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Abstract 
Aquatic macrophytes in shallow lakes emit high levels of methane. We hypothesize that the pres-
ence of emergent aquatic macrophytes in an artificial shallow lake promotes important input of 
autochthonous organic matter (OM) in sediment and higher levels of methane emission via bub-
bles. Samplings were performed at three sites in a small, shallow subtropical lake: (1) one station 
in the limnetic region and (2) - (3) two stations in the littoral region ((2) inside and (3) outside 
aquatic macrophyte stands). A higher concentration of OM was observed at the macrophyte sta-
tion, and within this site, a higher methane concentration was observed in the sediment. These 
results could explain the methane ebullition values at macrophyte sites. At the macrophyte station, 
methane emission via bubbles contributed 17% to 56% of the total methane emission; however, 
at the other stations, its contribution via bubbles, was lower than 1%. This research confirmed the 
importance of emergent macrophytes at Polegar Lake as a source of OM in sediment and methane 
emission via bubbles. Further, we could confirm the positive effects of temperature on methane 
emission, mainly by bubbles. 
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1. Introduction 
Methane emissions from global freshwater systems represent a significant contribution to the global balance of 
greenhouse gases [1]. These ecosystems are the largest natural source of methane emissions to the atmosphere, 
contributing up to one-third of global emissions [1]. This gas is formed under anoxic conditions in the sediments 
of flooded areas [3] by a process termed methanogenesis. The emission of methane into the atmosphere is the 
net result of methanogenesis and methane oxidation. 

Methanogenesis depends on interactions between several factors, such as sediment characteristics, electron 
acceptor concentrations, environmental conditions and aquatic macrophyte properties [4]. Biological methane 
oxidation, known as methanotrophy, may oxidize 30% - 99% of methane produced in freshwater systems [5] 
and is important in the regulation of methane emissions in freshwater. In general, a high level of methane oxi- 
dation occurs under aerobic conditions; however, this process can also occur under anaerobic conditions. These 
processes, mainly methanogenesis, may be regulated by temperature [6]. Several environments indicate that 
methanogenesis in sediments is highly sensitive to temperature [7]-[9]. Studies on methane dynamics in shallow 
lakes in southern Brazil have shown that a variation of almost 10˚C between sampling periods was positively 
related to the concentration of methane, indicating the importance of seasonality, mainly in an oligo-mesotro- 
phic environment [10]. 

Methane emissions are also influenced by temperature, which is an important factor considering bubble emis- 
sions, mainly in shallow environments with lower hydrostatic pressure [11] [12]. In addition, recent estimates of 
the global number of lakes [13] indicate the great importance of small lakes for methane emission. These eco- 
systems present higher methane fluxes per unit area than larger lakes [14]. 

Many of the wetlands have populations of emergent plants that were either deliberately planted or naturally 
colonized the area [15]. The presence of macrophytes can modify sediment composition via the accumulation of 
detritus [16], which is refractory in nature [17]. These plants are morphologically adapted to grow in anoxic 
sediments; for example, they develop aerenchyma tissue that supplies their roots with O2. However, this aeren- 
chyma can also act as a conduit for methane, thereby increasing the flux of these gases from the sediment to the 
atmosphere. With a higher vegetation density, almost all methane enters the atmosphere through plants [18]. 
Therefore, stands of aquatic macrophytes affect three processes by 1) allocation of below-ground labile organic 
material through root exudation and plant litter production, thereby supporting methanogenesis [19] [20]; 2) in-
put of atmospheric O2 to the rhizosphere fueling methane oxidation [21]; and 3) by acting as a conduit, allowing 
methane to “escape” the system [22] and minimizing the oxidation process. 

The hypothesis of this study is that the presence of emergent aquatic macrophytes in an artificial shallow lake 
promotes important input of autochthonous organic matter (OM) for sediment and higher methane emission via 
bubbles. 

2. Materials and Methods 
2.1. Study Area 
Polegar Lake (32˚01'40'S, 52˚05'40''W) is located at the sandy coastal plain of Rio Grande do Sul (Southern 
Brazil), municipality of Rio Grande, that mainly comprises wetlands and small, shallow lakes. The climate of 
this region is characterized as Cfa (humid subtropical) by the Köppen classification. Polegar Lake was con- 
structed approximately sixteen years ago. This lake has an area of approximately 1 ha, with an average depth of 
1.5 m, and the depth varies depending on rainfall amounts. It is characterized as an oligo-mesotrophic lake with 
low primary production and low nutrient concentration [10] [23]. Its shallow depth and wind action characterize 
it as polymictic. The sediment is sandy and contains a low concentration of nutrients and OM [24]. An emergent 
aquatic macrophyte, Schoenoplectus californicus, occupies approximately 10% of the area of Polegar Lake near 
its margins. 

