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Abstract 
In a monetary economy, expenditure induces revenue for each agent. We call this the revenue in-
duction phenomenon. Moreover, in a special case, part of the expenditure by an agent returns as 
their own revenue. We call this the expenditure reflux phenomenon. Although the existence of 
these phenomena is known from the olden days, this paper aims to achieve a more precise quanti-
fication of them. We first derive the revenue induction formula through solving the partial money 
circulation equation. Then, for a special case, we derive the expenditure reflux formula. Further-
more, this paper defines the revenue induction coefficient and the expenditure reflux coefficient, 
which are the key concepts for understanding the two formulas, and examines their range. 
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1. Introduction 
Expended money becomes revenue for somebody. Since money is an entity which continues to circulate, re-
ceived money is expended and again becomes revenue for somebody. Further, that received money is also ex-
pended, and again becomes revenue for somebody. In this manner, expenditure induces revenue for each agent 
in a monetary economy. We call this the revenue induction phenomenon. 

Moreover, a portion of agents who receive in the above case may be an agent who originally expended. In 
other words, part of the expenditure by an agent can return as their own revenue. This special case of revenue 
induction is called the expenditure reflux phenomenon in this paper. 

Expenditure reflux is a natural conclusion of money circulation. Therefore, its existence was recognized in the 
olden days by economists who considered money circulation. François Quesnay, who was known as a pioneer 
that researched economic circulation through devising Tableau Économique, said: 

http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2015.51003
http://dx.doi.org/10.4236/alamt.2015.51003
http://www.scirp.org
mailto:geppa_gifu@yahoo.co.jp
http://creativecommons.org/licenses/by/4.0/


S. Miura 
 

 
26 

“Thus of the 1200 livres’ worth of product, 600 are consumed by this class1, and its advances of 600 livres are 
returned to it in the form of money through the sales which it makes to the proprietor and to the sterile expendi-
ture class.”2 

Apart from this example, qualitative recognitions of revenue induction and expenditure reflux are often seen. 
The multiplier effect can be interpreted as a quantification of the revenue induction3, but it is not a sufficiently 
precise quantification especially for that of the expenditure reflux. The purpose of this paper is to quantify these 
phenomena more precisely. 

Regarding the quantitative expression of a monetary economy, the author already wrote Miura [35]. This pa-
per shares basic frameworks with that paper. We will reconfirm them. 

We decide that a target group of economic agents for description is called the relevant society.4 There are 
various kinds of agents, such as an individual, a family, a corporation, the government, and so on. However, this 
paper does not consider the differences between such kinds of agent. We treat all agents merely as agents in the 
group. We denote the relevant society by Set N. Moreover, we decide that a target term for description is called 
the relevant term. We assume that the relevant term is finite. This assumption is rewritten so that the relevant 
term always has a beginning and an end. The sphere that satisfies both the relevant society and the relevant term 
is called the relevant space-time. 

Furthermore, we do not distinguish between various types of transfer of money, including purchase of com-
modity, payment of wage, financial relation, donation, and so on. Also, there are various kinds of money such as 
the dollar, pound, euro, yen, and so on. However, in this paper, we assume that money in the relevant space-time 
is of only one kind. 

We define expenditure as transferring money to the relevant space-time, and revenue as money being trans-
ferred from the relevant space-time. There is a possibility that a transfer of money occurs between the relevant 
society and its outside, but transferring money to the outside is not called expenditure and money being trans-
ferred from the outside is not called revenue in this paper. 

Moreover, we decide that the sources excluding revenue, such as possession at term beginning, production 
and being transferred from the outside of the relevant society, are collectively called the beginning money. Also, 
we decide that the results excluding expenditure, such as possession at term end, disappearance and transferring 
to the outside of the relevant society, are collectively called the end money. 

Let kX  be the expenditure quantity of Agent k ; kY  be the revenue quantity of Agent k ; kΨ  be the 
quantity of the beginning money of Agent k ; and kΩ  be the quantity of the end money of Agent k . By their 
economic meaning, these are all non-negative. 

0,  0,  0,  0   for   k k k kX Y k N≥ ≥ Ψ ≥ Ω ≥ ∀ ∈ .                         (1) 

Further, we suppose that expenditure of any agent is positive to simplify description. Using symbols, the 
supposition is expressed as follows. 

0   for   kX k N> ∀ ∈ .                                   (2) 

Then, we have confirmed that the sum of gross source of any agent and the sum of gross result of the same 
agent are equal. We have named this proposition the law of gross disposal.5 Using symbols, the law is denoted 
as follows. 

