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Abstract 
A continuous infinite system of point particles interacting via two-body strong superstable poten-
tial is considered in the framework of cell gas (CG) model of classical statistical mechanics. We 
consider free energy of this model as an approximation of the correspondent value of the con-
tinuous system. It converges to the free energy of the conventional continuous gas if the parame-
ter of approximation 0→a  for any values of an inverse temperature 0>β  and volume per 
particle 0>v . 
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1. Introduction 
One of the most important mathematical problem of statistical mechanics is description of the gas-liquid phase 
transition within the framework of standard model of 2-partical Lenarda-Johnson type intermolecular interaction. 
The presence of phase transition at some temperature 1c cT kβ=  ( k  is the Boltzmann constant, β  is inverse 
temperature in units of inverse energy) means that at cβ β=  in some interval of change of density ρ , 
pressure p  does not depend on density or a specific volume of 1v ρ=  (see, for example [1]). Taking into 
account the well-known thermodynamics formulas it means that free energy of the system depends on specific 
volume v  linearly in the indicated interval of change of density. This result was obtained as early as the end of 
60th for the lattice gas model in the articles of F. A. Berezin and Ya. G. Sinai [2] for unpositive potentials and R. 
L. Dobrushin [3] for more general potentials of interaction. 

However, the lattice gas is some kind of “toy” model which is very far from the real continuous system. The 
model of cell-type gas, which actually is the model of the continuous system of point particles and differs from 
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the standard model of gas only by determination of the phase (configuration) space, was offered in recent work 
[4] of one of the authors of this article. 

Cell gas in d
  is a continuous gas but its space of configurations is arranged so that for a given partition 

a∆  of d
  into elementary hiper-cubes d∆ ⊂   with a rib 0a >  there is no more then one point particle in 

each cell (cube). These particles move in d
  and interact via two-body strong superstable potential φ . 

According to the results of articles [5] [6] and [7] the correlation functions and the pressure of cell gas system 
tend to the corresponding values of conventional continuous gas at 0a → . Within the framework of the grand 
canonical ensemble this result followed from a convenient representation of the corresponding quantities by 
Poisson integrals on the configuration space of the system. In this short paper we establish a similar result for 
the free energy of the system. This result requires more hard work as the corresponding representation in the 
canonical ensemble less convenient for mathematical calculations. 

Why do we need this result? In the article [4] it was shown that it was possible to introduce an approximation 
of the interaction potential in such a way that the cell gas model grows into the model of the lattice gas on the 
lattice da , and at 0a →  both models coincide with a model which describes the continuous statistical 
system. Therefore we consider the result of this article as the first modest step to realization of the Dobrushin’s 
way [3] to solve the phase transition problem in continuum. 

2. Notations and Main Results 
2.1. Configuration Space 
Let d

  be a d -dimensional Euclidean space. The set of positions { }i i N
x

∈
 of identical point particles is 

considered to be a locally finite subset in d
  and the set of all such subsets creates the configuration space:  

( ){ }: ,  for all d
d d

cγ γΓ = Γ = ⊂ ∩Λ < ∞ Λ∈


                      (1) 

where A  denotes the cardinality of the set A  and ( )d
c   denote the systems of all bounded Borel sets in 

d
 . We also need to define the space of finite configurations 0Γ : 

( ) ( ) { } { }
0

0 0,    : ,    0n n d

n N
n N Nη η

∈

Γ = Γ Γ = ⊂ = = ∪



                  (2) 

and ΛΓ : 

{ }: γ γΛΓ = ∈Γ ⊂ Λ                                       (3) 

By ( )ΛΓ  we denote the corresponding σ -algebra on ΛΓ . For the given intensity measure σ  (in this 
context σ  is Lebesgue measure on ( )d

 ) and any n N∈  the product measure nσ ⊗  can be considered as 
a measure on  

( ) ( ) ( ){ }1, ,  if 
n nd d

n k lx x x x k l= ∈ ≠ ≠    

and hence as a measure ( )nσ  on ( )nΓ  through the map  

( ) ( ) { } ( )
1 1: , , , ,

n nd
n n nsym x x x x∋ ∈Γ     

Define the Lebesgue-Poisson measure σλ  on ( )0Γ  by the formula:  

( )

0

1:
!

n

n nσλ σ
≥

= ∑                                           (4) 

The restriction of σλ  to ( )B ΛΓ  we also denote by σλ . For more detailed structure of the configuration 
spaces Γ , 0Γ , ΛΓ  and measures on them see e.g. [8] (see also latest review [9]). 

