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Abstract 
We will study the generalized Steklov-Robin eigenproblem (with possibly matrix weights) in 
which the spectral parameter is both in the system and on the boundary. The weights may be sin-
gular on subsets of positive measure. We prove the existence of an increasing unbounded se-
quence of eigenvalues. The method of proof makes use of variational arguments. 
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1. Introduction 
We study the generalized Steklov-Robin eigenproblem. This spectrum includes the Steklov, Neumann and Rob-
in spectra. We therefore generalize the results in [1]-[4]. 

Consider the elliptic system 
( ) ( )

( ) ( )

in ,

on ,

U A x U M x U
U x U P x U

µ

µ
ν

−∆ + = Ω

∂
+ Σ = ∂Ω

∂

                              (1) 

where NΩ ⊂  , 2N ≥  is a bounded domain with boundary ∂Ω  of class 0,1C ,  
[ ] ( ) ( ) ( ) ( ) ( )T 1 1 1 1

1, , : .
k

kU u u H H H H H = ∈ Ω = Ω = Ω × Ω × × Ω    Throughout this paper all matrices are 
symmetric. The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

,

k

k

k k kk

a x a x a x
a x a x a x

A x

a x a x a x

 
 
 =  
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verifies the following conditions: 
(A1) The functions : .ija Ω→   

(A2) ( )A x  is positive semidefinite a.e. on Ω with ( )  , 1, , ,p
ija L i j k∈ Ω ∀ =   for 

2
Np >  when 3N ≥ , 

and 1p >  when 2.N =  
The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

k

k

k k kk

m x m x m x
m x m x m x

M x

m x m x m x

 
 
 =  
 
  





   



 

satisfies the following conditions: 

(M1) ( )M x  is positive semidefinite a.e. on Ω The functions : ,ijm Ω→   for 
2
Np ≥  when 3N ≥ , and 

1p >  when 2.N =  
:ν ν∂ ∂ = ⋅∇  is the outward (unit) normal derivative on .∂Ω  The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

,

k

k

k k kk

x x x
x x x

x

x x x

σ σ σ
σ σ σ

σ σ σ

 
 
 Σ =  
 
  





   



 

verifies the following conditions: 
(S1) The functions : .ijσ ∂Ω→   
(S2) ( )xΣ  is positive semidefinite a.e. on ∂Ω  with ( )   , 1, , ,q

ij L i j kσ ∈ ∂Ω ∀ =   for 1q N≥ −  when 
3N ≥ , and 1q >  when 2,N =   

and the matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

.

k

k

k k kk

x x x
x x x

P x

x x x

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =  
 
  





   



 

(P1) ( )P x  is positive semidefinite a.e. on ∂Ω  for 1q N≥ −  when 3N ≥ , and 1q >  when 2.N =  
We assume that ( ) ( ) ( ) ( ), , , A x x M x P xΣ  verify the following assumptions: 
Assumption 1. ( )A x  is positive definite on a set of positive measure of Ω, 
or ( )xΣ  is positive definite on a set of positive measure of .∂Ω  
And ( )M x  is positive definite on a set of positive measure of Ω, 
or ( )P x  is positive definite on a set of positive measure of .∂Ω  
Remark 2. Assumption 1 is equivalent to 

( ) ( ), d , d 0  0.A x U U x x U U x U
Ω ∂Ω

+ Σ > ∀ ≠∫ ∫  

Remark 3. Since ( ) ( ) ( ) ( ), , , A x x M x P xΣ  satisfy (A2), (S2), (M1), (P1) respectively, then we can write 
them in the following form (i.e.; eigen-decomposition of a positive semi-definite matrix or diagonalization) 

( ) ( ) ( ) ( )T .J J JJ x Q x D x Q x=  

where ( ) ( )T
J JQ x Q x I=  ( ( ) ( )T 1

J JQ x Q x−=  i.e.; are orthogonal matrices) are the normalized eigenvectors, I 
is the identity matrix, ( )JD x  is diagonal matrix and in the diagonal of ( )JD x  are the eigenvalues of J (i.e.; 
( ) ( ) ( )( )1diag , ,J J

kJD x x xλ λ=  ) and { }, , , .J A M P= Σ  
Remark 4. The weight matrices ( )M x  and ( )P x  may vanish on subsets of positive measure. 
Definition 1. The generalized Steklov-Robin eigensystem is to find a pair ( ) ( ), Hµ ϕ ∈ × Ω  with 0ϕ ≡/  
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such that 

( ) ( )

( ) ( ) ( )

d , d , d

, d , d    .

