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Abstract 
The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame 
and provides a closed form vector solution determined by vector and matrix calculus. The solution 
is determined through vector and matrix calculus in both cases, for both forms of the law of mo-
tion (for the Foucault Pendulum Problem and its “Reduced Form”). A complex vector which trans-
forms the motion equation in a first order differential equation with constant coefficients is used. 
Also, a novel kinematic interpretation of the Foucault Pendulum motion is given. 
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1. Introduction 
Swinging with elegance across the meridian of Paris inside the grand hall of the observatory, the pendulum built 
by Bernard Léon Foucault (1819-1868) proved the rotation of the Earth for the first time by terrestrial methods. 
It was a true kick for both mathematicians and physicists because none of them could write the equations or im-
agine this simple experiment. As we now know, Cauchy never thought that is possible that a pendulum can 
change the oscillation plan and Poisson said in 1827 that a pendulum cannot move such way. 

The “non-mathematician” Foucault, as the members of the French Academy named him, wrote the first equa-
tion which computes the period of the whole rotation of the oscillation plan depending of the latitude of the 
place of oscillation. The as-known “Foucault formula” or “The law of sinus” is 24 sinT θ=  (h), with θ  be-
ing the latitude [1] [2]. 

The famous experience done by Léon Foucault in 1851 emphasized the movement of the Earth around the 
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poles, without the need for astronomical observations. The problem is very important out of the theoretical point 
of view. Modeling this experiment involves the study of a harmonic oscillator with respect to a non-inertial 
frame of reference with uniform rotation. 

But finding the equation of the movement of the pendulum proved to be for mathematicians a really “hard nut” 
due to the non-inertial character of the reference frame. Long time, the solution had been obtained after many 
approximations which had to simplify the differential equations. 

The type of motion that will be named “Foucault Pendulum-like motion” is described by the non-linear initial 
value problem [3] [4]: 

( ) ( )

( )
( )
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0

0

2 ;   ;

0 ;
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 f r V
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ω ∗
+

 + × + × × + = ∈ ∈


=
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r v

ω ω ω ω
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where :f + →   is a continuous real valued map, r denotes the magnitude of vector r  and ω  is a diffe-
rentiable vector value map (  denotes the set of real numbers). The above equation models the motion in a 
non-inertial reference frame with instantaneous angular velocity ω  in a central force field. 

The motion which is described by the below linear initial value problem will be named “Foucault Pendulum 
motion”: 

( )
( )
( )
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0

0

2 ;   ;  
0
0

;
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Vω ω ∗
+ + × + × × + = ∈ ∈


=

 =
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r r r r
r r
r v

ω ω ω ω
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In this case, the function f  from Equation (1.1) has the particular expression of a constant real number and 
r is the position vector, ω  is the angular velocity of the reference frame (an arbitrary differential vector map) 
and 0ω  is the pulsation of the pendulum which depends on its length and the gravitational acceleration at the 
experiment place. The relation (1.2) represents the initial value problem that describes a motion of a harmonic 
oscillator related to a rotating reference frame. 

Many times is used the simplified form of (1.2) written below, when the inertial centripetal force is ignored 
(see for example [1]-[5]): 

( )
( )

2
0 0

0

0

2 ;   const;  
0
0

ω ω ∗
+

 + × + = = ∈


=
 =

0


 




r r r
r r
r v

ω ω
                        (1.3) 

where Earthsinθ=ω ω  is considered to be constant, θ  is the latitude of the place of the experiment and Earthω
represents the angular velocity of the Earth. In Equation (1.3), the inertial centripetal force ( )× × rω ω  is neg-
leted and only the Coriolis forceis considered. As we know, there is no vector closed form explicit solution in 
any work. An approximate solution to (1.3) is given by Arnold using the isomorphism between plane vectors and 
complex numbers (see [5]). In this paper, Equation (1.3) will be named Reduced Foucault Pendulum Problem 
and will find its vector solution in Section 5. 

The present paper presents a closed form vector solution which exploits the benefits of the dualism of vector 
calculus and matrix calculus with extension to tensors. It is structured in five sections described below. 

In the second section, two theorems which put the basis of the correspondence between vector operations and 
their matrix representation are stated. Two symbolic representations are defined which creates the two ways of 
the cross-representations of equations in vector and matrix forms. 

The third section presents the vector solution of the Foucault pendulum problem (1.2) using the two symbolic 
representations. Here a workaround is used through a complex vector which transforms (1.2) in a first order dif-
ferential equation with constant coefficients. 

