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Abstract 
By this paper, we give an answer to the problem of definition of coherent risk measures on rear-
rangement invariant, solid subspaces of L0 with respect to some atom less probability space 
( ), ,Ω   . This problem was posed by F. Delbaen, while in this paper we proposed a solution via 
ideals of L0 and the class of the dominated variation distributions, as well. 
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1. Introduction 
In (Delbaen, 2009), the problem of defining a risk measure on a solid, rearrangement invariant subspace of  

( )0 , ,L Ω   -space of random variables with respect to some atomless probability space ( ), ,Ω   . We recall  
that a vector space E, being a vector subspace of 0L  is called rearrangement invariant if for random rariables  

0,y x L∈ , which have the same distribution, x E∈  implies y E∈ . Also, the space E is solid if for andom 

viariables 0,y x L∈ , ,y x x E≤ ∈ , implies y E∈ . In (Delbaen, 2009), there is an extensive treatment of this  
problem, related to the role of the spaces L∞  and 1L , compared to E, especially in (Delbaen, 2009). On the 
other hand, the whole paper (Delbaen, 2002) is devoted to the difficulties of defining coherent risk measures on 
subspaces of 0L , while it is proved that if the probability space is atomless, no coherent risk measure is defined 
all over 0L  (Delbaen, 2002). Of course these attempts of moving from L∞  to appropriately defined subspaces 
of 0L , are related to the tail propertes of the random variables in actuarial science and finance and more 
specifically to heavy-tailed distributed random variables. The actual problem behind these seminal article by F. 
Delbaen is since we cannot define a coherent risk measure on the entire 0L , whether subspaces of 0L  which 
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are both alike L∞  and preserve nice distributional properties (from the aspect of heavy-tails). Especially, we 
treat the rearrangement invariance in the sense of remaining in the same class of distributions and not by 
requiring distributional invariance. This is the topic of our paper. 

2. Ideals of L0 and Heavy-Tailed Distributions 
It is well-known that since ( )0 , ,L Ω    is a Riesz space, being ordered by the pointwise-  -a.e. partial 
ordering ≥, it would be taken as a Riesz subspace of Ω . Hence, it may be considered to be an order-complete  
Riesz space. Let us take an element y of 0L , which corresponds to a heavy-tailed random variable. This 
indicates that either for 0y y+ = ∨  for ( ) 0y y− = − ∨ ,  

( )*
e ,yε ⋅ = ∞  

for any real number 0ε > , where ∗ = +  or ∗ = − . Heavy-tailed random variables may not have even a  
finite moment ( )y . On the other hand, according to (Aliprantis & Border, 1999), the principal ideal yE  
generated by y in E, endowed by the norm  

{ }inf 0 ,z z yλ λ
∞
= > ≤  

is an AM-space with order unit y . We also have to mention the following relevant.  
Lemma 2.1 If ( )0, 0, 0y y y> ≥ ≠  and y is a heavy-tailed random variable, then every [ ],z y y∈ −  is a 

heavy-tailed random variable.   
Proof. Since [ ], ,y z z y y≥ ∈ − , we get that for the sets ( ) ( ){ } ( ) ( ){ },y t y t z t z tω ω ω ω= ∈Ω ≤ = ∈Ω ≤ , 

the inclusion ( ) ( )y t z t⊆  holds, which implies ( ) ( ) ,y zF t F t t≤ ∈  for the corresponding cumulative distri- 
bution functions. Since for the integral  

( )
0

e d ,t
yF tε∞ ⋅ = ∞∫  

holds for any 0ε > , this implies  

( )
0

e d ,t
zF tε∞ ⋅ = ∞∫  

for any 0ε > . 
We recall the class   of dominated variation distributions:  

( )
( ) ( )limsup , 0,1 .

t

F tu
F u

F t→+∞
∈ ⇔ < ∞ ∈  

This class is a sub-class of heavy -tailed distributions, see (Cai & Tang, 2004).   
Theorem 2.2 If yF ∈ , where   denotes the class of dominated variation distributions respectively, then 

for every yz E∈ , zF ∈ .   
Proof. According to what is proved in (Cai & Tang, 2004), the class   is convolution-closed, namely if 
,x yF F ∈ , then x yF + ∈ . First, we have to prove that if yF ∈ , then zF ∈ , for any yz E∈ . Since  

yz E∈ , there exists some 0λ >  such that [ ],z y yλ λ∈ − ⋅ ⋅ . But yFλ⋅ ∈ . This is easy to prove, since if  

( )
( )

,limsup y

t y

F ut
F t→+∞

< ∞  

for any ( )0,1u∈ , then in order to prove that  

( )
( )