U x A x U x x U x

M x U x P x U x U H

ϕ ϕ ϕ

µ ϕ ϕ
Ω Ω ∂Ω

Ω ∂Ω

∇ ⋅∇ + + Σ

 = + ∀ ∈ Ω 

∫ ∫ ∫
∫ ∫

                   (2) 

Remark 5. Let U ϕ=  in (2) if there is such an eigenpair, then 0µ >  and 

( ) ( ), d , d 0.M x x P x xϕ ϕ ϕ ϕ
Ω ∂Ω

+ >∫ ∫  

Indeed, if ( ) ( ), d , d 0,M x x P x xϕ ϕ ϕ ϕ
Ω ∂Ω

+ =∫ ∫  or 0,µ =  then 

( ) ( )2 d , d , d 0.x A x x x xϕ ϕ ϕ ϕ ϕ
Ω Ω ∂Ω
∇ + + Σ =∫ ∫ ∫  

We have that 2 d 0xϕ
Ω
∇ =∫  which implies that constant,ϕ =  and ( ) , d 0A x xϕ ϕ

Ω
=∫  this implies that  

( ) , 0,A x ϕ ϕ =  a.e. (with 0ϕ ≠ ) in Ω. This implies that ( )A x  is not positive definite on a subset of Ω of  
positive measure, and ( ) , d 0,x xϕ ϕ

∂Ω
Σ =∫  then ( ) , 0,x ϕ ϕΣ =  a.e. with ( )0ϕ ≠  on .∂Ω  This implies  

that ( )xΣ  is not positive definite on subset of ∂Ω  of positive measure. So we have that, ϕ  would be a con-
stant vector function; which would contradict the assumptions (Assumption 1) imposed on ( )A x  and ( ).xΣ  

Remark 6. If ( ) 0A x ≡  and ( ) 0xΣ ≡  then 0µ =  is an eigenvalue of the system (1) with eigenfunction 
constantϕ =  vector function on Ω . 

It is therefore appropriate to consider the closed linear subspace (to be shown below) of ( )H Ω  under As-
sumption 1 defined by 

( ) ( ) ( ) ( ) ( ){ }, : : , d , d 0 .M P U H M x U U x P x U U x
Ω ∂Ω

Ω = ∈ Ω + =∫ ∫  

Now all the eigenfunctions associated with (2) must belong to the ( ),A Σ -orthogonal complement  

( ) ( ) ( ) ( ), ,:M P M PH
⊥

 Ω = Ω   of this subspace in ( ).H Ω  We will show that indeed ( ) ( ),M P Ω  is subspace of  

( ).H Ω  Let ( ) ( ),, M PU V∈ Ω  and α ∈  we wish to show that ( ) ( ),M PUα ∈ Ω  and ( ) ( ), .M PU V+ ∈ Ω  

( )( ) ( )( )( )
( ) ( )( ) ( ) ( ),2

, d , d

, d , d 0.M PU

M x U U x P x U U x

M x U U x P x U U x

α α α α

α

Ω ∂Ω

∈ Ω

Ω ∂Ω

+

= + =

∫ ∫

∫ ∫


 

Therefore ( ) ( ), .M PUα ∈ Ω  Now we show that ( ) ( ), .M PU V+ ∈ Ω  

( )( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, d , d

, d , d , d

, d 2 , d 2 , d .

M x U V U V x P x U V U V x

M x U U x P x U U x M x V V x

P x V V x M x U V x P x U V x

Ω ∂Ω

Ω ∂Ω Ω

∂Ω Ω ∂Ω

+ + + + +

= + +

+ + +

∫ ∫
∫ ∫ ∫
∫ ∫ ∫

 

Since ( ) ( ), ,M PU ∈ Ω  it follows that 

( ) ( ) ( ) ( )
( ) ( ) ( )

T0 , d , d

, d .