Section 4 prepares the next one because it presents the tensor method of representation of vector functions 
which will be very useful when we will find the vector solution of the Reduced Foucault Pendulum Problem 
(1.3). Therefore, the transformation Fω  will be defined and its properties will be listed, so that, through them, 
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the solution of (1.3) to be found. 
Finally, in Section 5, we will compute the solution of (1.3) and we will be able to extract the surprising con-

clusion that the solution of the Reduced Foucault Pendulum Problem is less simple than the solution of the 
whole Cauchy problem (1.2). 

Many times, the solution to the Cauchy problem (1.3) is given only for the planar case, using polar coordi-
nates [6] or Cartesian coordinates [7]. 

2. Mathematical Preliminaries 
Consider the vector space 3V  of free vectors from Euclidean space 3E  and { }1 2 3, ,=B e e e  an orthonormal 
basis of this space. A given vector v  from 3V  can be uniquely written as: 

1 1 2 2 3 3 ,   1,3v v v R k= + + ∈ =v e e e                               (2.1) 

Consider 3V  the vector space of column matrix, with three rows of real numbers. An element of 3V  has the 
following shape: 

[ ] { }T
1 2 3, , ;   ,  1, 2,3kv v v v k= ∈ ∈v .                            (2.2) 

A function 

( )3 3: ;    → =ψψ V V v v                                   (2.3) 

is an isomorphism of vectors spaces. 
If 3∈Vω , fixed, then the function: 

( ) { }
3 3

3 3

: ;
;    ,   \V V

α
α

→

= × ∀ ∈ ∈ 0
V V
v v vω ω

                            (2.4) 

is an endomorphism of 3V . 
If ( )3 3mω ×∈ R  is a square matrix of order three, with real elements, fixed, non-zero, then the function: 

( ) ( )
3 3

3 3 3

:
;    ,  ;  0, fixedm

β
β ×

→

= ⋅ ∀ ∈ ∈ ≠  


V V
v v v Vω ω ω

                     (2.5) 

is an endomorphism on 3V  [8]. 
We want to find the link between the vector ω  and ω  defined above as a square matrix of order three, with 

real elements, fixed, non-zero, for which the function (2.3) is a symbolic representation regarding the two en- 
domorphism ( )α v  and ( )β v . 

So, if { }1 2 3, ,=B e e e  is a rectangle orthonormal basis and: 

1 1 2 2 3 3;   ,  1,3k kω ω ω ω= + + ∈ =e e eω                          (2.6) 

then: 

( ) ( ) ( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3v v v v v vω ω ω ω ω ω× = − − − + −v e e eω .                 (2.7) 

Using (2.6) and (2.7) we have: 

( )
2 3 3 2 3 2 1

3 1 1 3 3 1 2

1 2 2 1 2 1 3

0
0

0

v v v
v v v
v v v

ω ω ω ω
ω ω ω ω
ω ω ω ω

− −     
    × = − = −     
    − −     

vψ ω .                    (2.8) 

Therefore, with the notation: 

3 2
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0
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0

ω ω
ω ω
ω ω

− 
 = − 
 − 

ω                                 (2.9) 

from (2.8) results the relation: 
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( ) 3 3;    ;   × = ⋅ ∀ ∈ ∈v v v V Vψ ω ω ω .                          (2.10) 

with ω  and ω  from (2.6) and (2.9), respectively, we have: 
Theorem 2.1. The function 3 3: →V Vψ ; defined by ( ) =v vψ  is an isomorphism of vectors spaces with the 

property: 

( ) ( ) 3 3;    ;   × = ∀ ∈ ∈v v v V Vψ ω ωψ ω , fixed.                      (2.11) 

So, it is an exact symbolic representation, with respect to the endomorphism (2.4) of vector space 3V  over 
vector space 3V  with the operator ω  (2.9). 

Note: The matrix ω  is a matrix representation of a skew-symmetric second order tensor associated with the 
vector ω  (2.6) in the basis { } , 1,3p q p q=

⊗e e . We’ll note vect= ω ω . 

The characteristic polynomial of the skew-symmetric matrix (2.9) is: 

( ) 0 3 2detp λ λ λ λ = − = − −  ω ω ω .                         (2.12) 

Solutions (roots) of the equation ( ) 0p λ =  are: 1 0λ = , 2,3 jλ = ± ω , 2 1j = − . 
Using one of the known proceedings for determination of an exponential matrix, it follows that: 
Theorem 2.2. If { }3∈ − 0Vω  and vect= ω ω , then 

( ) 0 2
0 1 2exp e ;   tt tϕ ϕ ϕ−− = = + + ∀ ∈

   


ωω ω ω ω                      (2.13) 

where :kϕ →  , { }0,1,3k ∈ : 

0
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2 2

1, ;
sin

, ;

1 cos
, .

