
Applied Mathematics, 2015, 6, 304-311
Published Online February 2015 in SciRes. http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62028

How to cite this paper: Kalinkin, A., Anders, A. and Anders, R. (2015) Schur Complement Computations in Intel® Math Ker-
nel Library PARDISO. Applied Mathematics, 6, 304-311. http://dx.doi.org/10.4236/am.2015.62028

Schur Complement Computations in Intel®
Math Kernel Library PARDISO
Alexander Kalinkin, Anton Anders, Roman Anders
Intel Corporation, Software and Services Group (SSG), Novosibirsk, Russia
Email: alexander.a.kalinkin@intel.com, anton.anders@intel.com, roman.anders@intel.com

Received 11 January 2015; accepted 29 January 2015; published 5 February 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper describes a method of calculating the Schur complement of a sparse positive definite
matrix A. The main idea of this approach is to represent matrix A in the form of an elimination tree
using a reordering algorithm like METIS and putting columns/rows for which the Schur comple-
ment is needed into the top node of the elimination tree. Any problem with a degenerate part of
the initial matrix can be resolved with the help of iterative refinement. The proposed approach is
close to the “multifrontal” one which was implemented by Ian Duff and others in 1980s. Schur
complement computations described in this paper are available in Intel® Math Kernel Library
(Intel® MKL). In this paper we present the algorithm for Schur complement computations, expe-
riments that demonstrate a negligible increase in the number of elements in the factored matrix,
and comparison with existing alternatives.

Keywords
Multifrontal Method, Direct Method, Sparse Linear System, Schur Complement, HPC, Intel® MKL

1. Introduction
According to F. Zhang [1], the term “Schur complement” was used first by E. Haynsworth [2]. Haynsworth
chose this term because of the lemma (Schur determinant lemma) in the paper [3] that was edited by Schur him-
self. In spite of matrix 1A BD C−− being used in this lemma as a secondary term, later this matrix came to play
an important role in mathematical algorithms as the Schur complement. It is denoted as () 1

locA D A BD C−= − .
For example, in mathematical statistics, the Schur complement matrix is important in computation of the proba-
bility density function of multivariate normal distribution, and in computational mechanics the Schur comple-
ment matrix correlates to media stiffness.

Partial solving of systems of linear equations plays an important role in linear algebra for implementation of

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62028
http://dx.doi.org/10.4236/am.2015.62028
http://www.scirp.org
mailto:alexander.a.kalinkin@intel.com
mailto:anton.anders@intel.com
mailto:roman.anders@intel.com
http://creativecommons.org/licenses/by/4.0/

A. Kalinkin et al.

305

efficient preconditioners based on domain decomposition algorithms. Partial solutions usually involve sparse
matrices. For this reason Schur complement computations and partial solving have been implemented in Intel®
Math Kernel Library (Intel® MKL) [4]. This paper covers the ideas behind the implementation.

There are a number of papers that focused on efficient implementation of the Schur complement. As example,
Aleksandrov and Samuel [5] in their paper proposed algorithm to calcluate the Schur complement for Sparse
system. Yamazaki and Li published an idea [6] of how to implement Schur complement efficiently on cluster.
And we need to mention MUMPS solver [7] that integrated the Schur complement computation a few years ago.

Intel® MKL PARDISO [4] can be considered as one of the multifrontal methods that have been proposed by
Duff [8] and further expanded by Liu [9]. This method is divided into three stages. First, the initial matrix un-
dergoes a reordering procedure like the one developed by Karypis [10] [11] in order to represent it in the form of
a dependency tree. Then symbolic factorization takes place, where the total number of nonzero elements is
computed in LDU decomposition. And finally, factorization of the permuted matrix in the LDU form is per-
formed like the factorization proposed in Amestoy [12]-[16]. In the last stage, both forward and backward subs-
titutions are implemented to compute a solution for the two triangular systems.

The proposed implementation of the Schur complement continues the work of the authors in the area of mul-
tifrontal direct sparse solvers. In Kalinkin [17], the basic algorithm was implemented for symmetric, positive
definite matrices. In the presentations [18] and [19], the proposed algorithm was significantly improved by ba-
lancing the dependency tree. In [20], the algorithm was expanded to non-positive definite matrices and non-
symmetric matrices. In this paper, we propose to move all matrix elements that correlate to Schur complement to
the top of the dependency tree in order to improve parallelization of computations.

