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Abstract 
The exp ( )( )−φ ξ -expansion method is used as the first time to investigate the wave solution of a 
nonlinear dynamical system in a new double-Chain model of DNA and a diffusive predator-prey 
system. The proposed method also can be used for many other nonlinear evolution equations. 
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1. Introduction 
The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1]. 
Exact solutions for these equations play an important role in many phenomena in physics such as uid mechanics, 
hydrodynamics, optics, plasma physics and so on. Recently many new approaches for finding these solutions 
have been proposed, for example, extended Jacobian Elliptic Function Expansion Method [2], the modified 
simple equation method [3], the tanh method [4], extended tended tanh-method [5]-[7], sine-cosine method 
[8]-[10], homogeneous balance method [11] [12], F-expansion method [13]-[15], exp-function method [16] [17],  
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trigonometric function series method [18], G
G
′ 

 
 

-expansion method [19]-[22], Jacobi elliptic function method 

[23]-[26], the exp ( )( )ϕ ξ− -expansion method [27]-[29] and so on.  

The objective of this article is to apply the exp ( )( )ϕ ξ− -expansion method for finding the exact traveling  

wave solution of dynamical system in a new double-Chain model of DNA and a diffusive predator-prey system 
which play an important role in biology and mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we give the description of the exp ( )( )ϕ ξ− -ex-  

pansion method. In Section 3, we use this method to find the exact solutions of the nonlinear evolution equations 
pointed out above. In Section 4, conclusions are given.  

2. Description of Method 
Consider the following nonlinear evolution equation  

( ), , , , , 0,t x tt xxF u u u u u =                                    (2.1) 

where F  is a polynomial in ( ),u x t  and its partial derivatives in which the highest order derivatives and 
nonlinear terms are involved. In the following,we give the main steps of this method:  

Step 1. We use the wave transformation  

( ) ( ), ,     ,u x t u x ctξ ξ= = −                                   (2.2) 

where c  is a positive constant, to reduce Equation (2.1) to the following ODE:  

( ), , , , 0,P u u u u′ ′′ ′′′ =                                      (2.3) 

where P  is a polynomial in ( )u ξ  and its total derivatives,while d' '.
dξ

=   

Step 2. Suppose that the solution of ODE (2.3) can be expressed by a polynomial in ( )( )exp ϕ ξ−  as follows 

( ) ( )( )( )exp ,     0,
m

m mu a aξ ϕ ξ= − + ≠                            (2.4) 

where ( )ϕ ξ  satisfies the ODE in the form  

( ) ( )( ) ( )( )exp exp ,ϕ ξ ϕ ξ µ ϕ ξ λ′ = − + +                           (2.5) 

the solutions of ODE (2.5) are when 2 4 0λ µ− > , 0,µ ≠   

( )
( )

2
2

1
4

4 tanh
2

ln ,
2

C
λ µ

λ µ ξ λ

ϕ ξ
µ

  −  − − + −
   =  

 
  
 

                       (2.6) 

when 2 4 0,  0,λ µ µ− > =   

( )
( )( )1

ln ,
exp 1C

λϕ ξ
λ ξ

 
= −   + − 

                                (2.7) 

when 2 4 0,  0,  0,λ µ µ λ− = ≠ ≠   

( )
( )( )
( )

1
2

1

2 2
ln ,

C
C

λ ξ
ϕ ξ

λ ξ

 + +
= −  + 

                                (2.8) 

when 2 4 0,  0,  0,λ µ µ λ− = = =   
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( ) ( )1ln ,Cϕ ξ ξ= +                                        (2.9) 

when 2 4 0,λ µ− <   

( )
( )

2
2

1
4

4 tan
2

ln ,
2

C
µ λ

µ λ ξ λ

ϕ ξ
µ

  −  − + −
   =  

 
  
 

                    (2.10) 

where ,  ,  ,  ma λ µ  are constants to be determined later, 
Step 3. Substitute Equation (2.4) along Equation (2.5) into Equation (2.3) and collecting all the terms of the 

same power ( )( )exp mϕ ξ− , 0,1, 2,3,m =   and equating them to zero, we obtain a system of algebraic equa-  

tions, which can be solved by Maple or Mathematica to get the values of ia . 
Step 4. substituting these values and the solutions of Equation (2.5) into Equation (2.3) we obtain the exact 

solutions of Equation (2.3). 