t
t

t

t
t

ϕ

ϕ

ϕ

= ∀ ∈

= − ∀ ∈

−
= ∀ ∈







ω
ω

ω
ω

                             (2.14) 

Note: due to the Cayley-Hamilton theorem, any square matrix verifies her characteristic equation; conse-
quently, from Equation (2.12), it follows that: 

3 2= − ω ω ω .                                   (2.15) 
If we denote by 1−ψ  the inverse of the relation (2.11), we obtain, with (2.6) and (2.9), putting ( )1−=v vψ : 

1−
→⋅ × v vψω ω ;                                 (2.16) 

( )12 −
⋅ × ×→ v vψω ω ω ;                              (2.17) 

( )13 2−
→⋅ − × v vψω ω ω .                              (2.18) 

If we denote by 3V ∗  the set of vector functions of the real variable and by 3
∗V  the set of matrix functions, 

with three rows and a column, of the real variable, symbolic representation (2.11) induce: 

3 3:V Vψ ∗ ∗→                                    (2.19) 

( ) ( ) { }3;   \ 0Vψ ψ ∗× = ⋅ ∀ ∈v v vω ω  fixed.                       (2.20) 

3. Short Solution of Foucault Pendulum Problem 
The mathematical model of this experiment is given by the Cauchy problem: 

( )
( )
( )

2
0 0

0

0

2 ;   0
0
0 .

ω ω + × + × × + = >


=
 =

0 

 



r r r r
r r
r v

ω ω ω
                        (3.1) 

In Equation (3.1), r  is the position vector of the particle which corresponds to the relative equilibrium posi-
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tion = 0r , ω  angular velocity of the Earth, 0ω  the feature pulsation of the oscillator [9]. 
Using the symbolic representation, we will find a vector exact solution for the problem (3.1). Applying to the 

problem (3.1) the correspondence ψ (2.11), we will obtain the matrix form: 

( )
( )

2 2
0

0

0

2
0
0

ω + ⋅ + ⋅ + =


=
 =

0  



r r r r
r r
r v

ω ω
.                             (3.2) 

We will consider now the column matrix with complex functions elements given by: 

2

0

;    1j j
ω
+ ⋅

= − = −
 r rr ωξ                              (3.3) 

First, we will differentiate this column matrix: 

2

0

;    1j j
ω
+ ⋅

= − = −
  





r rr ωξ                              (3.4) 

Replacing r  in (3.4) from (3.2) and adding and subtracting ⋅ rω , we will obtain: 
2

2
0

0

;    1j j jω
ω

⋅ + ⋅
= + ⋅ + − ⋅ + = −

  



  

r rr r r rω ωξ ω ω                     (3.5) 

After developing, (3.5) becomes 
2

20
0

0 0 0

;    1j j r j r j
ω

ω
ω ω ω

⋅⋅ ⋅
= + + + − + = −


  



 

rr rr
ωω ωξ ω                   (3.6) 

Grouping the terms, (3.6) becomes: 

( ) ( ) ( ) 2
0 3 0 3 0 3

0 0

;   1j j j j j jω ω ω
ω ω

⋅
= − − + − − + + − + = −

 



  

r rI I r Iωξ ω ω ω             (3.7) 

and this means that 

( ) 2
0 3

0

;    1j j jω
ω

 − ⋅
= − + − = − 

 

 





r rI r ωξ ω                       (3.8) 

We will note 0 3jω− + Iω  with ∗
ω  and knowing that 

0

j
ω
+ ⋅

= −
 r rr ωξ ; 2 1j = − , (3.8) becomes: 

0 3;    jω∗ ∗= = − +

   Iξ ω ξ ω ω .                            (3.9) 

It results that the function ξ  is the solution of the following Cauchy problem: 

( ) 0 0
0

0

j
ω

∗ =


+ = −


0





v r
r

ξ ω ξ
ω

ξ
.                             (3.10) 

and the solution of the problem (3.10) is: 

( )e t∗= 0ωξ ξ .                                 (3.11) 

Using Equation (3.3), and knowing that { } { } { } { } { }1 2 1 2 1 2Re Re Re Im Imz z z z z z= −  with z1 and z2 com-
plex numbers, it follows that the solution of the problem (3.2) is the real part of Equation (3.11): 

( ) ( ) ( ) ( )Re Re e Re Im e Imt t∗ ∗
= = ⋅ − ⋅0 0 r ω ωξ ξ ξ .                     (3.12) 

Using Theorem 2.2 and the definition of a matrix exponential, it follows: 

( )0 3 0 3 0
3 0e e e e e e cos sin et j t j t j tt t t t

ot j tω ω ω ω ω
∗ ⋅ + ⋅ ⋅ ⋅= = = = +   I I I−ωω −ω −ω −ω .             (3.13) 
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with (3.3) and (3.13), Equation (3.12) becomes: 