2.2. Sampling 
Samplings were carried out in summer (February), fall (May), winter (July) and spring (September) of 2007 at 
three sampling sites. One sampling station was in the limnetic region, and two stations were in the littoral region. 
Of the two littoral stations, one was inside and one was outside aquatic macrophyte stands; thus, the three sam- 
pling stations were classified as 1) limnetic, 2) littoral and 3) macrophyte.  



C. C. Marinho et al. 
 

 
317 

During the summer, methane and OM concentration in the sediment were sampled. These evaluations were 
performed to characterize the composition and anaerobic metabolism of the sediment. In the summer, the other 
variables were not sampled because during this period, the macrophyte station of Polegar Lake was dry. Sam-
ples were obtained for four consecutive days. The sampling process consisted of setting up a system that col-
lected the bubbles of methane released from the sediment, water samples to evaluate methane concentrations 
and abiotic variables at each sampling point.  

2.3. Variable Measurements 
The bubble collection system was composed of an inverted funnel (24 cm diameter) with a glass flask attached 
at the posterior part of the opening. This system was placed in situ for 24 h [25]. After 24 h, the tubes were col-
lected, replaced, and stored inverted with water in contact with the rubber cap. All samples were transported to 
the laboratory in a cool box for gas composition analysis. For determining the methane concentration in the wa-
ter column, 8 mL of water was collected in situ with a syringe and injected into a 12 mL sealed glass flask with 
negative pressure in its interior containing 1.6 g of NaCl. Diffusive flux (F) was estimated using the following 
expression: F = KCH4 (Cw-Ceq) [26]. This expression describes the use of a two-layer model to estimate the 
flux of various gases across the air-water interface, where KCH4 indicates the piston velocities for methane at 
each water temperature, Cw indicates the concentration of dissolved methane at the lake surface and Ceq indi-
cates the concentration of methane in water-air equilibrium. 

For determining the concentration of methane in sediment ([CH4]sed), the sediment was sampled with a core (8 
cm internal diameter and 50 cm length) attached to a Kajak sediment sampler. Five cores were obtained at each 
sampling point, and only the uppermost layer (2 cm) was considered. In the field, 5 mL of sediment was placed 
in 25 mL glass vials (n = 5) containing 5 mL of concentrated NaCl solution to expel methane contained in the 
sediment. The vials were sealed and transported to the laboratory, where 1 mL of the headspace of the bottle was 
removed with a syringe to determine the methane concentration by gas chromatography. The same sample frac-
tions used to determine the methane concentration were used to evaluate OM after drying in the laboratory. OM 
in sediment was determined by the gravimetric method after ignition at 550˚C for 4 hours. The environmental 
variables measured in the water column were temperature and dissolved oxygen (Oakton DO 300 oxygen meter), 
pH (Hanna HI 8314 pH meter) and depth (ruler). The methane concentration in the headspace was determined 
by gas chromatography using a Varian Star 3400 (Varian Co., USA) gas chromatograph equipped with a flame 
ionization detector (FID) at 200˚C and an injector at 120˚C along with a Poropak-Q 1 m (60/100 mesh) column 
(65˚C) with N2 as a carrier gas. 

2.4. Statistical Analysis 
The methane concentration measurements in the sediment and OM were analyzed using ANOVA and Tukey’s 
post-test. The methane ebullition and diffusive emission measurements were analyzed using the Kruskal-Wallis 
test, Dunn’s post-hoc test and the Mann-Whitney test. The significance level was set at 95%. The tests were 
performed using Graph Pad Instat 3.0 (Graph Pad Software Co.). 

3. Results and Discussion 
The concentrations of OM in sediment presented significant (p < 0.05) spatial differences (Table 1), with higher 
values observed at the macrophyte station. This difference occurs due to the higher autochthonous OM input via 
macrophyte detritus. Aquatic plant detritus accumulates heavily over sediments of shallow aquatic ecosystems 
and may be the main source of CH4 emissions [27] [28]. Detritus of emergent macrophytes strongly contributes 
to nutrient enrichment of the sediment [16]. The higher OM concentrations in sediment at sites colonized by 
emergent macrophytes result from the high productivity rates in these compartments [29]. These high rates are 
associated with slow debris transport to other compartments in lentic systems and slow decomposition rates. 
Decomposition rates largely depend on the composition of macrophyte tissues. Emergent macrophytes have the 
highest amounts of structural tissues compared with other functional groups [17]. All these factors favor the ac-
cumulation of OM in the sediment over time in the littoral region, which is beneficial for decomposers [16]. 
Lower OM concentrations were observed in the littoral station (without macrophytes). These results may be due 
to the presence of small holes in the sediment of the limnetic station. These holes accumulate OM, producing a  
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Table 1. Concentration of methane ([CH4]sed) and organic matter (OM) in the sediment of Polegar Lake in summer (Febru-
ary 2007).                                                                                                