 

 

1“This class” refers to the productive expenditure class. 
2Quesnay [1] pp.3-4 of “the ‘Third Edition’ of the Tableau Économique”. 
3However, note that our revenue induction is directly a nominal phenomenon, not a real phenomenon. It is often said that the multiplier 
analysis was initially proposed by Richard Kahn (Cf. Kahn [2]). However, although some opposing opinions exist, researchers have reported 
that there were predecessors of the multiplier analysis, including François Quesnay and Frederic Bastiat in France (Cf. Bortis [3] p. 63-64, 
Taylor [4] p. 7, 30-31, McGee [5]), Karl Marx and Nicholas Johannsen and Alfred Schwoner in Germany (Cf. Trigg [6] p. 6-20, Sordi & 
Vercelli [7], Hegeland [8] p. 5-14, 23-29, Schneider [9] p. 131-134, Klein [10] p. 143-147, Allsbrock [11], Hagemann & Rühl [12]), Julius 
Wulff and Frederik Johannsen and Jens Warming in Denmark (Cf. Hegeland [8] p. 14-19, Topp [13], Dimand [14] p. 115-117, Boserup [15], 
Warming [16], Cain [17], King [18] p. 68-69), Michał Kalecki in Poland (Cf. Sordi & Vercelli [7] p. 14-17, King [18], Sawyer [19]), Walter 
Bagehot and Arthur Cecil Pigou and Ralph Hawtrey in Britain (Cf. Hegeland [8] p. 3-5, 19-23, Dimand [14] p. 107-111, Heimann [20] p. 
236-237, Wright [21] p. 185-186, Cain [22], Dimand [23], Darity & Young [24], Ahiakpor [25], Dimand [26], Darity & Young [27]), Alfred 
de Lissa and Lyndhurst Falkiner Giblin in Australia (Cf. Dimand [14] p. 105-107, 117-118, King [18], Wright [21] p. 189-193, Ahiakpor [25  
p. 896-897, Goodwin [28], Arndt [29], Markwell [30] p. 32-37, Millmow [31], Coleman [32]), and Charles Dow and John Maurice Clark in 
the United States (Cf. Heimann [20] p. 236-237, Bishop [33], Fiorito [34]). 
4It is permitted that one element is either one agent or one group of agents, but we call it merely an agent. 
5Cf. Miura [35] p. 190. 
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   for   k k k kX Y k N+Ω = Ψ + ∀ ∈ .                             (3) 

Moreover, we have defined the expenditure rate and confirmed its range as follows.6 

( )    for   k k k kX X k Nθ = +Ω ∀ ∈ .                            (4) 

0 1   for   k k Nθ< ≤ ∀ ∈ .                                (5) 

Note that the quantitative expression of the expenditure reflux ought to be a relational formula between ex-
penditure and revenue of the same agent. Such a formula can easily be derived from past settings. If we substi-
tute Equation (3) in Equation (4), we can derive 

( )k k k kX Yθ= Ψ + .                                   (6) 

This is certainly a relational formula between expenditure and revenue of the same agent. However, it is not a 
formula which denotes expenditure reflux. 

In a monetary economy, there are two relationships between expenditure and revenue of the same agent. One 
is the expenditure reflux, and the other is the circular disposal. The latter refers to a flow of money from revenue 
to expenditure inside of only one agent.7 On the other hand, the former refers to a flow of money from expendi-
ture to revenue via the outside of an agent. 

It is natural that two flows between expenditure and revenue exist in monetary economy. If there existed only 
one of the two flows, money would flow in only one direction and could not circulate. Both flows are required 
to fulfill money circulation. 

Although Equation (6) is a valid relational formula, it represents the percentage of expenditure in the gross 
source. It is a quantitative expression of the circular disposal. Thus, we call this the circular disposal formula. It 
expresses the flow from revenue to expenditure, but not the expenditure reflux, which is the flow from expendi-
ture to revenue. We have to find another relational formula for its quantification. 

Note that we have formed a money circulation equation in Miura [35]. The pioneer of the equation is Mária 
Augustinovics in Hungary8, and the current author showed its modification in that paper. Both expenditure and 
revenue have been derived as a solution of the equation. Therefore, it is possible to obtain a relational formula 
between expenditure and revenue of the same agent by using those solutions. However, since the equation is 
formed with consideration to the whole money circulation, the formula mixes two flows and so cannot express 
one relationship independently. For the quantification of expenditure reflux, it is not suitable to use a solution of 
the money circulation equation.9 

In order to avoid confusion with inappropriate relational formulas, we first execute the quantification of the 
revenue induction while carefully ascertaining its adequacy. Based on this, we derive the quantification of the 
expenditure reflux as its special case. 