M M M

M M M

M x U U x Q x D x Q x U U x

D x Q x U Q x U x
Ω Ω

Ω

= =

=

∫ ∫
∫

 

By setting ( ) ( ): ,My x Q x U=  we get 

( ) ( ) ( ) ( ) ( )2

1
0 , d d .

k
M

M i i
i

D x y x y x x x y x xλ
Ω Ω

=

= = ∑∫ ∫  

Since ( ) 0M
i xλ ≥  for a.e. ,x∈Ω  it readily follows that 

( ) ( ) 0 for  . . ;M
i ix y x a e xλ = ∈Ω  

that is, the vector ( ) ( )MD x y x  satisfies 
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( ) ( ) 0  for . . ,MD x y x a e x= ∈Ω  

or equivalently 

( ) ( ) 0  for . . on .M MD x Q x U a e= Ω  

Hence, 

( ) ( ) ( ) ( )
( ) ( ) ( )

T2 , d 2 , d

2 , d 0,

M M M

M M M

M x U V x Q x D x Q x U V x

D x Q x U Q x V x
Ω Ω

Ω

=

= =

∫ ∫
∫

 

since ( ) ( ) 0 . . on .M MD x Q x U a e= Ω  A similar arguments shows that 

( )2 , d 0.P x U V x
∂Ω

=∫  

Therefore ( ) ( ), ,M PU V+ ∈ Ω  so we have that ( ) ( ),M P Ω  is a subspace of ( ).H Ω  Thus, one can split 
the Hilbert space ( )H Ω  as a direct ( ),A Σ -orthogonal sum in the following way 

( ) ( ) ( ) ( ) ( ) ( ), , , .M P A M PH
⊥

Σ
 Ω = Ω ⊕ Ω    

Remark 7. 1) If ( ) 0M x ≡  in Ω, then the subspace  
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

0 0 0 0 0, : ,
k

M P H H H H H Ω = Ω = = Ω × Ω × × Ω    provided ( ) 0P x >  on ∂Ω . 
2) If ( ) 0P x ≡  in ∂Ω  and ( )x M∈Ω , then the subspace ( ) ( ) { }, 0 ,M P Ω =  provided ( ) 0M x >  on Ω. 

• We shall make use in what follows the real Lebesgue space ( )q
kL ∂Ω  for 1 q≤ ≤ ∞ , and of the continuity 

and compactness of the trace operator 

( ) ( ) ( )2 1
:   for  1 ,

2
q
k

N
H L q

N
−

Γ Ω → ∂Ω ≤ <
−

 

is well-defined, it is a Lebesgue integrable function with respect to Hausdorff 1N −  dimensional measure. 
Sometimes we will just use U in place of UΓ  when considering the trace of a function on ∂Ω . Through-
out, this work we denote the ( )2

kL ∂Ω -inner product by 

, : dU V U V x
∂ ∂Ω
= ⋅∫  

and the associated norm by 

( )2 :     ,U U U U V H
∂ ∂Ω
= ⋅ ∀ ∈ Ω∫  

(see [5], [6] and the references therein for more details). 
• The trace mapping ( ) ( )2: kH LΓ Ω → ∂Ω  is compact (see [7]). 

( ) ( ) ( ),, , d , d ,M PU V M x U V x P x U V x
Ω ∂Ω

= +∫ ∫                       (3) 

defines an inner product for ( )H Ω , with associated norm 

( ) ( ) ( )2

, : , d , d .M PU M x U U x P x U U x
Ω ∂Ω

= +∫ ∫                        (4) 

Now, we state some auxiliary result, which will be need in the sequel for the proof of our main result. Using 
the Hölder inequality, the continuity of the trace operator, the Sobolev embedding theorem and lower semicon-
tinuity of ( ),. A Σ

, we deduce that ( ),. A Σ
 is equivalent to the standard ( )H Ω -norm. This observation enables 

us to prove the existence of an unbounded and discrete spectrum for the Steklov-Robin eigenproblem (1) and 
discuss some of its properties. 