3. Application 
3.1. Example 1: Dynamical System in a New Double-Chain Model of DNA  
An attractive nonlinear model for the nonlinear science in the deoxyribonucleic acid (DNA). The dynamics of 
DNA molecules is one of the most fascinating problems of modern biophysics because it is at the basis of life. 
The DNA structure has been studied during last decades. The investigation of DNA dynamics has successfully 
predicted the appearance of important nonlinear structures. It has been shown that the nonlinearity is responsible 
for forming localized waves. These localized waves are interesting because they have the capability to transport 
energy without dissipation [30]-[38]. In Ref. [37] [38], it is given that a new double-chain model of DNA 
consists of two long elastic homogeneous strands which represent two polynucleotide chains of the DNA mole- 
cule, connected with each other by an elastic membrane representing the hydrogen bonds between the base pair 
of the two chains. Under some appropriate approximation, the new double-chain model of DNA can be des- 
cribed by the following two general nonlinear dynamical system:  

2 3 2
1 1 1 1 1 ,tt xxu c u u uv u uvλ γ µ β− = + + +                            (3.1) 

2 2 2 3
2 2 2 2 2 0 ,tt xxv c v v u u v v cλ γ µ β− = + + + +                          (3.2) 

where  

( )

( )

1 2 1 0

0 0
2 1 2 1 22 3

00
1 2 03

2;    ;    ;

2 2 22 ;    2 ;    ;

24
;    .

Y Fc c c l
h

l l
h h

h ll
c

h

µλ
ρ ρ ρσ

µ µµλ γ γ µ µ
ρσ ρσ ρσ

µµ
β β

ρσρσ

−
= ± = ± = −

−−
= = = = =

−
= = =

                    (3.3) 

where ρ , σ , Y  and F  denote respectively the mass density, the area of transverse cross-section, the 
Young’s modulus and tension density of each strand; µ  is the rigidity of the elastic membrance; h  is the 
distance between the two strands, and 0l  is the height of the membrance in the equilibrium positive. In 
Equations (3.1) and (3.2), u  is the difference of the longitudianl displacements of the bottom and top strands, 
while v  is the difference of the transverse displacements of the bottom and top strands. 
we first introduce the transformation  

,v au b= +                                       (3.4) 

where a  and b  are constants, to reduce Equations (3.1) and (3.2) to the following system of equations:  

( ) ( ) ( )2 3 2 2 2
1 1 1 1 1 1 1 12 ,tt xxu c u u a u ab a u b bµ β β γ λ γ β− = + + + + + +               (3.5) 
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and  

( ) ( )
3

2 3 2 2 2 02 2 2 2
2 2 2 2 2 23 3 .tt xx

cb b bu c u u a u ab u b
a a a a a
γ µ λ β

µ β β λ β − = + + + + + + + + + 
 

      (3.6) 

Comparing Equations (3.5) and (3.6) and using (3.4) we deduce that 
2

hb =  and F Y= . Now Equations 

(3.5) and (3.6) can be written as  
2 3 2
1 0,tt xxu c u Au Bu Cu− − − − =                                (3.7) 

where  

( )2 20
13 2

0

6 2 2 62 4 ;    ;    ;    ;    .
la YA a B C c

l hh h
µα α α α α
ρσ ρ

 −
= − + = = + = = 

 
          (3.8) 

The wave transformation ( ) ( ),u x t u ξ= , kx tξ ω= + , reduce Equation (3.7) to the following ODE:  

( )2 2 2 3 2
1 0,k c u Au Bu Cuω ′′− − − − =                                (3.9) 

where 2 2 2
1 0k cω − ≠ . Balancing u′′  and 3u  yields, 2 3 1N N N+ = → = . Consequently, we have the 

formal solution:  

( )0 1exp ,u a a ϕ= + −                                   (3.10) 

where 0a  and 1a  are constants to be determined, such that 1 0a ≠ . It is easy to see that  

( ) ( ) ( ) ( )2
1 1 1 12 exp 3 3 exp 2 2 exp ,u a a a aϕ λ ϕ λ µ ϕ λµ′′ = − + − + + − +                  (3.11) 

substituting Equation (3.10) and its derivatives in Equation (3.9) and equating the coefficient of different 
power’s of ( )( )exp ϕ ξ−  to zero, we get  

( )2 2 2 3
1 1 12 0,a w c k Aa− − =                              (3.12) 

( )2 2 2 2 2
1 1 0 1 13 3 0,a w c k Aa a Baλ − − − =                          (3.13) 

( )( )2 2 2 2 2
1 1 0 1 0 1 12 3 2 0,a w c k Aa a Ba a Caλ µ+ − − − − =                  (3.14) 

( )2 2 2 3 2
1 1 0 0 0 0.a w c k Aa Ba Caλµ − − − − =                        (3.15) 

Equations (3.12)-(3.15) yields  

( ) ( )2 2 2
1 0 1 0

0 0 1 2
1

2
,    ,    ,    ,

w c k a a a
a a a

A a
λ

λ λ µ
− + −

= = − = =  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 0 1 1 0 0 1 1 1 1