Let 0a >  be arbitrary. Following [10] for each dr a∈   we define an elementary cube with an edge a  
and a center r  
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( ) ( ) ( ){ }: 2 2d i i i
a r x r a x r a∆ = ∈ − ≤ < +                         (5) 

We will write ∆  instead of ( )a r∆ , if a cube ∆  is considered to be arbitrary and there is no reason to 
emphasize that it is centered at the concrete point dr a∈  . Let a∆  be the partition of d

  into cubes ( )a r∆ . 
Without loss of generality we consider Λ  in the form of a large cube and only that ( )d

cΛ∈   and subsets 
,  X Y ⊂ Λ  which are union of cubes ( )a r∆  and corresponding partition:  

{ }, : ,     , \a Y a Y Y X X∆ = ∆ ∩ ∈ Λ                                 (6) 

Then for any X ⊆ Λ  which is a union of cubes a∆∈∆  define 

( ){ }dil : 0 1 for all X X N Xγ γ∆Γ = ∈Γ = ∨ ∆ ⊂                        (7) 

and 

( ){ }den : 2 for all X X N Xγ γ∆Γ = ∈Γ ≥ ∆ ⊂                          (8) 

Definition 2.1. Infinite system of point particles in d
  with given partition a∆  and configuration space 

dil dil: dΓ = Γ


 is called cell gas system of particles. 
For detail structure of this model see [4]. 

2.2. Definition of the System 
We consider a general type of two-body interaction potential ( ) ( )2 ,V x y x yφ= − , where { }:φ + → ∪ +∞   
satisfies the following properties. 

(A): Assumption on the interaction potential. Potential φ  is continuous on { }\ 0+  and there exist 
0 0r > , 0R r> , 0 0ϕ > , 1 0ϕ > , and 0 0ε >  such that: 

) ( ) ( )
0

11    for  dx x x R
x ε

ϕ
φ φ−

+≡ − ≥ − ≥                         (9) 

) ( ) ( ) 0
02 ,     for  sx x s d x r

x
ϕ

φ φ+≡ ≥ ≥ ≤                       (10) 

where 

( ) ( ){ } ( ) ( ){ }: max 0, ,    : min 0,x x x xφ φ φ φ+ −= = −                    (11) 

The potentials of this type are strong superstable. 
Definition 2.2. Interaction is called strong superstable (SSS), if there exist 0 0a > , and constants  
( ) ( )0,  0A a B a> ≥ , and 2m ≥  such that for any 00 a a< ≤  and any 0γ ∈Γ  an interaction energy of parti- 

cles satisfy the following inequality: 

( ) ( ) ( )
: 2a

mU A a B a
γ

γ γ γ
∆

∆
∆∈∆ ≥

≥ −∑                            (12) 

Remark 2.1. Superstable interactions were introduced by D. Ruelle (see [11] or [12], Ch. 3.2.9 and [10]). Y. 
M. Park (see [14]) was the first, who used the condition (12) with 2m >  for the proof of bounds for exponent 
of local number operator of quantum systems of interacting Bose gas. We have changed the definition of strong 
superstability including the case 2m = , but with the constants which depends on parameter a  (see, e.g., [13] 
[4]). SSS potentials include all interaction potentials which are nonintegrable in the initial point. 

One of the most popular example which is used in molecular physics is Lenard-Jonson potential: 

( ) 12 6

C Dx
x x

φ = −                                     (13) 

where constants 0,  0C D> > . In this article we consider the potentials of this type. The typical behavior of 
such potentials is shown in Figure 1. 
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Figure 1. The typical behavior of the potentials.                            (14) 

 
Remark 2.2. For the potentials which are considered in this article (see (9)-(11)) the corresponding con- 

stants ( )A a  and ( )B a  have the following form: 

( ) ( )
2

0 0 0
, , 2 1

1 2π,   ,   1 ,   
22 2

2

s
d

d

s d s ds d s s

sA a C B a m C
dd ad

υ υ ϕ
+

 
 
 = − = = + =
  Γ    

           (15) 

where 

( ) ( )0 : sup
x

a xυ φ−

∈∆∆∈∆

= ∑                                    (16) 

See for the proof [13].  