2. Quantification of the Revenue Induction and the Expenditure Reflux 
For convenience, we decide that an agent whose expenditure becomes the initial point of the relationship is 
called the standard agent. We decide that the standard agent is denoted 0 and the other agents of the standard 
agent are denoted by the natural numbers from 1 to 1n − . The relevant society is denoted { }0,1, , 1N n= − . 
Further, we denote the set of the other agents { } { }\ 0 1, , 1M N n= = − . 

The revenue induction consists of three steps. The first step is that the expenditure of the standard agent caus-
es the revenue of the other agents. The second step is that the revenue of the other agents is disposed to their 
expenditure. The third step is that the expenditure of the other agents causes the revenue for each agent. We will 
execute the quantification of each step sequentially. 

To start, we quantify the first step where the expenditure of the standard agent causes the revenue of the other 
agents. Let ijZ  be the separate transfer quantity from Agent i to Agent j. From its economic meaning, it is na-
turally non-negative. 

 

 

6Cf. Miura [35] p. 191. 
7See the definition of the circular disposal in Miura [35] p. 189. 
8Cf. Augustinovics [36]. 
9In the case that we use regression analysis to verify the relationship between expenditure and revenue, a similar problem also occurs. Since 
the two flows are detected in a mixed state, regression analysis does not seem to be significant in the research examining the relationship 
between expenditure and revenue in money circulation. 
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0   for   ,ijZ i j N≥ ∀ ∈ .                                  (7) 

We have decided that transferring money to the outside is not called expenditure and money being transferred 
from the outside is not called revenue in this paper. Hence, the following relations hold. 

0 1 1    for   i i i inX Z Z Z i N−= + + + ∀ ∈ .                           (8) 

0 1 1    for   j j j n jY Z Z Z j N−= + + + ∀ ∈ .                           (9) 

Further, let Agent h  be one of the others. The expenditure of the standard agent to the other agent h  is di-
rectly denoted by 0hZ . This is included in a part of the revenue of h , but the revenue also includes the expend-
itures from the others. Applying Equation (9) to Agent h , the gross revenue of h  is expressed as 

0 1 1    for   h h h n hY Z Z Z h M−= + + + ∀ ∈ .                         (10) 

The quantification of the first step has been completed. We now shift to the second step where the other 
agents dispose to their expenditure. 

As mentioned above, a disposal from revenue to expenditure can be denoted by the circular disposal formula 
(Equation (6)) through using the expenditure rate. Applying Equation (6) to Agent h , the circular disposal for-
mula of h  is expressed as follows. 

( )    for   h h h hX Y h Mθ= Ψ + ∀ ∈ .                             (11) 

This equation is the quantitative expression of the second step. Substituting Equation (10) in Equation (11), 
we obtain the quantitative expression of the integration of the first and second step. 

( )0    for   h h h h i M ihX Z Z h Mθ ∈= Ψ + +∑ ∀ ∈ .                       (12) 

Before shifting to the third step, we recall the definition of the expenditure distribution rate and its range as in 
Miura [35].10 

   for   ,ik ik iZ X i k Nµ = ∀ ∈ .                               (13) 

0 1   for   ,ik i k Nµ≤ ≤ ∀ ∈ .                                (14) 

Moreover, by Equations (8) and (13), we can derive 

0 1 1 1   for   i i in i Nµ µ µ −+ + + = ∀ ∈ .                            (15) 

We now begin the third step where the expenditure of the other agents causes revenue for each agent. Ex-
penditure causes further expenditure because money continues to transfer. We will derive the quantity of ex-
penditure considering this point. 

In order to combine the outcome of the first and second step with the third step, we substitute Equation (13) 
for the case k h=  in Equation (12) provided that i M∈ . Moreover, if we transpose its terms including ex-
penditure except that of the standard agent, we obtain 

( ) ( )01    for   h hh h i h h ih i h h hX X Z h Mθ µ θ µ θ≠− −∑ = Ψ + ∀ ∈ . 

We write this formula from 1h =  to 1n −  and regard the results as a system of simultaneous equations in 
1 2 1, , , nX X X − . We call this the partial money circulation equation. 
A difference between the partial money circulation equation and the money circulation equation discussed in 

Miura [35] is that the variables of the former equation are expenditures of all others whereas those of the latter 
equation are expenditures of all agents. Hereafter, we call the latter the whole money circulation equation in or-
der to distinguish it from the partial equation. 