2
1

4 4 4 4
,

a a w a a c k a w a c k w a c k a
C

a
λ λ λ λ− − + − +

= −  

( )2 2 2 2 2 2
1 1 1 0 0 1

2
1

3 2 2
,    .

a w a c k a w a c k
B A A

a

λ λ− + + −
= − =  

Thus the solution is  

( )
( )

2 2 2
1

0

2
exp

w c k
u a

A
ϕ

− +
= ± − −                             (3.16) 

Let us now discuse the following case: 
Case 1. if 2 4 0,  0.λ µ µ− > ≠   
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( )
( )

( )

2 2 2
1

0
2

2
1

2 2

4
4 tanh

2

w c k
u a

A
c

µξ
λ µ

λ µ ξ λ

− +
= ±

  −  − − + −
    

                (3.17) 

Case 2. if 2 4 0,  0.λ µ µ− > =   

( )
( )

( )( )

2 2 2
1

0
1

2
.

exp 1

w c k
u a

A c
λξ

λ ξ

− +
= ±

+ −
                        (3.18) 

Case 3. if 2 4 0,  0,  0.λ µ µ λ− = ≠ ≠   

( )
( ) ( )

( )

2 2 2 2
1 1

0
1

2
.

2 2

w c k c
u a

A c
λ ξ

ξ
λ ξ

− + +
=

+ +  
                          (3.19) 

Case 4. if 2 4 0,  0,  0.λ µ µ λ− = = =   

( )
( )

[ ]

2 2 2
1

0
1

2 1 .
w c k

u a
A c

ξ
ξ

− +
= ±

+
                              (3.20) 

Case 5. if 2 4 0,λ µ− <   

( )
( )

( )

2 2 2
1

0
2

2
1

2 2 .
4

4 tan
2

w c k
u a

A
c

µξ
µ λ

µ λ ξ λ

− +
= ±

  −  − + −
    

                (3.21) 

3.2. Example 2. A Diffusive Predator-Prey System 
Consider a system of two coupled nonlinear partial differential equations describing the spatio-temporal dyna- 
mics of a predator-prey system [39],  

( ) 2 3

3

1 ,

.
t xx

t xx

u u u u u uv

v v uv mv v

β β

κ δ

= − + + − −

= + − −
                               (3.22) 

where κ , δ , m  and β  are positive parameters. The solutions of predator-prey system have been studied in 
various aspects [39]-[41]. The dynamics of the diffusive predator-prey system have assumed the following  

relations between the parameters, namely m β=  and 1 1κ β
δ

+ = + . Under there assumptions, Equation 

(3.22) can be rewritten in the form:  

2 3

3

1 ,

.

t xx

t xx

u u u u u uv

v v uv v v

β κ
δ

κ β δ

 
= − + + − − 

 
= + − −

                            (3.23) 

We use the wave transformation ( ) ( ), ,  u x t u x ctξ ξ= = −  to reduce Equation (3.23) to the following nonli- 
near system of ordinary differential equations:  

2 3

3

1 0,

0,

u cu u u u uv

v cv uv v v

β κ
δ

κ β δ

  ′′ ′+ − + + − − =  
  
 ′′ ′+ + − − =

                         (3.24) 

where c  is a nonzero constant. 
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In order to solve Equation (3.24), let us consider the following transformation  
1v u
δ

=                                        (3.25) 

Substituting the transformation (3.25) into Equation (3.24), we get  
2 3 0u cu u u uβ κ′′ ′+ − + − =                              (3.26) 

Balancing u′′  with 3u  in Equation (3.26) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the same 
formal solution (3.10). Substituting Equation (3.10) and its derivatives in Equation (3.26) and equating the 
coefficient of different power's of ( )( )exp ϕ ξ−  to zero, we get  

3
1 12 0a a− =                                     (3.27) 

2 2
1 1 1 0 13 3 0a ca a a aλ κ− + − =                              (3.28) 

2 2
1 1 1 1 0 1 0 12 2 3 0a a ca a a a a aµ λ λ β κ+ − − + − =                        (3.29) 

3 3
1 1 0 0 0 0a ca a a aλµ µ β κ− − + − =                             (3.30) 

Equations (3.27)-(3.30) yields 
Case 1. 

2 22 ,   2 ,   
2 2 4

c λ κκ β µ λ λ= = − + =  

0 1
2 1 ,    2

2 2
a aλ κ= ± + = ±  

Case 2. 