Definition 2. Define the functional 

( ) [ ), : 0, ,A HΣΛ Ω → ∞  

( ) ( ) ( ) ( ) ( )2
, ,: , d , d ,  ,A AU U U A x U U x x U U x U U HΣ ΣΩ ∂Ω

 Λ = ∇ ⋅∇ + + Σ = ∀ ∈ Ω ∫ ∫  
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and 

( ) [ ), : 1, ,M P Hϒ Ω → ∞  

( ) ( ) ( ) ( ) ( )2
, ,: , d , d 1 1,  .M P M PU M x U U x P x U U x U U H

Ω ∂Ω
ϒ = + − = − ∀ ∈ Ω∫ ∫  

Lemma 1. Suppose (A2), (S2), (M1), (P1) are met. Then the functionals ,A ΣΛ  and ,M Pϒ  are C1-functional 
(i.e.; continuously differentiable). 

See [8] for the proof of Lemma 1. 
Theorem 8. ,A ΣΛ  is G-differentiable and convex. Then ,A ΣΛ  is weakly lower-semi-continuous. 
See [8] for the proof of Theorem 8. 

2. Main Result 
Theorem 9. Assume Assumption 1 as above, then we have the following. 

1) The eigensystem (1) has a sequence of real eigenvalues 

1 2 30  as ,j jµ µ µ µ< ≤ ≤ ≤ ≤ ≤ →∞ →∞ 
 

and each eigenvalue has a finite-dimensional eigenspace. 
2) The eigenfunctions jϕ  corresponding to the eigenvalues jµ  from an ( ),A Σ -orthogonal and ( ),M P - 

orthonormal family in ( ),M P
⊥

 Ω   (a closed subspace of ( )H Ω ). 
3) The normalized eigenfunctions provide a complete ( ),A Σ -orthonormal basis of ( ), .M P

⊥
 Ω   Moreover, 

each function ( ),M PU
⊥

 ∈ Ω   has a unique representation of the from 

( ) ( )

( )

, ,
1

22

,
1

1 with : , , ,

.

j j j j jA M P
j j

j jA
j

U c c U U

U c

ϕ ϕ ϕ
µ

µ

∞

Σ
=

∞

Σ
=

= = =

=

∑

∑
                     (5) 

In addition, 

( )
22

,
1

.jM P
j

U c
∞

=

= ∑  

Proof of Theorem 9. We will prove the existence of a sequence of real eigenvalues jµ  and the eigenfunc-  

tions jϕ  corresponding to the eigenvalues that from an orthogonal family in ( ),M P
⊥

 Ω  . 

We show that ,A ΣΛ  attains its minimum on the constraint set 

( ) ( ){ }0 , ,: 0 .M P M PW U U
⊥

 = ∈ Ω ϒ =   

Let ( ) ( )
0

,: inf ,AU W
Uα Σ∈

= Λ  by using the continuity of the trace operator, the Sobolev embedding theorem and  

the lower-semi-continuity of , .A ΣΛ  
Let { } 1l l

U ∞

=
 be a minimizing sequence in W0 for , ,A ΣΛ  since ( ),lim ,A ll

U αΣ→∞
Λ =  we have that  

( ) ( ), ,
,A l l AU UΣ Σ

Λ =  by the definition of α  we have that for all 0>  and for all sufficiently large l, then 
2

,l AU α
Σ
≤ +   by using the equivalent norm we have that, there is exist ,β  such that 

( )
2 2

,
,l lH AU Uβ

Ω Σ
≤  

so we have that 

( ) ( )2 2

,
.l lH AU Uβ β α

Ω Σ
≤ ≤ +   

Therefore, this sequence is bounded in ( )H Ω . Thus it has a weakly convergent subsequence { }: 1
jlU j ≥   



A. Fadlallah et al. 
 

 
426 

which convergent weakly to Û  in ( )H Ω . From Rellich-Kondrachov theorem this subsequence converges 
strongly to Û  in ( )2 ,kL Ω  so Û  in W0. Thus ( ),

ˆ
A U αΣΛ =  as the functional is weakly l.s.c. (see Theorem 

8). 
There exists 1ϕ  such that ( ), 1A ϕ αΣΛ = . Hence, ,A ΣΛ  attains its minimum at 1ϕ  and 1ϕ  satisfies the 

following 

( ) ( )

( ) ( )( )
1 1 1

1 1 1

d , d ,

, d , d .