Then, we denote the partial money circulation equation by using a matrix expression. 
Let 1nE −  be an ( )1n − -dimensional unit matrix; 1nx −  be an ( )1n − -dimensional column vector with the 

ith element equal to iX  excluding 0X ; 1nψ −  be an ( )1n − -dimensional column vector with the hth element 
equal to hΨ  excluding 0Ψ ; 1

0
nz −  be an ( )1n − -dimensional column vector with the hth element equal to 

0hZ  excluding 00Z ; 1n−Θ  be an ( )1n − -dimensional diagonal square matrix with the hth element equal to 
hθ  excluding 0θ ; and 1nµ −  be an ( )1n − -dimensional square matrix with the ( ),j i th element equal to i jµ  

excluding 0iµ  and 0 jµ . The partial money circulation equation is denoted by 

 

 

10Cf. Miura [35] p. 191. 
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( ) ( )1 1 1 1 1 1
0

n n n n n n nE x zµ ψ− − − − − −−Θ = Θ + . 

Note that 1 1n nµ− −Θ  is a non-negative matrix because 0i jiθ µ ≥  from Equations (5) and (14). Hence, 
1 1 1n n nE µ− − −−Θ  is a Z-matrix, which is defined as a square matrix in which the non-diagonal elements are all 

non-positive. Moreover, we can obtain ( )1 1
0 0n n nzψ− −Θ + ≥  from Equations (1), (5) and (7). Considering this 

with Equation (2), we find that ( )1 1 1 1 0n n n nE xµ− − − −−Θ ≥  where 1 0nx −∃ > .11 This type of equation has a 
unique solution if and only if the following condition is satisfied. 

Let F be a subset of M which is not empty and G be the relative complement of F in N if F is a proper subset. 
The condition is h F∃ ∈  such that ( )0 0h h hZθ Ψ + > , or { }\ 0i G∃ ∈ , h F∃ ∈  such that 0h ihθ µ− <  for 

F M∀ ⊆ .12 By Equations (1), (5) and (7), the former condition is equivalent to h F∃ ∈  such that 0hΨ >  or 
0 0hZ > . By Equations (2), (5) and (13), the latter condition is equivalent to { }\ 0i G∃ ∈ , h F∃ ∈  such that 

0ihZ > . h F∃ ∈  such that 0 0hZ >  or { }\ 0i G∃ ∈ , h F∃ ∈  such that 0ihZ >  can be summarized as 
i G∃ ∈ , h F∃ ∈  such that 0ihZ > . Therefore, we can see that the partial money circulation equation has a 

unique solution if and only if h F∃ ∈  such that 0hΨ >  or i G∃ ∈ , h F∃ ∈  such that 0ihZ >  for 
F M∀ ⊆ . 
This solvability condition means that any subset of the others satisfies the space-time openness condition for 

the source direction.13 Since M is a subset of N, these opennesses are satisfied under the disposal irreversibility 
principle, which means that money can be disposed only from revenue of the past to expenditure of the future.14 
Since this principle seems to be valid universally, the unique solution of the partial money circulation equation 
always exists. 

Let ihq  be the ( ),i h th element of the inverse of 1 1 1n n nE µ− − −−Θ . It can be calculated from the expenditure 
rate and the expenditure distribution rate of all others, and has the following peculiarities.15 

0,  1   for   ,ih iiq q i h M≥ ≥ ∀ ∈ .                                (16) 

Then, the solution of the partial money circulation equation can be expressed as 

( )0    for   i h M ih h h hX q Z i Mθ∈= ∑ Ψ + ∀ ∈ .                           (17) 

The calculation of the others’ expenditure considering the continuation of expenditure has been completed. 
Then, we shift to the completion of the third step. 

Due to Equations (9) and (13), we can see that 

0    for   j j i M ij iY Z X j Nµ∈= + ∑ ∀ ∈ .                              (18) 

If we substitute Equation (17) in Equation (18), we obtain 

( ){ }0 0    for   j j i M ij h M ih h h hY Z q Z j Nµ θ∈ ∈= + ∑ ∑ +Ψ ∀ ∈ .                     (19) 

Note that, 

( ){ }
( ) ( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

1 11 1 01 1 12 2 02 2 1 1 1 0 1 1

2 21 1 01 1 22 2 02 2 2 1 1 0 1 1

1 11 1 01 1 12 2 02 2 1 1 1 0 1 1

  

        

        