Let A be a symmetric positive definite sparse matrix (the symmetry and positive definiteness of the matrix is
set in order to simplify the algorithm description avoiding the case of degenerate matrix minors):

T

,locA B
A

B C
 

=  
 

 (1)

where locA and C are square sparse positive definite matrices, and B is a sparse rectangular matrix. Then we
can make the following decomposition, which is similar to a Cholesky decomposition of matrix A:

T T
11 11 12

12

0 0
,

0 0
L I L L

A
L I S I

    
= ∗ ∗    

    
 (2)

where
T T 1 T

11 11 12 11; ; .loc locA L L B L L S C BA B−= = = −

The matrix ()locS A A= is the Schur complement. The general approach to computing the Schur comple-
ment based on this formula and mathematical kernels can be expressed in the form of pseudocode:

Algorithm 1. Simple Schur complement computational algorithm.

1) Calculate decomposition of T
11 11locA L L= with the factorization step of the direct solver;

2) Calculate 1 T
temp locB A B−= with the solving step applied to multiple right-hand sides;

3) Calculate temp tempC BB= as sparse-dense matrix-matrix multiplication;

4) Calculate tempS C C= − as a difference.

This algorithm has several significant disadvantages that can form barriers for its implementation for large

sparse systems. The main disadvantage is in the step 2 of Algorithm 1 involving the conversion of sparse matrix
BT into a dense matrix, which requires allocating a lot of memory for storing temporary data. Also, if we con-
sider BT as a dense matrix a large number of zero elements are processed in multiplication 1

locA− BT, which
would make this step one of the most computational intensive parts of the algorithm and would significantly in-
crease the overall computational time. To prevent this, we propose the following algorithm based on the multi-
frontal approach which calculates the Schur complement matrix first, and then the factorization of the matrix A
without significant memory requirements for the computations to proceed.

A. Kalinkin et al.

306

2. Schur Complement Computational Algorithm
As in the papers [17]-[20], consider a sparse symmetric matrix Aloc as in the left of Figure 1, where each shaded
block is a sparse sub-matrix and each white block is a zero sub-matrix. Using reordering algorithm procedures
[10] [11], this matrix can be rotated to the pattern shown in the right of Figure 1. A reordered matrix is more
convenient for computations than the initial one since Cholesky decomposition can start simultaneously from
several entry points (for the matrix on the right of Figure 1, the first, second, fourth, and fifth rows of the matrix
L can be calculated independently.

Let us append the original matrix Aloc stored in the sparse format with zeroes so that its nonzero pattern
matches completely that of the matrix L. The elements of L in row 3 can be computed only after the elements in
rows 1 and 2 are computed; similarly, element in row 6 can be computed only after elements in rows 4 and 5 are
computed. The elements in the 7th row can be computed last. This allows us to construct the dependency tree
[10] [11]: a graph, where each node corresponds to a single row of the matrix and each graph node can be com-
puted only if its children (nodes on which it depends) are computed. A deeper discussion of the algorithm with
pseudocode of the distribution of nodes of the tree between processes can be found in [17]. The dependency tree
for the matrix is given in Figure 2 (the number in the center of a node shows the row number).

Such a representation allows us to modify Algorithm 1 using the following notation: node Zj is a child of Zi if
Zj resides lower than Zi in the dependency tree (Figure 2) and there is a connection from Zj to Zi.

Algorithm 2. LLT decomposition based on the dependency tree.

1) locL A=

2) for i = 1, number_of_tree_nodes do

3)

Zi = node of tree;

4) for all Zj child of Zi do

5)

,i j j i jZ Z mask Z= ∗ prepare update of Zi by j-th child;

6) ,i i i jZ Z Z= − ;

7) end

8) Calculate LLT decomposition of Zi;

9) end

where by maskiZj we denote a submatrix built as intersection of columns corresponding to node Zi with rows
corresponding to node Zj. In terms of representation in the right of the Figure 1 that would mean the ij-th square.

To calculate the Schur complement let us add to the representation in the columns and rows of matrices B, BT,
and C to achieve full representation of matrix A as in left part of the Figure 3. As one can see, we achieve simi-
lar representation to the Figure 2 with additional rows corresponding to those of matrices B and C in Figure 3

Figure 1. Nonzero pattern of the original matrix (left) and of the same
matrix after reordering (right).

A. Kalinkin et al.

307

Figure 2. Dependency tree sample.

Figure 3. Nonzero pattern of matrix A after reordering of Aloc
(left) and its tree representation (right).

(right). Note that blocks corresponding to the columns and rows of matrices BT, B, and C are sparse. After facto-
rization of the full matrix A the number of nonzero elements there increases significantly, but our experiments
show that the blocks remain sparse and do not become dense.

Let’s introduce the following notation: iZ is Zi node of the tree expanded by the corresponding rows of the
matrix BT, ZC is a node of the tree corresponding to the matrix C. Then we can modify Algorithm 2 to take into
account the elements of matrices B, BT, and C.

Algorithm 3. LLT decomposition based on the dependency tree.