V x A x V x x V

M x V x P x V x

ϕ ϕ ϕ

µ ϕ ϕ
Ω Ω ∂Ω

Ω ∂Ω

∇ ⋅∇ + + Σ

= +

∫ ∫ ∫
∫ ∫

                      (6) 

for all ( ) ( ), .M PV
⊥

 ∈ Ω   We see that ( )1 1,µ ϕ  satisfies Equation (2) in a weak sense and 1 0Wϕ ∈  this im-  

plies that ( ) ( )1 ,M Pϕ
⊥

 ∈ Ω   by the definition of W0. Now take 1V ϕ=  in Equation (6), we obtain that the ei-
genvalue 1µ  is the infimum ( ), 1 1Aα ϕ µΣ= Λ = . This means that we could define 1µ  by the Rayleigh quotient 

( )

( )
0

,
1 2

0 ,

inf .A

U W
U M P

U

U
µ Σ

∈
≠

Λ
=  

Clearly, ( )1 , 1 0Aµ ϕΣ= Λ > . Indeed assume that ( ), 1 0A ϕΣΛ =  then 1 0ϕ∇ =  on ,Ω  hence 1ϕ  must be a 
constant and ( ) , 0A x ϕ ϕ =  with 0ϕ ≠  that contradicts the assumptions imposed on ( )A x . Thus 1 0µ > . 

Now we show the existence of higher eigenvalues. 
Define 

( )1 0 1 1 ,:  b  : , .M PW y U U ϕ→ =    

We know that the kernel of 1  

( ){ }1 0 1 1: 0 : .ker U W U W= ∈ = =   

Since W1 is the null-space of the continuous functional 1 ,., M Pϕ  on ( ) ( ), ,M P

⊥
 Ω   W1 is a closed sub-  

space of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. M P

. Now  

we define 

( ){ } ( )

( )
1

,
2 , 1 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 1 0W W⊂  then we have that 1 2µ µ≤ . Now we define 

( )2 1 2 2 ,:  b  , M PW y U U ϕ→ =    

we know that the kernel of 2  

( ){ }2 1 2 2: 0 : .ker U W U W= ∈ = =   

Since W2 is the null-space of the continuous functional 2 ,., M Pϕ  on ( ) ( ),M P

⊥
 Ω  , W2 is a closed sub-

space of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. M P

. Now  

we define 

( ){ } ( )

( )
2

,
3 , 2 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 2 1W W⊂  then we have that 2 3.µ µ≤  Moreover, we can repeat the above arguments to show that 3µ   

is achieved at some ( ) ( )3 , .M Pϕ
⊥

 ∈ Ω   

We let 

( ){ }3 2 3 ,
: , 0M PW u W U ϕ= ∈ =  

and 
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( ){ } ( )

( )
3

,
4 , 3 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 3 2W W⊂  then we have that 3 4µ µ≤ . Moreover, we can repeat the above arguments to show that 4µ   

is achieved at some ( ) ( )4 , .M Pϕ
⊥

 ∈ Ω   

Proceeding inductively, in general we can define 

( )1 ,
:  b  , ,j j j j M P
W y U U ϕ− → =    

we know that the kernel of 2  

( ){ }1 : 0 : .j j j jker U W U W−= ∈ = =   

Since Wj is the null-space of the continuous functional 
,

., j M P
ϕ  on ( ) ( ),M P

⊥
 Ω  , Wj is a closed subspace  

of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. .M P

 Now we de-
fine 

( ){ } ( )

( )

,
1 , 2

0 ,

inf : inf .
j

A
j A j U W

U M P

U
U U W

U
µ Σ

+ Σ ∈
≠

Λ
= Λ ∈ =  

In this way, we generate a sequence of eigenvalues 

1 2 30 jµ µ µ µ< ≤ ≤ ≤ ≤ ≤ 
 

whose associated jϕ  are c-orthogonal and ( ),M P -orthonormal in ( )1
0 .H

⊥
 Ω   

Claim 1 jµ →∞  as .j →∞  
Proof of claim 1. By way of contradiction, assume that the sequence is bounded above by a constant. There-

fore, the corresponding sequence of eigenfunctions jϕ  is bounded in ( ).H Ω  By Rellich-Kondrachov theo-
rem and the compactness of the trace operator, there is a Cauchy subsequence (which we again denote by jϕ ), 
such that 

( )

2

,
0.j k M P

ϕ ϕ− →                                    (7) 