  

i M ij h M ih h h h

j n n n n

j n n n n

n j n n n n n n n

q Z

q Z q Z q Z

q Z q Z q Z

q Z q Z q Z

µ θ

µ θ θ θ

µ θ θ θ

µ θ θ θ

∈ ∈

− − − −

− − − −

− − − − − − − −

∑ ∑ +Ψ

= +Ψ + +Ψ + + +Ψ

+ +Ψ + +Ψ + + +Ψ +

+ +Ψ + +Ψ + + +Ψ

=



 



( ) ( ) ( ) ( )
( ) ( )

( )

1 11 2 21 1 11 1 01 1 1 12 2 22 1 12 2 02 2

1 1 1 2 2 1 1 1 1 1 0 1 1

0

        

  ( ) .

j j n j n j j n j n

j n j n n j n n n n n

h M i M ij ih h h h

q q q Z q q q Z

q q q Z

q Z

µ µ µ θ µ µ µ θ

µ µ µ θ

µ θ

− − − −

− − − − − − − −

∈ ∈

+ + + +Ψ + + + + +Ψ

+ + + + + +Ψ

= ∑ ∑ +Ψ

 

 

 

 

 

11 1 1 1n n nE µ− − −−Θ  is an NPZ-matrix called in Miura [37]. 
12Cf. Theorem 3.12 in Miura [37]. The prototype of this condition was first shown in Beauwens [38] and Neumann [39]. 
13The space-time openness condition seems to be relevant to the bounded confidence condition in the literature of social opinion evolution. 
Cf. Varshney [40], Shang [41], Shang [42] regarding the bounded confidence condition. 
14Cf. Theorem 3.5 in Miura [35]. 
15Cf. Theorems 1.4 and 3.6 in Miura [37]. 



S. Miura 
 

 
30 

If we substitute this computation in Equation (19), the equation is rewritten as 

( ) ( )0 0    for   j j h M i M ij ih h h hY Z q Z j Nµ θ∈ ∈= + ∑ ∑ +Ψ ∀ ∈ .                  (20) 

In order to avoid a complication of description, we introduce a new concept. It is defined as 

( )0hj i M ij ih hqε µ θ∈= ∑ .                                   (21) 

Since ihq  can be calculated from the expenditure rate and the distribution rate of all others, 0hjε  can also be 
calculated from the expenditure rate and the distribution rate of all others. If we substitute Equation (21) in Equ-
ation (20), we can derive 

( )0 0 0    for   j j h M hj h hY Z Z j Nε∈= + ∑ +Ψ ∀ ∈ .                        (22) 

jY  refers to each revenue and 00 01 0 1, , , nZ Z Z −  refer to the separate expenditures of the standard agent. 
Equation (22) is our searching formula which expresses the revenue induction phenomenon. We call this the 
revenue induction formula from the standard agent to Agent j. 

Then, we think about the revenue induction formula in which Agent j is the standard agent. Using symbols, 
this is as follows. 

( )0 00 0 0 0h M h h hY Z Zε∈= + ∑ +Ψ .                              (23) 

This is nothing but the expenditure reflux formula which we have looked for as a quantitative expression of 
the expenditure reflux phenomenon. If we rewrite Equation (23) using the expenditure distribution rate of the 
standard agent (Equation (13)), the expenditure reflux formula is also expressed as follows. 

( )0 00 0 0 0 0 0 0h M h h h M h hY Xµ ε µ ε∈ ∈= + ∑ +∑ Ψ .                         (24) 

On the other hand, the circular disposal formula (Equation (6)) in the case 0k =  is as follows. 

( )0 0 0 0X Yθ= Ψ + .                                    (25) 

If we regard Equations (24) and (25) as simultaneous equations in 0X  and 0Y , we can calculate the expend-
iture and revenue of the standard agent by the expenditure rate, the distribution rate and the beginning money of 
all agents. Note that they can be also calculated by solving the whole money circulation equation.16 Equation (24) 
is derived through solving the partial equation and Equation (25) is included in the whole equation. Therefore, 
solving the simultaneous equations of these correspond to solving the whole equation using two steps. 

We also interpret this simultaneous equation qualitatively. Equation (24) refers to the flow of money from 
expenditure to revenue, and Equation (25) refers to the flow of money from revenue to expenditure. Hence, 
solving the simultaneous equations of these equations is the quantitative unification of the two flows of money 
circulation. It is the same as solving the whole money circulation equation. 

3. Revenue Induction Coefficient and Expenditure Reflux Coefficient 
In the revenue induction formula (Equation (22)), the coefficient of 0hZ  represents the increase of revenue for 
Agent j induced by one unit increase of expenditure of the standard agent to Agent h unless it causes a variation 
in the expenditure rate or the distribution rate of any others. We call this the revenue induction coefficient from 
standard agent to Agent j through Agent h. 