,limsup y

t y

F ut
F t
λ

λ

⋅

→+∞ ⋅

< ∞  

for any ( )0,1u∈ , then we get that the above limsup is equal to  
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( )
( )

,limsup y

r y

F ru
F r→+∞

< ∞  

for any ( )0,1u∈ . Hence, yFλ⋅ ∈ . Moreover, we have to prove that if [ ],z y yλ λ∈ − ⋅ ⋅ , then zF ∈ . From 
the previous Lemma,  

( ) ( ) ( ) ( ) ( ), , 0,1 .z y z yF t F t F tu F tu u≤ ≤ ∈  

From the properties of the tail function of z we also have that since ut t<  for ( )0,1u∈ , then  

( ) ( ).z zF ut F t≥  

Hence,  

( )
( )

( )
( )

1 .yz

z z

F utF ut
F t F t

≤ ≤  

Since 
( ) ( )

1 1

y zF t F t
≤ ,  

( )
( )

,limsup z

t z

F tu
F t→+∞

< ∞  

which is the desired conclusion. 
Hence we obtain subspaces E of 0L , which are actually the ideals yE  which satisfy the rearrangement 

invariance property, while they contain non-integrable distributions, in the sense that for any yz E∈  there is a  
maximum p for which the moment ( )pz  exists in  . Let us discuss more this question. A notion which is  

very important is the one of the moment index. We recall that the moment index for a non-negative random 
variable x is equal to  

( ) ( ){ }sup .vx v x= < ∞   

We also recall that if xF ∈ , then ( )x < ∞ , see in (Seneta, 1976), (Tang & Tsitsiashvili, 2003). The use 
of the moment index in the specific case is that despite the validity of the (Delbaen, 2002), due to the fact that 
the elements of yE  distributions lie in the class  , we assure that at least in the ideal yE , we assure a 
general level of non-integrability of yz E∈ , given by a finite ( )z . About the question whether the class   
is the greatest in which the specific Theorem holds, we have to mention that if we move up to the class of the 
subexponential distributions, it is not convolution-closed, see for example in (Leslie, 1989). As it is also well- 
known from (Aliprantis & Border, 1999), the dual space *

yE  of yE  is an AL-space, since the ideal yE  is an 
AM-space with unit y , as mentioned above. Hence, we keep the dual pair  

*, ,y yE E  

for any of the y described above. 

3. Expected-Shortfall on Ideals of L0 
Taking any 0y >  whose yF ∈ , and defining the corresponding dual pair  

*, ,y yE E  

we may define an Expected Shortfall-form risk measure on yE . We have to notice that yE  satisfies both the 
order and the distributional rearrangement property, as a subspace of 0L . This is due to the properties of the 
class   of the dominated variation distributions. Hence we use (Kaina & Rüschendorf, 2009) of the dual 
(robust) representation of the usual Expected Shortfall in order to prove the following. 

Theorem 3.1 The functional : yR E →  , where  
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( ) ( )
10,

sup
f e

a

R x f x
 ∈  

= −  

is an ( ), ,yE y+ -coherent risk measure, where { }, \ 0ye E +∈  is such that , , 0y e a a= > . 

Proof. 
1) 

( ) ( ) ( )
1 10, 0,

,sup sup
f e f e

a a

R x t y f x t y f x t
   ∈ ∈      

+ ⋅ = − − ⋅ = − −  

for any t∈ , due to the order completeness of the ideal yE  (y-Translation Invariance).  
2) 

( ) ( ) ( ) ( ) ( ) ( )
1 1 10, 0, 0,

,sup sup sup
f e f e f e

a a a

R x z f x z f x f z R x R z
     ∈ ∈ ∈          

+ = − − ≤ − + − = +  

for any , yx z E∈  (Subadditivity).  
3) 

( ) ( ) ( )
1 10, 0,

,sup sup
f e f e

a a

R x f x f xλ λ λ
   ∈ ∈      

⋅ = − ⋅ = ⋅ −  

for any λ +∈  and yx E∈  (Positive Homogeneity).  

4) If x z≥  then for any 10,f e
a

 ∈   
 we get ( ) ( )f z f x− ≥ − . Hence by taking suprema all over  

10,f e
a

 ∈   
, we ger ( ) ( )R z R x≥  , yx z E∈  ( ,yE + -Monotonicity). 

Finally, if we suppose that the dual pair * ,y yE E  is a symmentric Riesz pair, or else that *
yE  has order-  

continuous norm (see also (Aliprantis & Border, 1999)), then the values of R are finite since they represent the 
supremum value of a weak-star continuous linear functional on a weak-star compact set, which is the box of  

functionals 10, e
a

 
  

. Otherwise, the infinity of the values of R may be excused by the presence of heavy-tailed 

distributions. 
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