Since the jϕ  are ( ),M P -orthonormal, we have that 
( ) ( ) ( )
2 2 2

,, ,
2 0j k j k M PM P M P

ϕ ϕ ϕ ϕ− = + = > , if ,j k≠   

which contradicts Equation (7). Thus, .jµ →∞  We have that each jµ  occurs only finitely many times. 
Claim 2 
Each eigenvalue jµ  has a finite-dimensional eigenspace. 
See [8] for the proof of claim 2. 
We will now show that the normalized eigenfunctions provide a complete orthonormal basis of ( )1

0H
⊥

 Ω  . 
Let 

1 ,j j
j

ψ ϕ
µ

=  

so that 
( )

2

,
1.j A

ψ
Σ
=  

Claim 3 

The sequence { } 1j j
ψ

≥
 is a maximal ( ),A Σ -orthonormal family of ( ) ( ),M P

⊥
 Ω  . (We know that the set is  

maximal ( ),A Σ -orthonormal if and only if it is a complete orthonormal basis). 
Proof of Claim 3. By way of contradiction, assume that the sequence { } 1j j

ψ
≥

 is not maximal, then there 

exists a ( ) ( ), ,M Pξ
⊥

 ∈ Ω   and { } 1
,j j

ξ ψ
≥

∈/  such that ( )
2

, 1Aξ
Σ
=  and 

( ),
, 0 j A

jξ ψ
Σ
= ∀ , i.e.; 
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( )
( )

( )

( )( )
( )

( )

, ,
,

by 6

,
,

1 10 , , ,

1, , , ,

j j jA A
j jA

j
j j j j jM P

j j M P

ξ ψ ξ ϕ ξ ϕ
µ µ

µ
ξ ϕ µ ξ ϕ µ ξ ψ

µ µ

Σ Σ

Σ

∂

= = =

= = =

 

since 0 j jµ > ∀ . Therefore 
( ),

, 0j M P
ξ ψ = . We have that  1jW jξ ∈ ∀ ≥ . It follows from the definition of 

jµ  that 

( )

( ) ( )

2

,
2 2

, ,

1  1.A
j

M P M P

j
ξ

µ
ξ ξ

Σ≤ = ∀ ≥  

Since we know from Claim 1 that jµ →∞  as ,j →∞  we have that ( )
2

, 0.M Pξ =  Therefore 0ξ =  a.e in 

Ω, which contradicts the definition of ξ. Thus the sequence { } 1j j
ψ

≥
 is a maximal ( ),A Σ -orthonormal family 

of ( ) ( ), ,M PH
⊥

 Ω   so the sequence { } 1j j
ψ

≥
 provides a complete orthonormal basis of ( ) ( ), ;M PH

⊥
 Ω   that is, 

for any ( ) ( ),AU
⊥

Σ
 ∈ Ω  , 1 j jjU d ψ∞

=
=∑  with 

( ) ( ), ,

1, , ,j j jA A
j

d U Uψ κ
µΣ Σ

= =  and 

( )
22

,
1

,jA
j

U d
∞

Σ
=

= ∑  

1

1 .j j
j j

U d ϕ
µ

∞

=

= ∑  

Now let 

( )
( )

( )
6

, ,

1 1 , , .j j j jA M P
jj

c d U Uϕ ϕ
µµ Σ

= = =  

Therefore, 

1
j j

j
U c ϕ

∞

=

= ∑  

and 

( ) ( )

2 2 22

, ,
1 1

.j j j jA A
j j

U c cϕ µ
∞ ∞

Σ Σ
= =

= =∑ ∑  

Claim 4 
We shall show that 

( )
22

,
1

.jM P
j

U c
∞

=

= ∑  

Proof of Claim 4. 

( ) ( )
( )

( )

2

, ,
1 1 ,

2

,
1 1 1

, ,

, .

j j k kM P M P
j k M P

j k j k jM P
j k j

U u u c c

c c c

ϕ ϕ

ϕ ϕ

∞ ∞

= =

∞ ∞ ∞

= = =

= =

= =

∑ ∑

∑ ∑ ∑
 

Thus 



A. Fadlallah et al. 
 

 
429 

( )
22

,
1

.jM P
j

U c
∞

=

= ∑  
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