We examine a concrete expression of the revenue induction coefficient for the case where the Agent j in the 
formula is the other. 

In the case h j= , the revenue induction coefficient is 01 hjε+ . Unity in the coefficient is obtained from the 
expenditure which the standard agent expends to h j=  directly. Therefore, it should be called the direct reve-
nue induction coefficient. On the other hand, 0hjε  in the coefficient is obtained from the expenditure which the 
others expend to h j=  but its distant source is the expenditure of the standard agent. Therefore, it should be 
called the indirect revenue induction coefficient from standard agent to Agent j through Agent h. 

In the case h j≠ , the revenue induction coefficient is only 0hjε . That is, the revenue induction coefficient is 
equivalent to the indirect one. 

0hjε  can also be interpreted to represent the increase of revenue for Agent j caused by one unit increase of the 
beginning money of Agent h. However, we must pay attention that it does not include an effect through the ex-

 

 

16Cf. Miura [35] p. 191-192. 
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penditure of the standard agent because the expenditure of the standard agent is externalized in the derivation of 
the revenue induction formula. All effects, including an effect through the expenditure of the standard agent, are 
denoted by the solutions of the whole money circulation equation. 

Next, we examine a concrete expression of the revenue induction coefficient for the case where the Agent j in 
the formula is the standard agent. 

Since Agent h in the expenditure reflux formula (Equation (23)) refers to the other, 0h ≠  holds. Accor-
dingly, the revenue induction coefficient of 0hZ  is 0 0hε . This is nothing but the indirect revenue induction 
coefficient from the standard agent to themselves through Agent h. Because it expresses the reflux quantity of 
one unit of expenditure, we call this the expenditure reflux coefficient through Agent h. 

Further, 00Z  refers to the transfer from the agent to themselves. We call this the self-transfer. The coefficient 
of the self-transfer is unity. We can also interpret the expenditure reflux coefficient of the self-transfer as always 
equal to unity. 

The key to examining a concrete quantitative effect of revenue induction is the numerical value of the revenue 
induction coefficient. Whereas the direct coefficient is fixed to unity, the indirect coefficient can become various 
values although its range is limited. We will prove some theorems regarding its range, including some relevant 
lemmas. 

Lemma 3.1 0i M ij ihqµ∈∑ ≥  for h M∀ ∈ ,  j N∀ ∈ . 
Proof. This is derived because 0ijµ ≥  by Equation (14) and 0ihq ≥  by Equation (16). [Q.E.D.] 
Theorem 3.2 0 0hjε ≥  for h M∀ ∈ , j N∀ ∈ . 
Proof. Referring to Equation (21), the indirect revenue induction coefficient is defined as ( )0hj i M ij ih hqε µ θ∈= ∑ . 

Due to Equation (5) and Lemma 3.1, this theorem is derived. [Q.E.D.] 
This theorem indicates that an increase in expenditure does not decrease revenue unless it causes a variation 

in the expenditure rate or the distribution rate of any others. 
The lower limit of the indirect revenue induction coefficient is shown in Theorem 3.2, but its upper limit 

does not exist generally.17 However, regarding only the expenditure reflux coefficient, there is an upper limit. 
After proving some lemmas, we will clarify this upper limit. 

Lemma 3.3 ( )1 1i M k M k ik ihqθ µ∈ ∈∑ −∑ =  for h M∀ ∈ . 
Proof. 1 r rrθ µ−  is the rth diagonal element of 1 1 1n n nE µ− − −−Θ , and r k rθ µ−  is the ( ),r k th non-diagonal  

element of 1 1 1n n nE µ− − −−Θ . On the other hand, khq  is the ( ),k h th element of the inverse of 1 1 1n n nE µ− − −−Θ .  
Hence, by the definition of the inverse, 

( )r ,

1,
1

0,rr rh r kr khk M k r

r h
q q

r h
θ µ θ µ

∈ ≠

=
− − =  ≠

∑  

is satisfied for ,  r h M∀ ∈ . Summing up both sides of these formulas for r M∀ ∈ , we obtain 

( ){ },1 1   for   r M r rr rh k M k r r k r khq q h Mθ µ θ µ∈ ∈ ≠∑ − −∑ = ∀ ∈ .                     (26) 

Note that, 

( ){ }
( )

( ) ( )
( )