Variables 
 Station  

Limnetic Littoral Macrophyte 

Methane in sediment 
(µM in pore water) 380 ± 174 7.53 ± 3.56 483 ± 183 

Organic matter 
(% DW) 5.03 ± 6.42 1.2 ± 0.24 28.73 ± 13.26 

Mean ± standard deviation.  
 
heterogeneous sediment, as evidenced by the higher standard deviation at this station (Table 1). These altera-
tions in the sediment can cause variations in macrophyte cover in aquatic ecosystems [30], which can determine 
the distribution of this community in aquatic ecosystems.  

Methane concentrations in the water column varied between minimum values of 0.30 ± 0.02 µM and maxi-
mum values of 1.92 ± 0.1 µM (Table 2). Methane was always supersaturated at the surface of Polegar Lake. 
This indicates that methane fluxes values were always positive; i.e., methane flowed from the water column to 
the atmosphere. The higher methane concentrations in the water column observed in spring were significantly (p 
< 0.05) higher than those observed in winter (Table 2). This result suggests that temperature has effects on 
methanogenesis (Table 2), which agrees with the literature [6] [8]. The same pattern was observed in samplings 
performed at the Polegar Lake in 2001 and 2002 [10], in which methane concentrations in the water column 
were also higher in spring compared to winter. Furthermore, we can observe a trophic state change in Polegar 
Lake, from oligotrophic to mesotrophic. Eutrophication of aquatic ecosystems enhances methanogenesis [31], 
which can explain the observed increase in the methane concentration of the water column in Polegar Lake: 0.19 
µM in July 2002 to 0.30 µM in July 2007. The water temperatures were similar at these time points (approxi-
mately 13˚C). 

The methane concentration in the water column was not significantly different (p > 0.05) among the sampling 
stations, and the same pattern was observed in the diffusive methane emission. Shallow aquatic ecosystems pre-
sent a highly mixed water mass due to the low water column. This finding indicates that methane released from 
the sediment into the water column (via diffusive processes) can be transported laterally from stations with 
higher methane concentrations in the sediment to the stations with low methane concentrations in the sediment. 
Total methane emission from Polegar Lake includes both diffusive and ebullitive emission. The total methane 
emission measured was highly variable and ranged from 4436 µmol∙m−2∙d−1 to 131 µmol∙m−2∙d−1 (Table 2). In 
general, diffusive emission accounted for an average of 72% of the total emission. The values measured at 
Polegar Lake are similar to those measured at other shallow ecosystems. According to [32], in shallow coastal 
lagoons of the Ivory Coast (West Africa), diffusive air-water CH4 fluxes ranged between 20 and 2403 
µmol∙m−2∙d−1. In limnetic and littoral stations, diffusive emission accounted for 99% of the total emission (Table 
3), whereas at the macrophyte station, the contribution of methane ebullition varied from 17% to 56% (Table 3). 
These results confirm the importance of temperature and the presence of emergent macrophytes for methane 
emission in aquatic ecosystems, which can be confirmed by methane emission via bubbles (Table 2). Methane 
emission via bubbles in shallow aquatic ecosystems is very important due to its major effects on the methane 
oxidation process in the water column. When crossing the water column, methane bubbles have little or no in-
fluence on methanotrophic bacteria. Further, it is important to highlight the participation of emergent macro-
phytes in methane emission via their aerenchyma. This mechanism may be responsible for up to 90% of meth-
ane emission [33]. 

The results of the current study can be explained because the accumulation of macrophyte detritus alters not 
only sediment composition but also biological activity—mainly anaerobic processes such as methanogenesis [28] 
[34]. This can be confirmed by the methane concentration in the sediment (Table 1). Macrophyte OM accumu-
lated in the sediment (via detritus) contributes to the supply of OM through substrate production (such as acetate 
and CO2/H2) via decomposition processes, thus supporting methanogenesis [35]. In addition, methane produc-
tion also can be linked to labile carbon via root exudates [36] [37], which can increase the consumption of oxy-
gen and production of substrates for methanogenesis. These results corroborate those of other studies that also 
revealed high methane concentrations in sediment colonized by emergent macrophytes [34] [38]-[40]. 
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Table 2. Abiotic variables in the water column at Polegar Lake and air temperature. Sampling was performed in autumn 
(May), winter (July) and spring (September) of 2007 at the limnetic, littoral and macrophyte stations. The variables sampled 
were methane concentration ([CH4]), dissolved oxygen (DO), air temperature (T air), water temperature (T water), pH, con-
ductivity (Cond) and depth.                                                                                   