( )
2

2 2
0 0 0 0 2

0 00

2 4 23 6 2 ,     4
2

c a a a a
a aa

µ κµµ κ β µ κ= − + + = − − + + +  

( )2
0 0 0 1

0

2 2 ,     ,     2
2

a a a a
a

λ µ= ± + = = ±  

Thus the solution is 
Case 1.  

( )2 1 2exp
2 2

u λ κ ϕ= ± + ± −                               (3.31) 

Case 2.  

( )0 2expu a ϕ= ± −                                    (3.32) 

Let us now discuss the following cases: 
Case 1. 
Case (1.1). if 2 4 0,  0λ µ µ− > ≠   

( )
2

2
1

2 1 2 2
2 2 4

4 tanh
2

u

C

µλ κ
λ µ

λ µ ξ λ

= ± + ±
 −
 − − + −
 
 

                 (3.33) 

Case (1.2). if 2 4 0,  0λ µ µ− > =   

( )( )1

2 1 2
2 2 exp 1

u
C
λλ κ

λ ξ
= ± + ±

+ −
                           (3.34) 

Case (1.3). if 2 4 0,  0,  0λ µ µ λ− = ≠ ≠   
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( )
( )( )

2
1

1

22 1
2 2 2 2

C
u

C
λ ξ

λ κ
λ ξ

+
= ± +

+ +
                             (3.35) 

Case (1.4). if 2 4 0,  0,  0λ µ µ λ− = = =   

1

2 1 2
2 2

u
C

λ κ
ξ

= ± + ±
+

                                (3.36) 

Case (1.5). if 2 4 0λ µ− <   

( )
2

2
1

2 1 2 2
2 2 4

4 tan
2

u

C

µλ κ
µ λ

µ λ ξ λ

= ± + ±
 −
 − + −
 
 

                (3.37) 

Case 2. 
Case (2.1). if 2 4 0,  0λ µ µ− > ≠   

( )
0

2
2

1

2 2

4
4 tanh

2

u a

C

µ

λ µ
λ µ ξ λ

= ±
 −
 − − + −
 
 

                  (3.38) 

Case (2.2). if 2 4 0,  0λ µ µ− > =   

( )( )0
1

2
exp 1

u a
C
λ

λ ξ
= ±

+ −
                           (3.39) 

Case (2.3). if 2 4 0,  0,  0λ µ µ λ− = ≠ ≠   

( )
( )( )

2
1

0
1

2
2 2

C
u a

C
λ ξ

λ ξ
+

=
+ +

                             (3.40) 

Case (2.4). if 2 4 0,  0,  0λ µ µ λ− = = =   

0
1

2u a
Cξ

= ±
+

                                 (3.41) 

Case (2.5). if 2 4 0λ µ− <   

( )
0

2
2

1

2 2

4
4 tan

2

u a

C

µ

µ λ
µ λ ξ λ

= ±
 −
 − + −
 
 

                  (3.42) 

4. Conclusion 
We establish exact solutions for the dynamics of DNA molecules is one of the most fascinating problems of 
modern biophysics because it is at the basis of life. The DNA structure has been studied during last decades. The 
investigation of DNA dynamics has successfully predicted the appearance of important nonlinear structures and 
a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a  
predator-prey system where the prey per capita growth rate is subject to the Allee effect. The ( )( )exp ϕ ξ− -

 
expansion method has been successfully used to find the exact traveling wave solutions of some nonlinear 
evolution equations. As an application, the traveling wave solutions for Dynamical system in a new Double- 
Chain Model of DNA and a diffuusive predator-prey system, which have been constructed using the ( )( )exp ϕ ξ− -  
expansion method. Let us compare between our results obtained in the present article with the well-known 
results obtained by other authors using different methods as follows: Our results of Dynamical system in a new 
Double-Chain Model of DNA and a diffusive predator-prey system, are new and different from those obtained 
in [37]-[41] and Figure 1 and Figure 2 show the solitary traveling wave solution of Dynamical system in a new  
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(a)                                                (b) 

   
(c)                                                 (d) 

 
(e) 

Figure 1. Solution of Equations (3.17)-(3.21). (a) Equations (3.17); (b) Equations (3.18); (c) Equations (3.19); 
(d) Equations (3.20); (e) Equations (3.21).                                                          
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(a)                                                (b) 

   
(c)                                                (d) 

 
(e) 

Figure 2. Solution of Equations (3.38)-(3.42). (a) Equations (3.38); (b) Equations (3.39); (c) Equations (3.40); 
(d) Equations (3.41); (e) Equations (3.42).                                                             
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Double-Chain Model of DNA and a diffusive predator-prey system. It can be concluded that this method is 
reliable and proposes a variety of exact solutions NPDEs. The performance of this method is effective and can 
be applied to many other nonlinear evolution equations. 
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