,

1 1 11 1 1 21 2 1 11 1 2 2 12 1 2 22 2 2 12 1

1 1 1 1 1 1 2 1 2 1 1 1 1

1 1

1

  

  

        

  

r M r rr rh k M k r r k r kh

r M rh r k M k r kh

h h h n n h h h h n n h

n h n n h n n h n n n n h
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17This is obvious by the following concrete example. We suppose that the relevant society consists of two agents. In this case, the partial 
equation is ( ) ( )1 11 1 1 1 011 X Zθ µ θ− = Ψ + . From this, ( ) ( ) ( )11 1 11 011 11 11 1 1 11 1 111 1 ,  thus 1q qθ µ ε µ θ θ µ θ µ= − = = −  If we differentiate 011ε  with 

respect to 1 11θ µ , we can derive ( ) ( )2

011 1 11 1 11d d 1 1ε θ µ θ µ= − , ( ) ( )2 32
011 1 11 1 11d d 2 1ε θ µ θ µ= − . Considering 1 110 1θ µ≤ < , we can see that 

011ε  increases unlimitedly as 1 11θ µ  approaches unity. 
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Substituting this computation in Equation (26), we can see that ( )1 1i M k M k ik ihqθ µ∈ ∈∑ −∑ =  for h M∀ ∈ . 
[Q.E.D.] 

Lemma 3.4 0 1i M i ihqµ∈∑ ≤  for h M∀ ∈ . 
Proof. By 1kθ ≤  (Equation (5)) and 0ikµ ≥  (Equation (14)), k ik ikθ µ µ− ≥ −  is satisfied. Hence, we obtain 

1 1    for   k M k ik k M ik i Mθ µ µ∈ ∈−∑ ≥ −∑ ∀ ∈ . 

Considering this with 0ihq ≥  (Equation (16)) and Lemma 3.3, we can derive 

( ) ( )1 1 1    for   i M k M k ik ih i M k M ik ihq q h Mθ µ µ∈ ∈ ∈ ∈= ∑ −∑ ≥ ∑ −∑ ∀ ∈ .                 (27) 

Moreover, the following equation holds by Equation (15). 

( ) 01    for   i M k M ik ih i M i ihq q h Mµ µ∈ ∈ ∈∑ −∑ = ∑ ∀ ∈ .                        (28) 

From Equations (27) and (28), we can see that 0 1i M i ihqµ∈∑ ≤
 
for h M∀ ∈ . [Q.E.D.] 

Theorem 3.5 0 0h hε θ≤  for h M∀ ∈ . 
Proof. We confirmed 0 1i M i ihqµ∈∑ ≤  in Lemma 3.4. If we multiply both sides of this formula by 0hθ >  

(Equation (5)), we obtain ( )0i M i ih h hqµ θ θ∈∑ ≤  for h M∀ ∈ . Considering Equation (21), 0 0h hε θ≤  for 
h M∀ ∈  is derived. [Q.E.D.] 
This theorem indicates that one unit of expenditure does not reflux exceeding the expenditure rate of the first 

receiver unless it causes a variation in the expenditure rate or the distribution rate of any others. 
We will qualitatively consider the reason that the expenditure reflux coefficient has an upper limit whereas 

the indirect revenue induction coefficient to the others does not have an upper limit generally. The revenue in-
duction formula, which is derived from the partial equation, reflects money circulation of the inside of the others. 
Since money circulating unlimitedly is principally permitted, the indirect revenue induction coefficient to the 
others can be unlimitedly large. On the other hand, the formula does not reflect money circulation including the 
standard agent. That is, the flow of money reflected in the reflux coefficient is only from leaving to returning. 
As a result, money circulating unlimitedly cannot be expressed by the coefficient. Hence, the reflux coefficient 
is limited to a finite value. 

Now, we have confirmed the upper limit of the reflux coefficient. Based on the above theorems, we can see 
the range of the reflux coefficient using concrete numbers. 

Theorem 3.6 0 00 1hε≤ ≤  for h M∀ ∈ . 
Proof. By Theorems 3.2 and 3.5, we obtain 0 00 h hε θ≤ ≤  for h M∀ ∈ . Considering this with 1hθ ≤  

(Equation (5)), we can see that 0 00 1hε≤ ≤  for h M∀ ∈ . [Q.E.D.] 
The reflux coefficient being equal to unity means that expenditure of an agent returns all to themselves. We 

decide that the situation 0 0 1hε =  is called the entire reflux of the standard agent through Agent h. 
Note that if the gross expenditure of the standard agent refluxes entirely, the expenditure reflux formula be-

comes 

0 0 h M hY X ∈= + ∑ Ψ  

by Equations (15) and (24). In this case, the revenue for an agent is the sum of their own expenditure and all 
portions of the beginning money of the others. 