( )0 0
0 0 0

0

cos e sin et tt tω ω
ω

− ⋅ − ⋅ + ⋅
= ⋅ + ⋅ 

v r
r rω ω ω

.                      (3.14) 

After restructuring, Equation (3.14) looks like: 

( )0 0
0 0 0

0

e cos sint t tω ω
ω

− ⋅  + ⋅
= + 

 



v r
r rω ω

.                        (3.15) 

with the notation: 

( )0 0
0 0 00

0

cos sin ;    t t tω ω
ω
+ ⋅

= + ∈0
v r

r
ω

ψ                         (3.16) 

Equation (3.15) becomes: 

0e t− ⋅= r ω ψ .                                    (3.17) 

Applying to Equation (3.17), the correspondence 1−ψ , using the results of Theorem 2.2, we will obtain the 
vector solution of the problem (3.1): 

( ) ( )00
0 2sin 1 cost tω ω

ω ω
× ××

= − + −r
ω ω ψω ψ

ψ                      (3.18) 

where: 

0 0
0 0 0 0

0

cos sin  t tω ω
ω
+ ×

= +
v r

r
ω

ψ                           (3.19) 

After elementary transformation, the solution (3.18) of the Cauchy problem (3.1) it will be written: 

( )00 0
2 2sin cost tω ω

ω
× ×⋅ ×

= − −r
ω ω ψω ψ ω ψ

ω
ω ω

                    (3.20) 

Note: 
1) The function (3.19) is the solution of the Cauchy problem: 

( )

2
0

0

0 0

;
;

0
.

ω + ⋅ =


=
 = + ×

0



r r
r r
r v rω

                                  (3.21) 

The differential equation of the problem (3.21) can be found from the differential equation of the Cauchy 
problem (3.1) for = 0ω . 

2) The solution (3.20) is the vector form of an equation matrix (3.17). This has special significance. 
Let Q  be the matrix function given by: 

( ) e ;     tt t− ⋅= ∀ ∈

Q ω .                              (3.22) 

The function ( )tQ  from (3.22) is the orthogonal matrix for any t∈ . Indeed, because the matrix ω  is 
skew-symmetric, ( )T= − ω ω  we will have: 

TT
3e e e et t t t− ⋅ − ⋅ − ⋅ ⋅⋅ = ⋅ = ⋅ =   Q Q Iω ω ω ω .                         (3.23) 

Because from Equation (3.22), we have ( ) trace 0det e e 1tt −= = =Q ω , t∀ ∈ , the transformation given by Equa- 
tion (3.17) is an own rotation for t∀ ∈ . 

The angular velocity corresponding to this rotation is: 

( )Tvect vect e e vectt t∗ − ⋅ ⋅= ⋅ = − ⋅ ⋅ = − = − 



 Q Q ω ωω ω ω ω                   (3.24) 

The transformation (3.17) is therefore an own rotation with angular velocity −ω . We will note with −F ω  the 
tensor operator that matrix transcription is given by Equation (3.17). The solution for the Cauchy problem (3.1) 



I. A. Ciureanu, D. Condurache 
 

 
13 

is now written: 

( )0−=r F ω ψ .                                 (3.25) 

with the above observation, we can obtain the next theorem: 
Theorem 3.1. The solution of the Cauchy problem 

( )
( )
( )

2
0 3 0

0

0

2 ;   ;  
0
0

Vω ω ∗
+ + × + × × + = ∈ ∈


=

 =

0 




r r r r
r r
r v

ω ω ω ω
                (3.26) 

will be obtained applying the tensor of the rotation operator with the angular velocity −ω : 

( ) ( ) ( ) ( )
3 3

2 2

:

sin cost tω ω
ω

∗ ∗
−

−

→

× × ⋅ ⋅ ⋅ × ⋅  ⋅ = − −

F V V

F

ω

ω

ω ωω ω
ω ω

                 (3.27) 

to the solution of the next Cauchy problem: 

( )
( )

2
0

0

0 0

;
0 ;
0 .

ω + =


=
 = + ×

0



r r
r r
r v rω

                             (3.28) 

Note: The hodograph of the solution of the problem (3.21) 0 0
0 0

0

cos sino ot tω ω
ω
+ ×

= +
v r

r
ω

ψ  is an ellipse, 

possibly degenerate, having the conjugated diameters with directions given by the vectors 0r  and 0 0+ ×v rω . 
The solution of the problem (3.1) can be viewed by the rotation of the plane of the ellipse, with the angular 

velocity −ω . As a rule, the hodograph of the vector function―solution of a Cauchy problem (3.1)―is a space curve. 
The tensor relation (3.25) suggests a direction to approach the symbolic representation of a vector function of 

real variable which will be developed in the next paragraph. 

4. The Symbolic Tensor Representation of a Vector Functions 
This section describes the tensor method of representation the vector functions which will be used in the next 
chapter when we will give the solution to the Reduced Foucault Pendulum Problem. 

We will denote by 3SO  the orthogonal group of second order tensors (rotation tensors), by 3
SO  the set of 

the maps defined on   with values in 3SO , by 3SO  the group of skew-symmetric second order tensors and 
by 3

SO  the set of maps defined on   with values in 3SO . 
Let { }3 3:f∗ = ⊆ →V I V  be the set of vector function of real variable and let 3

∗∈Vω  be a constant. 
Let ω  be a second order skew-symmetric tensor corresponding to ω  with 3∈ SOω . We consider, in the 

set of second order tensors, a first order Cauchy problem: 

( )

T

3

;    
0 .

 = ⋅ = −


=



  Q Q
Q I

ω ω ω
                               (4.1) 

The problem (4.1) has a unique solution 3∈ Q SO , if ( )t= ω ω , t∈  is a continual skew-symmetric ten- 
sor function, the solution tensor being orthogonal, proper. 

Indeed, be a tensor function of a real variable: 
T=A QQ                                     (4.2) 

Using Equation (4.1), it follows that A  verify the Cauchy problem: 

( ) 3

;
0 .

 = −
 =



 A A A
A I

ω ω
                                  (4.3) 

The solution of the problem (4.3) is unique and because the identity tensor 3=A I  verifies the Equation 
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(4.3), it follows that 3=A I , t∀ ∈ , therefore the solution of the problem (4.1) has the property T
3=QQ I , 

and Q  is an orthogonal tensor. Knowing that { }det 1,1∈ −Q  and ( )det 0 1=Q , it follows that det 1=Q , so 
Q  is a proper orthogonal tensor. 

Let 

3vect ,    ∗= ∈ Vω ω ω .                               (4.4) 

The unique solution of Equation (4.1) will be further named as “the rotation tensor corresponding to the an-
gular velocity ω ”. 

If 3
∗∈Vω  is a differentiable vector function on the range ⊆ I , we can define the transformation −F ω  as 

below: 

( )
3 3

def

3

:

;   

;

. 

∗ ∗

∗

 →


= ∈

F V V

F r Qr r V

ω

ω

                              (4.5) 

where Q  is the tensor function of the unique solution of Equation (4.1). 
If the vector function 3

∗∈Vω  has fixed direction: 

( )tω= uω                                    (4.6) 

where u  is a constant vector and :ω ⊆ → I  is a real function of a real variable, the corresponding ten-
sor function ω  has the property of auto-commutativity: 

( ) ( ) ( ) ( )1 2 1 2 1 2,    ,  t t t t t t⋅ = ⋅ ∀ ∈   
ω ω ω ω .                     (4.7) 

In this condition, the solution of the Cauchy problem (4.1) will be written in explicit form: 
( )0 de

t τ τ∫= Q ω                                   (4.8) 

Using one of the known procedures to determine the exponential matrix, we will have: 

( ) ( )0 2sin 1 cost tα α= + ⋅ + −    Q u u u                        (4.9) 

where: 

( ) ( )
0

d ;    
t

t tα ω τ τ += ∈∫                            (4.10) 

and u  is the skew-symmetric matrix corresponding to the vector u  from Equation (4.6). The transformation 
(4.5) can be written: 

( ) ( ) ( )( ) ( )sin 1 cost tα α= + × + − × ×F r r u r u u rω                  (4.11) 

or: 

( ) ( ) ( ) ( ) ( )sin cost tα α= ⋅ + × − × ×F r u r u u r u u rω .                (4.12) 

Using the relation 
ω

=u ω , (4.12) becomes: 

( ) ( ) ( ) ( )
2 2sin cost tα α

ω
× ×⋅ ×

= + −
rr rF rω

ω ωω ωω
ω ω

                (4.13) 

where ( )tα  is given by the relation (4.10). 
If const=



ω  in the Equation (4.10) ( )t tα ω=  and the Equation (4.12) becomes: 

( ) ( )
2 2sin cost tω ω

ω
× ×⋅ ×

= + −
rr rF rω

ω ωω ωω
ω ω

                  (4.14) 

Theorem 4.1. 
If 3

∗∈Vω  has fixed direction, then the transform (4.5) has the following properties: 
1) Fω  is  -linear; 
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2) ( ) ( ) 3;    ∗× = × ∀ ∈F r F r r Vω ωω ω ; 

3) ( ) ( ) 3;    ∗+ × = ∀ ∈

F r r F r r Vω ωω ; 

4) ( )( ) ( ) 32 ;    ∗+ × + × × + × = ∀ ∈

  F r r r r F r r Vω ωω ω ω ω ; 

5) ( ) 3;    ∗= ∀ ∈F r r r Vω ; 

6) 
( )
( )

( ) ( ) ( )
00

0 0 0
0 0 00

 0 ;  0 ;  0wher ;e: t

t

=

=

 = = = =
= + ×





F r r
r r v r

F r v r

ω

ω

ω ω
ω

 

7) Fω  is invertible and ( ) 1−
−=F Fω ω . 