Date Station [CH4] DO T air T water pH Cond Depth 

  µM mg∙L−1 ˚C ˚C  µS M 

Autumn Limnetic 0.50 ± 0.2 8.2 ± 0.4 13 ± 4 15 ± 2 6.7 ± 0.4 101 ± 3 0.9 ± 0.1 

 Littoral 0.63 ± 0.2 8.3 ± 0.3 16.9 ± 2 14.6 ± 2 6.5 ± 0.3 101 ± 0.8 0.7 ± 0.1 

 Macrophyte 0.95 ± 0.5 8.2 ± 0.4 14.3 ± 4 14.8 ± 2 6.6 ± 0.1 101 ± 0.3 0.8 ± 0.1 

Winter Limnetic 0.31 ± 0.1 9.2 ± 0.4 16.2 ± 2 13.6 ± 1 6.9 ± 0.5 70 ± 0.3 1.4 ± 0 

 Littoral 0.30 ± 0.02 9.4 ± 0.2 16.2 ± 2 13.1 ± 0.3 6.6 ± 0.5 71 ± 2 1.3 ± 0.1 

 Macrophyte 0.36 ± 0.1 9.2 ± 0.3 16.3 ± 2 13.4 ± 0.3 6.8 ± 0.1 68 ± 1 1. ± 0.2 

Spring Limnetic 1.72 ± 0.4 10.2 ± 0.8 18.6 ± 0.6 17 ± 0.9 6.9 ± 0.4 58 ± 2 1.3 ± 0.1 

 Littoral 1.42 ± 0.4 9.1 ± 0.3 19 ± 0 16.9 ± 1 6.5 ± 0.2 59 ± 2 1.2 ± 0.2 

 Macrophyte 1.92 ± 0.1 9.4 ± 0.8 19 ± 0 17.1 ± 1.5 6.5 ± 0.3 59 ± 0.7 1 ± 0.2 

Mean ± standard deviation.  
 
Table 3. Methane emission by diffusive and ebullient processes. The total methane emission was obtained by the sum of 
these two processes. Sampling was performed in May, July and September of 2007 at the limnetic, littoral and macrophyte stations.          

Date 

  Station  

 Limnetic Littoral Macrophyte 

  µmol∙m−2∙day−1  

Autumn Ebullient 1.44 ± 1.57 0.20 ± 0.04 162 ± 139 

 Diffusive 372 ± 45 491 ± 90 780 ± 216 

 Total 373 492 942 

Winter Ebullient 0.17 ± 0.13 0.12 ± 0.04 80 ± 17 

 Diffusive 139 ± 40 131 ± 11 163 ± 59 

 Total 139 131 243 

Spring Ebullient 12 ± 18 2.2 ± 1.05 2498 ± 1068 

 Diffusive 1673 ± 534 1472 ± 462 1938 ± 762 

 Total 1685 1474 4436 

Mean ± standard deviation.  
 

However, the presence of emergent macrophytes can also inhibit methanogenesis via the oxidation of sedi-
ment. During this process, there is an input of atmospheric oxygen to the rhizosphere, which can also increase 
methane oxidation [33] [41] due to the high concentration of methane and oxygen in this microcosm. This proc-
ess can explain the high methane concentrations in sediment at the limnetic station (Table 1) despite its lower 
OM concentration when compared to the macrophyte station (Table 1). At the limnetic station, which lacks 
macrophytes but has a higher concentration of OM in sediment compared with the littoral station, the methane 
oxidation process might make a smaller contribution than it does at the macrophyte station. In sediment colo-
nized by macrophytes, the autotrophic activity of this community can both explain the inhibition of methane 
production and favor methane oxidation. In temperate shallow aquatic systems, studies with macrophytes sug-
gest that progressively higher amounts of oxygen are transferred to roots in the winter-summer shift [42]. This 
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finding can explain the higher contribution of methane emission by bubbles during the winter period, when 
lower temperatures were observed in the present study, in relation to the diffusive process. 

4. Conclusion 
Our hypotheses were accepted because we concluded that emergent macrophytes at Polegar Lake, including 
Schoenoplectus californicus as a dominant species, were very important for 1) OM input to sediment and an-
aerobic activity of this compartment and 2) methane emission via bubbles in this aquatic ecosystem. Further, we 
could confirm the positive effects of temperature on methane emission, mainly via bubbles. 
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