Since the expenditure reflux is caused by the behaviors of the others, whether such a situation occurs or not 
also depends on them. We will derive an equivalent condition between the behaviors of the others and the entire 
reflux of the gross expenditure after proving some lemmas. 

Lemma 3.7 If 0 0 1hε =  for h M∀ ∈ , 1hθ =  for h M∀ ∈ . 
Proof. By the definition of the revenue induction coefficient (Equation (21)), 0 0 1hε =  is equivalent to 

( )0 1i M i ih hqµ θ∈∑ = . Note that 00 1i M i ihqµ∈≤ ∑ ≤  by Lemmas 3.1 and 3.4 and 0 1hθ< ≤  by Equation (5). 
Therefore, 0 0 1hε =  holds if and only if 0 1i M i ihqµ∈∑ =  and 1hθ =  hold. Hence, if 0 0 1hε =  for h M∀ ∈  is 
premised, 1hθ =  for h M∀ ∈  is derived. [Q.E.D.] 

Lemma 3.8 If 1hθ =  for h M∀ ∈ , 0 0 1hε =  for h M∀ ∈ . 
Proof. If we substitute 1kθ =  for k M∀ ∈  in the formula shown in Lemma 3.3, we obtain  

( )1 1i M k M ik ihqµ∈ ∈∑ −∑ =  for h M∀ ∈ . Transposing this equation, we can derive 

( ) 1   for   i M k M ik ih i M ihq q h Mµ∈ ∈ ∈∑ ∑ = ∑ − ∀ ∈ .                         (29) 
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On the other hand, 01k M ik iµ µ∈∑ = −  holds by Equation (15), thus we can see that 

( ) ( )0 01    for   i M k M ik ih i M i ih i M ih i M i ihq q q q h Mµ µ µ∈ ∈ ∈ ∈ ∈∑ ∑ = ∑ − = ∑ −∑ ∀ ∈ .            (30) 

From Equations (29) and (30), 01i M ih i M ih i M i ihq q qµ∈ ∈ ∈∑ − = ∑ −∑  for h M∀ ∈  is satisfied. Hence,  
0 1i M i ihqµ∈∑ =  for h M∀ ∈  is derived. If we substitute this in Equation (21) in the case 0j = , we obtain 

0 0h hε θ=  for h M∀ ∈ . Since 1hθ =  for h M∀ ∈  is premised, 0 0 1hε =  for h M∀ ∈  is derived. [Q.E.D.] 
Theorem 3.9 0hΩ =  for h M∀ ∈  is equivalent to 0 0 1hε =  for h M∀ ∈ . 
Proof. Based on the definition of the expenditure rate (Equation (4)), 0hΩ =  for h M∀ ∈  if and only if 

1hθ =  for h M∀ ∈ . By Lemmas 3.7 and 3.8, this is equivalent to 0 0 1hε =  for h M∀ ∈ . [Q.E.D.] 
This theorem shows that the entire reflux of the gross expenditure occurs if and only if the end money of all 

others does not exist. It is intuitively reasonable. 
If the end money of all others does not exist, any others do not possess money at term end even though their 

money does not disappear and is not transferred to the outside. In this case, to where does money go which the 
standard agent expends? The possibility is only that it goes to the standard agent. Hence, all portions of money 
which the agent expends must return to themselves. That is, all expenditure must reflux entirely. 

Inversely, if some other agents retain their end money, a portion of money which the standard agent expends 
to the others should remain in the others’ hand. This means that all expenditure does not reflux entirely. 

4. Concluding Comments 
We have succeeded in deriving the revenue induction formula and the expenditure reflux formula. However, 
these formulas are not perfect as quantitative expressions of the revenue induction and the expenditure reflux. 

If we directly use these formulas to examine an effect which a variation of expenditure has on revenue, we 
have to suppose that the indirect revenue induction coefficient is constant for a variation of expenditure. Since 
the coefficient is defined by the expenditure rate and the distribution rate of all others, the supposition also 
means that they are constant. But such a supposition does not seem to be justified generally. This restricts ap-
plication ranges of those formulas. 

However, even if the coefficient is variable, the effectiveness of the formulas derived in this paper is not 
completely lost. Even in such a case, the coefficient is still definable, and the propositions regarding its range 
clarified in this paper are also valid. We believe that our research is valuable as a primary approach to the truth 
of monetary economy. 
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