2.3. Partition Functions, Free Energy and Pressure 
The main physical characteristics of the system are determined by thermodynamic potentials that associated 
with small and grand partition functions by the following formulas: 1) free energy 

( ) ( ) ( )1, lim , : lim log ,
d d

N N
f v f N Z N

N
β β βΛ Λ→∞ →∞

Λ↑ Λ↑

= =
 

                   (17) 

where limit is done in such a way that volume per particle ( ) N vσ Λ → , 1 kTβ = , and small partition 
function  

( ) ( )
( ) ( ), e dN

UZ N β η
σβ λ η

Λ

−
Λ Γ

= ∫                                 (18) 

( ) ( ) ( )
{ }

( )

,
: ,    N

x y
U U x yφ

η
η η φ η Λ

⊂

= = − ∈Γ∑                       (19) 

2) pressure  

( ) ( ) ( ) ( ), lim , lim log ,
d d

kTp z p z Z zβ β β
σΛ Λ

Λ↑ Λ↑
= =

Λ 

                 (20) 

where z  is activity of the system and 

( ) ( ) ( ), e dU
zZ z β γ
σβ λ γ

Λ

−
Λ Γ

= ∫                                  (21) 

The correspondent values for cell gas model are defined by the same formulas but with help of partition 
functions(see Definition 2.1): 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )dil

,

, e d e d
a

a U U
z zZ z β γ β γ
σ σβ λ γ χ γ λ γ

ΛΛ
Λ

− −∆
Λ −Γ Γ

∆∈∆

= = ∏∫ ∫              (22) 

and 
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( ) ( ) ( ) ( ) ( ) ( )
,

, e dN

a

a UZ z β γ
σβ χ γ λ γ

Λ
Λ

−∆
Λ −Γ

∆∈∆

= ∏∫                        (23) 

where 

( ) ( ) 1, for  with 0 1
0, otherwise

γ γ
χ γ χ γ∆ ∆ ∆
− − ∆

= ∨
= = 


                   (24) 

Remark 2.3. The product of functions χ∆
−  in definition of statistical sums ( ) ( ),aZ z βΛ  and ( ) ( ),aZ N βΛ  

limits configuration space of the system of point particles to the ( )dil
ΛΓ  (see def. (2.7)). However, the system is 

continuous as particles are arranged in all points of the space d
 , but at the same time their joint position are 

defined only in ( )dilΓ ⊂ Γ . 
Now, we can formulate the main result of the paper. 
Theorem 1 Suppose that the interaction potential φ  satisfies the assumptions A (see (9), (10)). Then there 

exists some 00 v≤ < ∞ , such that for all 0v v>  there exist the limit  

( ) ( ) ( ) ( ) ( ) ( )1, lim , : lim log ,
d d

a a a

N N
f v f N Z N

N
β β βΛ Λ→∞ →∞

Λ↑ Λ↑

= =
 

               (25) 

for any 0v v> . The function ( ) ( ),af v β  is monotone nondecreasing concave continuous function of v . 
Theorem 2 Suppose that the interaction potential φ  satisfies the assumptions A (see (9), (10)). Then for any 

0ε >  there exists ( )1 1 , 0a a v ε= >  such that: 

( ) ( ) ( ), ,af v f vβ β ε− <                                (26) 

holds for all positive ,  v β  and ( )( )10, ,a a v ε∈ .  

3. The Proof of the Main Results 
The proof of the Theorem 2.1 is the same as the corresponding proof of such theorem for ( ),f v β  in [15]. The 
only remark to the proof is that the construction of auxiliary partitions into cubes in [15] should be agreed with 
the partition a∆ . 

To prove the Theorem 2.2 we insert the unite  

( ) ( ) ( ) ( ),

,,

\1 a

aa

XX

X
χ γ χ γ χ γ χ γΛ

ΛΛ

∆∆ ∆
− + + −

⊆∆∆∈∆

 = + =  ∑∏                  (27) 

where ( ) ( )1χ γ χ γ∆ ∆
+ −= −  

( ) ( )
,

:
a Y

Yχ γ χ γ∆
± ±

∆∈∆

= ∏                                  (28) 

( ) ( )
, ,0a k a

N

X k X

Λ

Λ Λ⊆∆ = ⊆∆

=∑ ∑ ∑                               (29) 

and { }1: , ,k kX = ∆ ∆ , ( ): dN aσΛ = Λ , into the expression (18) for small partition function. Then 

( ) ( ) ( ) ( ) ( ) ( ),

,

\, e da
N

a

X UX

X
Z N β γ

σβ χ γ χ γ λ γΛ

Λ
Λ

∆ −
Λ + −Γ

⊆∆

= ∑ ∫                   (30) 

Separating the first term of the expansion which corresponds to the value X = ∅  we can rewrite (30) in the 
form: 

( ) ( ) ( ) ( ) ( ), , , ,aZ N Z N Z N aβ β β+
Λ Λ Λ=                            (31) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