Proof: 
1)  -linearity of the correspondence (4.5) is a trivial consequence of a definition. 
2) Fω  is a tensor function, given for any t∈  by a proper orthogonal tensor. The vector ω  is a proper 

vector of this transformation for any t∈ , his direction, fixed, is the instantaneous axis of rotation: 

( ) 3;    ∗= ∈F Vω ω ω ω .                               (4.15) 

Equation (4.15) can be obtained directly from Equation (4.14). 
The proper tensor Fω  preserves, for any t∈ , the cross products, because it preserves also the metrics and 

the orientation: 

( ) ( ) ( ) 3 3;    ;   ∗ ∗× = × ∀ ∈ ∈F r F F r r V Vω ω ωω ω ω .                    (4.16) 

From (4.16) using (4.15) it follows: 

( ) ( ) 3;    ∗× = × ∀ ∈F r F r r Vω ωω ω .                          (4.17) 

The matrix form of the tensor relation (4.17) is: 

3,    ∗⋅ ⋅ = ⋅ ⋅ ∀ ∈  Q r r r Vω ω ω                             (4.18) 

From Equation (4.18) it follows that the matrix Q  and ω  are commutative for any t∈ : 

,    t⋅ = ⋅ ∀ ∈ 
Q Qω ω .                              (4.19) 

3) We will prove the matrix form of Equation (3). Let =F Qr  be a solution of Equation (4.1), where Q  is 
a matrix function corresponding to the proper orthogonal tensor, and r  is the column matrix associated with 
the vector function r . The derivation of F  with respect to time is: 

= ⋅ + ⋅

F Q r Q r .                                 (4.20) 

Using Equation (4.1), Equation (4.20) will be written: 

= ⋅ ⋅ + ⋅

 F Q r Q rω .                                (4.21) 

Using Equation (4.18) we will have: 

[ ]= ⋅ ⋅ + ⋅ = ⋅ + ⋅

   F Q r Q r Q r rω ω .                         (4.22) 

The corresponding tensor of Equation (4.22) is: 

( ) ( ) 3;    ∗= + × ∀ ∈

F r F r r r Vω ω ω .                         (4.23) 

4) We will apply twice Equation (4.23): 

( ) ( ) ( )

( ) ( )

d2
d

                                                        .
t

 + × + × × + × = + × + × + ×     
= + × =

    

 



F r r r r F r r r r

F r r F r

ω ω

ω ω

ω ω ω ω ω ω ω

ω
           (4.24) 

5) The transformed (4.5) being a proper rotation is also an isometry, so: 
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( ) 3;    ∗= ∀ ∈F r r r Vω                                 (4.25) 

6) In matrix notation we have ( ) = ⋅F r Q rω . For 0t =  we will have: 

( ) ( ) ( ) ( )3 00
0 0 0

t=
= ⋅ = ⋅ =F r Q r I r rω .                          (4.26) 

Equation (4.26) can be also written: 

( ) 0 30
;    

t
∗

=
= ∀ ∈F r r r Vω .                               (4.27) 

To compute ( )
0t=

F rω  using 3˚ and after Equation (4.27): 

( ) ( ) ( ) ( ) ( ) 0 0 000
0 0 0

tt ==
= + × = + × = + ×

 F r F r r r r v rω ω ω ω ω .               (4.28) 

7) Being an orthogonal transformation,  is invertible. If the transformation tensor Fω  is Q , the trans-
formation tensor ( ) 1−Fω  is TQ . To demonstrate that ( ) 1−

−=F Fω ω  we will show that TQ  verifies Equation 
(2.1) with − ω  instead of ω . 

From (4.1), by transposition, it follows: 
T T T=

Q Q ω .                                    (4.29) 

Knowing that ω  is skew-symmetric, we have T = − ω ω . Equation (4.29) will be written: 
T T= −

Q Q ω .                                    (4.30) 

From Equation (4.19), by transposition and considering T = − ω ω , it follows: 
T T= Q Qω ω .                                    (4.31) 

From Equations (4.30) and (4.31) we have: 
T T= − ⋅

Q Qω .                                   (4.32) 

Therefore ( ) T r− = ⋅F r Qω , so ( ) 1−
−=F Fω ω . 

Note: The transformation 3 3: ∗ ∗→F V Vω , given by Equation (4.5), is a symbolic representation of a vector 
space 3

∗V  in itself. The third property of Theorem 3.1 shows that we can define like unary operation on 3
∗V  

the relative derivation with respect to angular velocity ω , and like operator for symbolic representation the tri-
vial derivation of vector functions of real variable with respect to the variable. 

This transformation “gives an algebraic form” to a class of vector differential equations that model the motion 
of mechanical systems in non-inertial frames, whom are in the motion of non-uniform rotation, on fixed direc-
tion, also the motion with respect to the inertial frames in the fields of gyroscopic forces. 

5. The Solution of the Reduced Form Problem 
The motion of the Foucault Pendulum is described by the following non-linear initial value problem: 

( ) ( )

( )
( )

3

0

0

2 ;   

0
0

f r V
r

 + × + × × + = ∈


=
 =


0 



rr r r

r r
r v

ω ω ω ω

                      (5.1) 

If the force field is elastic, the type 2ω∗=F r , ω ∗
∗ +∈ , we will have the mathematic model of Foucault pen- 

dulum on a non-inertial frame that is rotating non-uniform on fixed direction: 

( )
( )
( )

2
3

0

0

2 ;   
0
0

Vω∗ + × + × × + = ∈


=
 =

0 



r r r r
r r
r v

ω ω ω ω
                        (5.2) 

We will use the present method in order to resolve the reduced form of the problem (5.2): 

Fω
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( )
( )

2
0 0

0

0

2 ;   const;  
0
0

ω ω ∗
+

 + × + = = ∈


=
 =

0


 



r r r
r r
r v

ω ω
                        (5.3) 

The mathematical model of the Foucault pendulum is presented of the type (5.3) in the theoretical mechanics 
[10] [11]. The problem (5.3) can be found from (5.2) neglecting the term ( )× × rω ω , which represents the con-
tribution of centrifugal force of inertia in the hypothesis const=



ω . We will see that, paradoxically, the exact 
solution of the short form (5.3) is more difficult to obtain than for the complete problem (5.2). 

1) If 0 × = 0r ω  and 0 × = 0v ω , we are looking for the solution of the problem (5.3) with the property 
× = 0r ω , × = 0r ω . A such solution, if it exists, verifies the differential of the equation: 

2
0ω+ = 0r r                                      (5.4) 

The solution of the problem (5.4): 

0
0 0 0

0

cos sint tω ω
ω

= +
v

r r                                (5.5) 

verifies the initial conditions of (5.3) and has the property: × = 0r ω , × = 0r ω . 
2) If 0 0⋅ =r ω  and 0 0⋅ =v ω , we are searching the solution of the problem (5.3) with the property 

0⋅ =r ω . Let be ( )= F rωψ : 

( ) ( )
2 2sin cost tω ω

ω
× ×⋅ ×

= + −
rr rF rω

ω ωω ωω
ω ω

                     (5.6) 

Assuming 0⋅ =rω  from (5.6) it follows that ( ) 0 0⋅ = ⇔ ⋅ =F rωω ψ ω . Now we will have: 

( ) [ ] ( )
( ) ( ) ( ) ( )

2 2

  2 2 ,r

= + × + × × = + × + × ×      
= + × + × × = + × + × ×  

    

   

F r r r F r r F r

F r r F F r r
ω ω ω

ω ω ω

ψ ω ω ω ω ω ω

ω ω ω ω ω ω ψ
             (5.7) 

Therefore: 

( ) ( )2+ × = − ×  F r rω ω ψ ω ω ψ                             (5.8) 

Applying the transformation Fω  on the Cauchy problem (5.3), considering (5.8), we will have the problem: 

( )
( )
( )

2
0

0

0 0

0
0

ω − × × + =


=
 = + ×

0



r
v r

ψ ω ω ψ ψ
ψ
ψ ω

                             (5.9) 

The solutions of (5.9) with the property 0⋅ =ψ ω  is searched. In this hypothesis, the problem (5.9) becomes: 

( )
( )
( )

2 2
0

0

0 0

0
0

ω ω + + =
 =
 = + ×

0



r
v r

ψ

ψ
ψ ω

                                (5.10) 

The solution of the problem (5.10) is: 

2 20 0
0 0cos sin ;    t tω ω ω ω ω

ω∗ ∗ ∗ ∗
∗

+ ×
= + = +

v r
r

ω
ψ                     (5.11) 

In the hypothesis 0 0⋅ =r ω  and 0 0⋅ =v ω , it follows 0∗ ⋅ =ψ ω , therefore, (5.11) is also the solution for 
the problem (5.9). On the same hypothesis the solution of the problem (5.3) is: 

( ) ( )
2 2sin cost tω ω

ω
∗∗ ∗

− ∗

× ×⋅ ×
= = − −r F ω

ω ω ψω ψ ω ψ
ψ ω

ω ω
                  (5.12) 

Considering the fact that 0∗ ⋅ =ψ ω , the solution (5.12) will be written: 
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sin cost tω ω
ω

∗
∗

×
= − +r ω ψ

ψ                                (5.13) 

Now, let be the Cauchy problems: 

( )

( )

2
0

0
012

0
012

2 ;

0

0

;

.

ω

 + × + =


⋅ = =

 ⋅

= =

0 



r r r
r

r r

v
r v

ω
ω

ω
ω
ω
ω

                                (5.14) 

( ) ( )

( ) ( )

2
0

0
022

0
022

2 ;

0 ;

.0

ω

 + × + =


× × = =

 × ×

= =


0 



r r r
r

r r

v
r v

ω
ω ω

ω
ω

ω ω
ω

                            (5.15) 

In accordance with those shown in the points a) and b) the solutions of the problems (5.14) and (5.15) are: 

01 0
1 01 0 0 2

0

cos sint tω ω
ω

⋅
= + =

v
r r

ω ψ
ω

ω
                        (5.16) 

where: 

0 0
0 0 0 0

0

cos sint tω ω
ω
+ ×

= +
v r

r
ω

ψ                          (5.17) 

respectively: 

2
2 2sin cost tω ω

ω
×

= − +r ω ψ
ψ                            (5.18) 

where: 

( )02 02
2 02 2cos sint tω ω

ω
∗

∗ ∗
∗

× ×+ ×
= + =

v r
r

ω ψ ωω
ψ

ω
                  (5.19) 

with ∗ψ  given by Equation (5.11). From (5.19) and (5.20), after elementary calculus, it follows: 

( )
2 2sin cost tω ω

ω
∗∗ × ××

= − +r
ω ψ ωω ψ

ω
                      (5.20) 

The relations 0 01 02= +r r r , 0 01 02= +v v v  and of the linearity of the differential Equation (5.3) have the con-
sequence that the solution of the Cauchy problem (5.3) is given by 1 2= +r r r  with 1r  and 2r  given by the 
relations (5.16) and (5.20). Finally, the results can be summarized as following: 

Theorem 5.1: 
The solution of Cauchy problem: 

( )
( )

2
0 0

0

0

2 ;   const;  
0
0

ω ω ∗
+

 + × + = = ∈


=
 =

0


 




r r r
r r
r v

ω ω
                      (5.21) 

is given by the vector function: 

( )0
2 2sin cos ;    0t t tω ω

ω
∗∗ × ×⋅ ×

= − − ≥r
ω ω ψω ψ ω ψ

ω
ω ω

                  (5.22) 
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where 

0 0
0 0 0 0

0

cos sin ;    0t t tω ω
ω
+ ×

= + ≥
v r

r
ω

ψ                        (5.23) 

2 20 0
0 0cos sin ;   0;     t t tω ω ω ω ω

ω∗ ∗ ∗ ∗
∗

+ ×
= + ≥ = +

v r
r

ω
ψ                 (5.24) 

Note: Also, the problem (5.21) shapes the movement of the vibration for a class of gyroscopic instruments. 
Even in the case of planar motion, the literature shows only the approximate solutions assuming 0ω ω∗

  with 
particular initial conditions as in the case of harmonic oscillator in magnetic field. The presented solution (5.22) 
is accurate. 

6. Conclusion 
The work presents the closed form vector solution for the well-known Foucault pendulum problem. Both forms 
of the Foucault problems (the whole form and the as known “reduced form” when the centripetal force is neg-
lected) are considered. The last one models the movement of the harmonic oscillator in uniform magnetic field, 
also. Therefore, a specific isomorphism between the free vectors map and the column matrix map is used. The 
short solution of the Foucault pendulum problem is obtained using vectors as column matrix of complex num-
bers adequate defined. With this method, the second order Cauchy vector problem which describes the spatial 
movement of the Foucault pendulum becomes a first order differential matrix equation with constant coefficients. 
The closed form vector solution obtained in this way allows a suggestive kinematic representation of the spatial 
movement of the Foucault pendulum. The closed form vector solution for Foucault pendulum problem is ob-
tained by means of a time dependent tensor operator which reduces this problem to only two classic problems 
very easy to be solved. The tensor operator as introduced can extend the study of all Foucault type movements in 
the case of non-inertial reference frame with time dependent angular velocity. 
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