1) L = A;

2) parallel for i = 1, number_of_tree_nodes do

3)

iZ = node of tree;

4) for all jZ child of iZ do

5)

,i j j i jZ Z mask Z= ∗   prepare update of iZ by j-th child;

6) ,i i i jZ Z Z= −   ;

7) end

8) Calculate LLT decomposition of iZ ;

9) end

10) for j = 1, number_of_tree_node do

11)

,C j j C jZ Z mask Z= ∗  prepare update of ZC by j-th child;

12) ,C C C jZ Z Z= − ;

13) end

This algorithm produces CZ S= . In fact, the Algorithm 3 fully corresponds to the simple Algorithm 2

without calculations of the LLT decomposition of the last submatrix.
The approach proposed can be implemented on a parallel computers with a small modification of Algorithm

3.

A. Kalinkin et al.

308

Algorithm 4. Parallel implementation of LLT decomposition based
on the dependency tree.

1) L = A;

2) for i = 1, number_of_tree_nodes do

3)

iZ = node of tree;

4) for all jZ child of iZ do

5)

,i j j i jZ Z mask Z= ∗   prepare update of iZ by j-th child;

6) atomic ,i i i jZ Z Z= −   ;

7) end

8) Calculate LLT decomposition of iZ ;

9) end

10) parallel for j = 1, number_of_tree_node do

11)

,C j j C jZ Z mask Z= ∗  prepare update of ZC by j-th child;

12) atomic ,C C C jZ Z Z= − ;

13) end

Approach presented in Algorithm 4 allows us to implement the Schur complement of sparse matrix in Intel®

Math Kernel Library.

3. Experiments
For all experiments we used a compute node with two Intel® Xeon® processors E5-2697 v3 (35MB cache, 2.60
GHz) with 64GB RAM, MUMPS version 4.10.0 [7], Intel MKL 11.2 Update 1 [4].

Figure 4 shows a cubic domain in which we apply seven-point approximation for a Laplace operator with
mesh size 70nx ny nz= = = to generate matrix A, and its cut-off through one of the axes as a domain for which
we want to calculate the Schur complement (Figure 4 (left)).

Figure 4 shows the portrait of matrix A before factorization (center) and the portrait of matrix L after factori-
zation (right). One can see that the sparsity of L in the Schur complement columns decreased versus the sparsity
of the part of L that corresponds to matrix Aloc, though it stays sparse and overall the number of nonzero ele-
ments increases slightly. For this test, we see that the number of nonzero elements is only five percent higher in
the case when we calculate the Schur complement (Algorithm 3) compared to the case without Schur comple-
ment calculations (straight factorization).

In Figure 5 and Figure 6 we compare the performance of the implemented functionality with the similar
functionality provided by the MUMPS package [7]. We compare the time needed to compute Schur complement
matrix and return it in the dense format. The last 5000 rows and columns of the matrices presented are chosen
for Schur complement computations.

For Figure 5 we chose 2 matrices from Florida Matrix collection [21]: Fault_639 with about 600 K rows and
columns and 27 M nonzero elements, and Serena with 1.3 M rows and columns and 64 M nonzero elements. On
the x axis we plotted the number of threads on the compute node used for computation of the Schur complement.
One can see that the time for computing Schur complement is almost the same for a small number of threads,
but the time needed for Intel MKL PARDISO solver decreases when the number of threads increases.

For Figure 6 we chose 2 matricesfrom Florida Matrix collection [21]: Geo_1438 with about 1.4 M rows and
columns and 602 M nonzero elements, and Flan_1565 with 1.5 M rows and columns and 114 M nonzero ele-
ments. As before, on the x axis we plotted the number of threads on the compute node used for computation of
the Schur complement. Notice that overall picture does not change significantly. The main difference between
this set of matrices and the previous one is in sparsity—average number of nonzero elements per row. In the first
set of experiments (Fault_639 and Serena) we used sparse matrices with fewer than 50 nonzero elements per

A. Kalinkin et al.

309

Figure 4. A domain with a dividing plane corresponding to Schur submatrix (left), portraits of the matrix before (center)
and after factorization (right).

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance
of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, refer to
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html Refer to our Optimization Notice for more
information regarding performance and optimization choices in Intel software products at:
http://software.intel.com/enru/articles/optimization-notice/

Figure 5. Schur complement computational time for matrices Fault 639 and Serena with Intel MKL PARDISO and
MUMPS.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance
of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, refer to
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html Refer to our Optimization Notice for more
information regarding performance and optimization choices in Intel software products at:
http://software.intel.com/enru/articles/optimization-notice/

Figure 6. Schur complement computational time for matrices Geo 1438 and Flan 1565 with Intel® MKL PARDISO and
MUMPS.

http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html
http://software.intel.com/enru/articles/optimization-notice/
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html
http://software.intel.com/enru/articles/optimization-notice/

A. