ θ θ φ θ θ
υ θ φ υ θ φ υ υ θ θ
κ θ φ κ θ φ υ θ θ κ

 − − − 
 − 
 = − −
 

− + 
 − + 

 

where T S DM M m m= + +  is the total mass and 

( ) ( ) ( )
( )
( ) ( )

22
1 1 1 2 2 1 1 2 3 1 2

1 1 1 1
2 2 2

2 1 1 2 1 2 1

,    ,    ,
, sin sin ,
, sin sin 2 sin sin .

S D S D D

D

C D D

m m m m m
F m
F I m m

υ κ κ κ υ κ κ κ υ κ κ κ
θ θ υ θ κ θ
θ θ κ θ υ θ κ κ κ θ θ

 = + + = + + = +


= +
 = + + + +

          (29) 

The only one kinetic constraint concerns with the velocity of the back “wheel” BP , to be aligned with the 
segment: 

BP φ∧ =e 0                                      (30) 

or sin cos 0
2C C
Rx yφ φ φ− + =  , that is (4) for 1ν = , sin , cos , ,0,0

2
Rα φ φ = − 

 
, = 0β . 

Hence 4σ =  and the four quasi-velocities (11) are selected by setting 

1 1cos sin 0 0 0

1 1sin cos 0 0 0

0 0 0 1 0
0 0 0 0 1

Z

φ φ
ρ ρ

φ φ
ρ ρ

 
 
 
 
−=  
 
 
 
 

 and = 0ψ . 
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Furthermore, (12) gives 

cos sin 0 0
sin cos 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ρ φ ρ φ
ρ φ ρ φ

− 
 
 
 Γ =
 
 
 
 

 

so that 

( )
( )

2
1

2
1 2 1 1

1 2 3 1
2

1 3 1

0 0
cos cos

0 cos cos
0 cos cos

T

T D

D D

M F
F F M m

A

m m

ρ ρ
ρ ρ ρυ θ ρ κ θ

ρυ θ υ υ θ θ
ρ κ θ υ θ θ κ

Γ

 −
 
− + =  +

  + 

 

By computing the first line in (26) one finds the four equations of motion 

( )

( )

( ) ( )

2 2 2 1 1
1 1 2 2 2 1 1 2 1 2 3 1 2 4

1

2 2 2 2 2
1 1 2 2 1 3 4 1 1 1 1 2 1 3 4 1

2 1
2 1 2 1 3 1 4

cos cos 0,

cos cos 2 sin sin

    

T T D

T D D

T

F FM F F M F m

F F M m F F m

FM F

ρ η ρ η ρ η ρ ηη ρ υ θ η η ρ κ θ η η
θ θ

ρ η ρ η ρυη θ ρ κη θ ρ η ρ η ρυη θ ρ κη θ

ρ ηη ρ ηη ηη
θ

 ∂ ∂ − − + + − + − + =  ∂ ∂   

− + + + + + − − −

∂
+ − − +

∂

 

   

( )

( ) ( ) ( )

( )

( )

2
2 3 2 4

2 22 1
1 2 2 3 1 2 4 1 1 2 3 4 1 1 2

2 1 2 3 3 2 4 1 1

2
1 2 3 3 1 4

0,

1cos cos cos sin
2

    sin cos sin 0,
2

1cos sin cos
2

D

D D D

F

F Fm

g

Fm m m

η η η η
θ

ρυη θ υ η κ κ κ η θ θ ρυ θ η υ η θ θ ρ ηη
θ θ

ρυ υ θ η η υ η η θ θ υ θ

κρ θη υ η θ θ κ η ρ κ θ

∂
+ + =
∂

∂ ∂ + + + + + − − + + ∂ ∂ 

 + − + + − = 
 

∂
+ + + + −

  

   ( )

( )

2 22 1
2 3 3 1 1 2

1 1

2
3 2 3 1 2 4 1

sin

    cos sin 0.D D

F

m m g

η υ η θ θ ρ ηη
θ θ

υ η η θ θ κ η η κ θ

  ∂
− + + ∂ ∂ 

+ + + + =

 

joined with the conservation of the quantity ηη ⋅∇ −   . 

3.2. Assignment of the Front Motion 
We modify the previous model by forcing the velocity of the front “wheel” to be a known function of time (a 
simpler version was considered in [6] for the motion of a bike): ( ) ( ) ( )F F FP t O x t y t− = +i j . With respect to 
(28), time t  enters explicitly the geometrical constraints and the fourth one has to be removed. Hence, in this 
example we have 3n = , 6µ = , 3=  and we choose ( )1, ,φ θ θ=q . The midpoint C  is located by 

( )( ) ( )( )cos sinF FC O x t i y t jρ φ ρ φ− = − + −  and the Lagrangian function (8) is written with 

( )
( )

2
2 1 1

1 1 2 3 1
2

1 3 1

cos cos
cos cos

cos cos

T D

D D

F M m
A

m m

ρ ρυ θ ρ κ θ
ρυ θ υ υ θ θ
ρ κ θ υ θ θ κ

 + − −
 

= − + 
 − + 

, 

1

1

1

1
2

cos
cos

T

D

M F

m

ρ
φ

υ θ
κ θ

∂ − ∂ 
 = −
 − 
 
 

b

ββ

β
β

, ( ) ( )( )2 21
2 T F Fc M x t y t= +   

whereas U  is the same function. 
The constraint (30) is now ( ) ( )sin cos 2 0F Fx t y tφ φ ρφ− + =  , that is (4) for 1ν = , ( )2 ,0,0α ρ=  
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( ) ( )sin cosF Fx t y tφ φ= − β . Choosing 1η θ , 2 1η θ=   we have simply 

( ) ( )
( )

2 3 1
2

3 1

0 0 1 2
cos0 1 0

, 1 0 , 0
cos0 0 1

0 1 0 D

Z A
m

ρ
υ υ θ θ

υ θ θ κΓ

  
 +     = Γ = Θ = =       +         

 

Equation (20) are written with 

( )
2

2
12

3 1 2
2 11

1

cos1 1sin , 0,
cos4 2 D

F

Q N F m
υ θη θυ θ θ
κ θρ ρ φη

θ

 ∂  
     ∂ ∂  = − + Λ = = − +   ∂ ∂       ∂  

ββ β  

and correspond to 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

22 2
2 1 3 2 1 3 1 2 2

1 1

22 2 2
3 1 1 2 3 1 1

1

1cos sin sin cos
8

1    sin cos cos sin cos sin 0,
4

cos sin sin cos

1    sin cos
4

F F

F F F F

D F F

F F

Fx t y t

x t y t x t y t g

Fm x t y t

x t y t

υ η υ η θ θ υ θ θ η φ φ
θρ

φ φ φ φ υ θ υ θ
ρ

υ η θ θ κ η υ θ θ η φ φ
θ

φ
ρ

∂
+ + − + − −

∂

− − + − =

∂
+ + − + − −

∂

− −

   

   

   

 ( ) ( ) ( )( ) 1 1cos sin cos sin 0.F F D Dx t y t m m gφ φ φ κ θ κ θ+ + = 

 

The energy balance (18) writes ( )d
dt tηη ∂

⋅∇ − = Θ ⋅∇ −
∂q



  


  β  and the function in the right side of the 

latter equality is 

( )
2

2 1
1 1 2 1 12

1 1 1 1cos cos
2 2 2 22T D T F F F F

F FM m F M x x y yηυ θ η κ θ
ρ φ ρ φ ρ φρ

     ∂ ∂Ψ ∂ Ψ − − − − − + + +     ∂ ∂ ∂     
   

β ββ β  

with 
2t ρ φ

 ∂ ∂
Ψ = − ∂ ∂ 

β β β . 

3.3. Rolling Disk with Pendulum 
A different version of the model 3.1 lies in replacing the bar with a disk and obtaining the unicycle with rider 
model presented in [7] (see Figure 1 again, replacing the bar with the disk). The system we consider here is a 
disk of diameter 2R  and mass M , in addition to the same points SP  (with mass Sm ) and DP  (with mass 

DP ). We directly choose the coordinates (see Remark 2.1) ( )1 1, , , , ,C Cx y φ φ θ θ=q  where the new parameter 
1φ  is the angle of rotation of the disk around the axis perpendicular to the disk and passing through the centre. 

The Lagrangian function is written with 1 1ˆ cos cosDU g m gυ θ κ θ= − +  and 

( )

( )

1 1 1

1 1 1

1 1 2

1 1 2 3 1

2
1 1 3 1

ˆ ˆ0 cos 0 cos sin cos sin
ˆ ˆ0 sin 0 cos cos cos cos

ˆ ˆ ˆcos sin sin 0 0
0 0 sin 0 0

1ˆ ˆ ˆcos sin cos cos 0 0 cos
2

cos sin cos cos 0 0 cos

T D

T D

D

D D

D

D D D

M F m

M F m

F F F I
A I I

I

m m m

φ υ θ φ κ θ φ

φ υ θ φ κ θ φ

φ φ θ
θ

υ θ φ υ θ φ υ υ θ θ

κ θ φ κ θ φ υ θ θ κ

 − − −

− −

− − −
= −

− + +

− − +
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where 21
2DI MR=  and (see (29)) 

( ) ( ) ( ) ( )

2
1 1 2 2

2 2
1 1 1 1 2 1 2 1

ˆ ˆ, ,
1 1ˆ ˆ, , sin , , , sin .
2 2C D D

MR MR

F F MR F F I MR I I

υ υ υ υ

θ θ θ θ θ θ θ θ θ θ

= + = +

 = + = − + + + 
 

 

The kinematic constraint of rolling without sliding entails the zero velocity of the contact point C : 

1 1cos , sinC Cx R y Rφ φ φ φ= = 

                                    (31) 

which is (4) with 2ν = , 
1 0 0 cos 0 0
0 1 0 sin 0 0

R
R

φ
α

φ
− 

=  − 
 and = 0β . 

This time 4σ =  and the choice 

( )1 2 1 1 2 1 3 4 1
1

ˆ ˆsin cos cos , sin , ,D C C D D
L LF I F x xy I Iη φ φ θ φ φ η φ φ θ η θ η θ
φ φ
∂ ∂

= = − − + = = − = =
∂ ∂

     

   

leads to 

1 1 2

2

2

1

2

ˆ ˆ ˆcos sin sin 0 0
0 0 sin 0 0 ,    
0 0 0 0 1 0
0 0 0 0 0 1

ˆsin cos cos 0 0
ˆsin sin sin 0 0

ˆ1 sin 0 0
ˆsin 0 0

0 0 0
0 0 0

D

D D

D

D

D D

D

F F F I
I IZ

I R RF

I R RF

I I RF

I F

φ φ θ
θ

θ φ φ

θ φ φ

θ
δ θ

δ
δ

 − − −
 

− =  
  
 
 
 
 
 

+ Γ =
 
 
 
 
 

 

where ( ) ( )1 2 1
ˆ ˆ, sin sin 0D D DI F I I RFδ θ θ θ θ= − + > . Moreover 

( )

( )

1,1 1,2

2,1 2,2

2 3 1

3 1 2

0 0
0 0
1ˆ0 0 cos
2

1ˆ0 0 cos
2

D

D

b b
b b

A I

I

υ υ θ θ

υ θ θ υ

Γ

 
 
 
 = + + 
 
 + + 
 

 

with 

( ) ( )

( ) ( ) ( )

( ) ( )

2
1,1 1 1

1,2 1 2,1 1 2 1 1

2
2,2 1 2 1 1

sin ˆ, 1 sin ,

sin ˆ ˆ ˆ, , 1 sin ,

ˆ
ˆ ˆ ˆ, 1 sin .

D D
T

D
T D

T D

I Ib M R RF

I Rb b M RF I RF F

F Rb M RF I RF F

θ
θ θ θ

δ δ
θ

θ θ θ θ θ
δ δ

θ θ θ
δ δ

  = + −  
 

   = = + − +    
    = + − +    

 

and the corresponding equations of motion (20) are 
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1,1 1,1 2,1
1,1 1 1,2 2 1 3 1,1 1 1,2 5 1 4 1,1 2 2 3 2,1 1 2,2 5

1

2,1
2 4 2,1 2

1

1,2 1
2,1 1 2,2 2 1 3 1,1 3 1,2 6 1 4 1,1 4

    0,

b b b
b b b G b G b G b G b G

b
b G

b b
b b b G b G b G

η η ηη ηη η η
θ θ θ

η η
θ

η η ηη ηη
θ

∂ ∂ ∂    
+ + − + + + + − +    ∂ ∂ ∂    

∂ 
+ + = ∂ 

∂ ∂ 
+ − + − + − ∂ 

 

 

( )

,2 2,2
2 3 2,1 4 2,2 6

1

2,2
2 4 2,1 4

1

1,1 2,22 2
2 3 3 4 1 1 1,1 1 2 2,1 3 2,2 6

1 2 2,1 1 1,1 3 2,2 5 1,2

    0,

1 1 1ˆ cos
2 2 2

    

D

b
b G b G

b
b G

b b
I b G b G b G

b G b G b G b

η η
θ θ

η η
θ

υ η υ η θ θ η η
θ θ

ηη

∂   
− + −   ∂ ∂  

∂ 
+ − + = ∂ 

∂ ∂    + − + − + + + −     ∂ ∂     

− − − −

 

( )

( )

( )

2,1 2
6 3 4 1 1

1,1 2,22 2 2
3 3 1 4 1 1,1 2 2 2,1 4

1 1

2,1 2
1 2 2,1 2 1,1 4 3 3 1 1

1

ˆsin sin 0,

1 1cos
2 2

    sin sin 0.

D

D

b
G g

b b
m b G b G

b
b G b G m

υ η θ θ υ θ
θ

υ η θ θ κ η η η
θ θ

ηη υ η θ θ κ θ
θ

∂ 
+ − + − = ∂ 

∂ ∂   
− + + − + + −   ∂ ∂   

∂ 
+ − + − + + = ∂ 

 

 

where 

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )

( )

2
1 1 1

2
2 1 1

1

2
3 1 1 2 1

2
4 1 2 1 1

1

2

5 1

6 1

ˆ
ˆ, cos sin ,

ˆ
, cos sin ,

ˆ1 ˆ ˆˆ, cos sin ,

ˆ1 ˆ ˆ, cos sin ,

, cos ,

,

D
D

D
D

D D

D D

D

D
D

I FG I R

I FG m R

FG I R F I RF

FG m RF I RF

IG

IG I

θ θ υ θ θ
δ θ

θ θ κ θ θ
δ θ

θ θ υ θ θ
δ θ

θ θ κ θ θ
δ θ

θ θ θ
δ

θ θ
δ

 ∂
= − + 

∂ 
 ∂

= − 
∂ 

 ∂
= + − + 

∂ 
 ∂

= − + 
∂ 

=

= ( )1̂sin cos .RFθ θ+

 

3.4. Assigned Rotational Velocity of the Disk 
We finally consider the same system with the differential constraint (31), but ( )1 1 tφ φ=  assigned (we may 
think about an engine-driven motor bike or electric bike): in that case ( )1, , , ,C Cx y φ θ θ=q  and (4) is setted  

with 2ν =  and 
1 0 0 0 0
0 1 0 0 0

α
 

=  
 

, ( )1

1

cos
sin

t R
R

φ φ
φ φ

 −
=  

− 





β . 

The Lagrangian fucntion (8) is written with A the same as in the previous Example 3.1, except for removing 

the fourth row and the fourth column, and 

0
0
sin
0
0

DI θ

 
 
 
 = −
 
 
 
 

b , ( )2
1

1 ( )
2 Dc I tφ=  . In the matter of (11), which has to 
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be written for 3σ = , if one defines the quasi-velocities ( ) ( )1 2 1 1
ˆ ˆ cos cos sinC C D

L F F x xy I tη φ φ φ φ θ
φ
∂

= = − + −
∂

 

  ,  

2η θ=  , 3 1η θ=   one gets = 0ψ  and 

1 1 2

1 1

2 2 2

1 00 0 0ˆ ˆ ˆcos sin 0 0 0 10 0 0
0 0 0 1 0 ˆ ˆ1 0 0,    ,    cos sin0 0 0 0 1 ˆ ˆ ˆ
1 0 0 0 0

0 1 0 0 0
0 1 0 0 0

0 0 1 0 0

F F F

F FZ
F F F

φ φ

φ φ

  
   − −  
    
    
   = Γ = Θ = 
    
    
            

 

Calculating the products in (15) gives 

( )

( )

2

2 3 1

2
3 1

1 0 0ˆ

1ˆ0 cos
2

0 cos

D

D

F

A I

m

υ υ θ θ

υ θ θ κ

Γ

 
 
 
 

= + + 
 

+ 
 
 

, 

, 1 1

1 1

0 0
ˆ ˆcos sin cos cos

cos sin cos cosD D

A
m m
υ θ φ υ θ φ
κ θ φ κ θ φ

Γ Θ

 
 = − 
 − 

, 

2 2
21 1

2 2

2 2
21 1

2 2

ˆ ˆ
cos sin cosˆ ˆ

ˆ ˆ
sin cos sinˆ ˆ

T

T

F FM
F F

A
F FM
F F

φ φ φ

φ φ φ
Θ

 
− − 

 =  
 − − 
 

 

and the computation of (20) gives the three equations of motion 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21
1 1 2 1 1 2 3 1 1 2 12

2 2 2 2 2

2 1 2
2 2 3 1 3 1 1 1 1 1 1 12 2 2

2 2 2 2

ˆ1 1 1 ˆcos cos cos cos cos 0,ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1 1 1 1ˆ ˆcos sin cosˆ ˆ ˆ ˆ2

  

D
D D D

D D

I FI t t R m t I t R
F F F F F

F F FI I t R t R t
F F F F

η φ η θ φ υη θ κη θ φ η θ φ θ

υ η υ θ θ η φ η θ φ η υ θ φ η
θ θ

+ + + − + =

∂ ∂  + + + − + −   ∂ ∂  

   



  

 

( ) ( ) ( )

( )( ) ( ) ( )

2
2 2 1 1 2

1 1 1 1 1
2 2 2 2

1

2 2
3 1 2 3 1 1 12

12 2 2

ˆ ˆ ˆ1 ˆˆ  cos 2 sin cos 2 sin cosˆ ˆ ˆ ˆ2

ˆ    sin 0,
ˆ1 1 1ˆcos cos sinˆ ˆ ˆ

D D
D

D D D

I F I F Ft t R I R R F R
F F F F

g

Fm t m R I RF
F F F

φ η θ φ υ θ θ θ θ
θ θ

υ θ

υ θ θ η κ η φ κ θ θ
θ

    ∂∂
+ + + + − −        ∂ ∂    
− =

 ∂
+ + + − + ∂ 

 



 

( )

1

2
2 2 1 1 2

1 1 1
1 12 2 2

ˆ ˆ ˆ1    sin cos 2 sin 0.ˆ ˆ ˆ2
D

D D
F I F Ft R m R m g
F F F

η

φ θ κ θ κ θ
θ θ



    ∂∂
+ + − + =        ∂ ∂    


 

4. Conclusions 
The paper aims at formulating a general scheme of equations for rheonomic mechanical systems exposed to ei-
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ther geometrical (1) and differential (2) constraints. We pay special attention to tell apart the different contribu-
tions due to the explicit dependence on time, deriving from the holonomous constrictions (via b  and c  of (8)), 
the nonholonomous constrictions (via β  of (4)) and the definition of quasi-velocities (via ψ ) of (11)). 

Since the equations of motion are projected in the subspace of the velocities allowed by the constraints (both 
holonomous and nonholonomous), the Lagrange multipliers are absent from the equations. 

The procedure proposed by (20) requires only calculation of the Jacobian matrix of vectors and the algebraic 
multiplication of matrices and vectors. 

Making use of quasi-velocities renders the equations versatile to more than one formalism and, as it is known, 
the appropriate choice of them meets the target of facilitating the mathematical resolution of the problem. 

The last point is part of the matters listed below and which will be dealt with in the future: 
-Find an appropriate choice of the quasi-velocities in order to disentangle (20) from (13) as much as possible, 
-Make use of the structure of the equations and of the properties of the various matrices involved in order to 

study the stability of the system, 
-Take advantage of some peculiarity of the system in order to refine the set of equations and achieve informa-

tion. 
The latter subject is faced in [8] [9] for the stationary case by means of a robust and complex theory in con-

nection with symmetries in nonholonomic systems. 
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