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Abstract 
The object of the present paper is to investigate various argument results of analytic and multiva-
lent functions which are defined by using a certain fractional derivative operator. Some interest-
ing applications are also considered. 
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1. Introduction 
Let ( )p  denote the class of functions ( )f z  of the form 
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= + ∈ =∑                         (1.1) 

which are analytic in the open unit disk { }:  and 1z z z= ∈ < . Also let ( )1 =   denote the class of all 
analytic functions ( )p z  with ( )0 1p =  which are defined on  . 

Let a, b and c be complex numbers with 0, 1, 2,c ≠ − −  . Then the Gaussian hypergeometric function 
( )2 1 , ; ;F a b c z  is defined by 
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where ( )kη  is the Pochhammer symbol defined, in terms of the Gamma function, by 
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The hypergeometric function ( )2 1 , ; ;F a b c z  is analytic in   and if a or b is a negative integer, then it 
reduces to a polynomial. 

There are a number of definitions for fractional calculus operators in the literature (cf., e.g., [1] and [2]). We 
use here the Saigo type fractional derivative operator defined as follows ([3]; see also [4]): 

Definition 1. Let 0 1λ≤ <  and ,  µ ν ∈ . Then the generalized fractional derivative operator , ,
0,z
λ µ ν  of a 

function ( )f z  is defined by 

( ) ( ) ( ) ( ), ,
0, 2 10

d ,1 ;1 ;1 d .
d 1

z
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zf z z F f
z z

λ µ
λλ µ ν ζζ µ λ ν λ ζ ζ

λ

−
−  = − − − − −   Γ −   

∫            (1.3) 

The function ( )f z  is an analytic function in a simply-connected region of the z-plane containing the origin, 
with the order 

( ) ( ) ( ),    0f z O z z= →  

for { }max 0, 1µ ν> − − , and the multiplicity of ( )z λζ −−  is removed by requiring that ( )log z ζ−  to be 
real when 0z ζ− > . 

Definition 2. Under the hypotheses of Definition 1, the fractional derivative operator , ,
0,

m m m
z

λ µ ν+ + +  of a 
function ( )f z  is defined by 
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0, 0, 0
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z zmf z f z z m
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With the aid of the above definitions, we define a modification of the fractional derivative operator , ,
,z p
λ µ ν∆  by 
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                    (1.5) 

for ( ) ( )f z p∈  and 1pµ ν− − < . Then it is observed that , ,
,z p
λ µ ν∆  also maps ( )p  onto itself as follows: 
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                   (1.6) 

It is easily verified from (1.6) that 

( )( ) ( ) ( ) ( ), , 1, 1, 1 , ,
, , , .z p z p z pz f z p f z f zλ µ ν λ µ ν λ µ νµ µ+ + +′∆ = − ∆ + ∆                     (1.7) 

Note that 0,0,
,z p f fν∆ = , 1,1,

,z p f zf pν ′∆ =  and ( ),, ,
,

p
z p zf fλλ λ ν∆ = Ω , where ( ), p

z
λΩ  is the fractional derivative oper-

ator defined by Srivastava and Aouf [5]. 
In this manuscript, we drive interesting argument results of multivalent functions defined by fractional deriva-

tive operator , ,
,z p
λ µ ν∆ . 

2. Main Results 
In order to establish our results, we require the following lemma due to Lashin [6]. 

Lemma 1 [6]. Let ( )h z  be analytic in  , with ( )0 1h =  and ( ) 0h z ≠  ( )z∈ . Further suppose that 
( ), 0,α β +∈ = ∞  and 

( ) ( )( ) ( ) ( )π 2arg arctan    0; 0
2 π

h z zh zβ α βα α β ′+ < + > > 
 

                 (2.1) 

then 
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( ) ( )πarg ,    .
2

h z zα< ∈                                  (2.2) 

We begin by proving the following result. 
Theorem 1. Let 0λ ≥ , { }min 1,p pµ ν< + +  and ,  ,  α γ δ +∈ , and let ( ) ( )g z p∈ . Suppose that 
( ) ( )f z p∈  satisfies the condition 
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then 
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Proof. If we define the function ( )h z  by 
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then ( ) 2
1 21h z c z c z= + + +  is analytic in  , with ( )0 1h =  and ( )0 0h′ ≠ . Making use of the logarithmic 

differentiation on both sides of (2.5), we have 
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By applying the identity (1.7) in (2.6), we observe that 
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Hence, by using Lemma 1, we conclude that 

( ) ( )πarg ,    ,
2

h z zα< ∈  

which completes the proof of Theorem 1. 
Remark 1. Putting 0λ µ= = , 1pδ = =  and ( )g z z=  in Theorem 1, we obtain the result due to Lashin 

([6], Theorem 2.2). 
Taking 1γ =  and ( ) pg z z=  in Theorem 1, we have the following corollary. 
Corollary 1. Let 0λ ≥ , { }min 1,p pµ ν< + +  and ,  α δ +∈ . Suppose that ( ) ( )f z p∈  satisfies the 

condition 
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Theorem 2. Let 0λ ≥ , { }min 1,p pµ ν< + + , 0 1δ< ≤  and ,α δ +∈ . Suppose that ( ) ( )f z p∈  sa-
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tisfies the condition 
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Proof. If we set 
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then ( ) 2
1 21h z c z c z= + + +  is analytic in  , with ( )0 1h =  and ( )0 0h′ ≠ . By using the logarithmic dif-

ferentiation on both sides of (2.9), we obtain 
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Thus, in view of Lemma 1, we have 

( ) ( )πarg ,    ,
2

h z zα< ∈  

which evidently proves Theorem 2. 
Remark 2. Setting 0λ µ= =  and 1pγ δ= = =  in Theorem 2, we get the result obtained by Goyal and 

Goswami ([7], Corollary 3.6). 
Putting 1λ µ γ δ= = = =  in Theorem 2, we obtain the following result. 
Corollary 2. Let α +∈ . Suppose that ( ) ( ) ( ) 1f z p p∈ ≠  satisfies the condition 
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∫   

Finally, we consider the generalized Bernardi-Libera-Livingston integral operator ( )fσ  ( )pσ > −  de-
fined by (cf. [8] [9] and [10]) 

( ) ( )( ) ( ) ( )( )1
0

: d ,    ; .
zpf f z t f t t f p p

z
σ

σ σ σ
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≡ = ∈ > −∫                  (2.10) 

Theorem 3. Let 0λ ≥ , { }min 1,p pµ ν< + + , pσ > −  and , ,α γ δ +∈ , and let ( ) ( )g z p∈ . Suppose 
that ( ) ( )f z p∈  satisfies the condition 
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Proof. From (2.10) we observe that 
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( )( )( ) ( ) ( ) ( )( ), , , , , ,
, , , .z p z p z pz f z p f z f zλ µ ν λ µ ν λ µ ν
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If we let 
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then ( ) 2
1 21h z c z c z= + + +  is analytic in  , with ( )0 1h =  and ( )0 0h′ ≠ . Differentiating both sides of 

(2.14) logarithmically, it follows that 
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Hence, by applying the same arguments as in the proof of Theorem 1 with (2.13) and (2.15), we obtain 

( ) ( )πarg ,    ,
2

h z zα< ∈  

which proves Theorem 3. 
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