,

\1, , 1 e d
,

a
N

a

X UX
a

X
Z N a

Z N
β γ

σβ χ γ χ γ λ γ
β

Λ

Λ
Λ

∆+ −
Λ + −Γ

∅≠ ⊆∆Λ

= + ∑ ∫           (32) 

The Equation (31) gives: 
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( ) ( ) ( ) ( ) ( ), , ,a af N f N f Nβ β βΛ Λ Λ= + ∆                          (33) 

( ) ( ) ( ) ( )1, : log , ,af N Z N a
N

β β+
Λ Λ∆ =                            (34) 

To estimate the second term in (33) we split the energy ( )U γ  in every term of the sum in (32): 

( ) ( ) ( ) ( )\ \;X X X XU U W Uγ γ γ γ γΛ Λ= + +                       (35) 

where 

( ) ( ) 0; : ,    ,  
x
y

W x y
γ
η

γ η φ γ η
∈
∈

= − ∈Γ∑                           (36) 

and use SSS inequality (12). Then  
( ) ( ) ( ) ( )\

,

;e e e :
m

X XX

a X

W A a C aU
XEβ γ γ β γ β γβ γ Λ ∆ ∆− − +−

∆∈∆

≤ =∏                     (37) 

where 

( ) ( ) ( )0C a B a aυ= +                                      (38) 

We denote the integral in (32) (after estimating (37)) by the letter XI  and rewrite an expression for 
!X XI I N′ =  in the following form 

( ) ( ) ( ) ( ) ( ),\ \
1 1 \\ \

d d d d e aX XUX
X N N X X XX X X X

I x x x x E β γχ γ χ γΛΛ ∆−
+ − ΛΛ Λ

′ = + +∫ ∫ ∫ ∫  
           (39) 

Every set in X  is an union of k  cubes 1, , k∆ ∆ , { }1, ,k NΛ∈  . There are at least two variables from 
the configuration { }1, , Nx xγ =   in every cube j∆ , { }1, ,j k∈  . Denote the number of variables that are in 
cubes 1, , k∆ ∆  by the letters 1 kM m m= + + . It is clear that { }2 , ,M k N∈   and 2jm ≥ , { }1, ,j k∈  . 
Among all 2N  terms which appear in the right side of (39)) does not vanish only those terms in which the 
integration is performed with respect to the variables { }1, , Mx x  over region 

1

k
k ii

X
=

= ∆


 and with respect  
to the variables { }1, ,M Nx x+   over region 

1
\ N

k ii k
X

= +
Λ = ∆



. Due to the symmetry of the integrand with  

respect to permutations of variables { }1, , Nx x  the number of terms in XI  which correspond to a fixed M  
is ( )! ! !N N M M− . In the same way every integral over kX  one can represent as a sum of integrals over cubes 

1, , k∆ ∆ . Next, we take into account that the variables { }1, , Mx x  can be placed into k  cubes so that each 
cube j∆  has exactly jm  variables by ( )1! ! !kM m m  ways. As a result we have:  

( ) ( ) ( )

{ }

( ) ( ) ( )
( ) ( )11 ,

1

\

, , : 21 , , 2 1

,e, , 1 e
! ,

m
j

k

k jk a
k

aA a mN kN
XC a MdM

a
m m mk M k j j
m m M

Z N M
Z N a a

m Z N

β
β β

β
β

Λ

Λ

−
Λ+

Λ
≥= ∆ ∆ ⊂∆ = = Λ

+ + =

  −
 ≤ +
 
 

∑ ∑ ∑ ∑ ∏






     (40) 

To estimate the ratio of the partition functions in (40) we use the following lemma.  
Lemma 1 Suppose that the interaction potential φ  satisfies the assumptions A (see (9), (10)). Then there 

exists constant 0K >  such that 
( ) ( )

( ) ( )
\ ,

,
k

a
X M

a

Z N M
K

Z N

β

β
Λ

Λ

−
≤                                     (41) 

for any 0β > , 0v >  and sufficiently large cube Λ .  
Proof. Let us fix some 0v >  and sufficiently large cube Λ  in such a way that ( ) N vσ Λ ≥ . Following 

Dobrushin and Minlos [16] we introduce an auxiliary potential  

( ) ( )
0, for 

=
, for >a

x a
x

x x a
φ

φ
≤




                               (42) 

with any 0a a r< <  (see (10)). The proof of the lemma follows from the estimate of ratio of configuration 
integral ( ) ( ) ( ) ( ), , ! ,a aQ N N Z Nβ βΛΛ =  (see also [16], Lemma 3′ ): 
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( ) ( )
( ) ( )

( )
1, ,

, ,

a

a

Q N
k

Q N
β

σ
β

+ Λ
≥ Λ

Λ
                                (43) 

with ( ),k k a v= . To prove (43) write ( ) ( )1, ,aQ N β+ Λ  in the following form:  
( ) ( ) ( )

( ) ( ) { }( )
,

;1, , e d d eN

a

a U W xQ N x xβ γ β γβ γ χ γ
Λ

Λ

− − ∆
−Γ Λ

∆∈∆

+ Λ = ∪∏∫ ∫                (44) 

where { }1, , Nx xγ =  , 1d d d Nx xγ =  . Define the region 

( ) ( ){ }: ,  ,  Gamma N
a j jx x x a xγ γ γ ΛΛ = ∈Λ − ≥ ∈ ∈                        (45) 

and chose the Λ  sufficiently large and a  sufficiently small to satisfy the following inequality:  

( )( ) ( )1
2aσ γ σΛ ≥ Λ                                      (46) 

Then, taking into account that for ( )ax γ∈Λ  

{ }( ) ( )
, ,a a

xχ γ χ γ
Λ Λ

∆ ∆
− −

∆∈∆ ∆∈∆

∪ =∏ ∏                             (47) 

and 
( ) ( ) ( ); ;a a

y
W x W x x y

γ
γ γ φ

∈

= = −∑                           (48) 

we obtain: 

( ) ( )
( )

( )
( )

( ); ; ;: d e d e d e a

a a

W x W x W xI x x xβ γ β γ β γ

γ γ
γ − − −

Λ Λ Λ Λ
= ≥ =∫ ∫ ∫

 

               (49) 

Holder’s inequality to (49) with respect to probability measure ( )( )d ax σ γΛ  gives: 

( ) ( )( ) ( )( ) ( ) ( ); d

e
aaa

W x x

aI
γ

β γ
σ γγ σ γ

Λ
−
Λ

Λ

∫
≥ Λ





                          (50) 

Using the property (9) and definition (42) we have:  

( ) ( ) ( )
1

; d d :d
a

a a a LW x x N x x N
γ

γ φ φ
Λ

≤ =∫ ∫




                      (51) 

Using this inequality and taking into account that ( )Nv σ≤ Λ  and (46) we get (43) with  

1
21 e

2
a Lvk

β φ−
=                                     (52) 

Taking into account that ( ) ( ) ( ) ( )\ , ,
k

a a
XZ N M Z N Mβ βΛΛ − < −  we have: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

\ , 1, ,

, , 1,
k

a a a
X M

a a a

Z N M Z N Z N M
K

Z N Z N Z N M

β β β

β β β
Λ Λ Λ

Λ Λ Λ

− − −
≤ ≤

− +
              (53) 

with 1K kv= . □ 
Now, the proof of the Theorem 2 follows from the trivial estimates of the combinatorial sums in (40). Let for 

simplicity 2m =  in SSS assumption (12). From the condition 1 km m M+ + = , one can obtain that 
2 2 2
1 km m M k+ + ≥ . So, we have: 

( ) ( )
{ }

( ) ( ) ( ) ( ) ( )

( )( )
1 ,

1 14 4
2 2 2

1 , , 0
, , 1 e e e

                     1

k a

N A a C a k A a C a Mkd dM

k M

N

Z N a a a

a

β β
β

Λ

Λ

Λ

   ∞ ′− − − −   + ′   
Λ

′= ∆ ∆ ⊂∆ =

≤ +

≤ +

∑ ∑ ∑




         (54) 

with 

( )
( ) ( )14

2 2: 2e e
A a C a

da a
β  − − 
 =                                    (55) 
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It is clear from the Equations (15), (16), (38) that 

( )( )
0

1lim log 1 0da
a

a
ε

→
+ =                               (56) 

so, this gives the proof of the main result. □ 

4. Conclusion 
The main result of the article is presented by the Theorem 2.2. It proves that all thermodynamics properties of 
the infinite system which is defined by phase space (2.1) and interaction potential (2.9) - (2.11) can be described 
by the cell gas model, phase space and thermodynamics descriptions which are determined by the formulas (2.7), 
(2.22) - (2.25). In other words, this model approximates the statistical continuous system of interacting point 
particles up to any preassigned accuracy. It is needed to mark another surprising fact that the set ( )dilΓ  is subset 
of measure zero in Γ  with respect to Poisson measure (see Proposition 3.1 in [4]). 
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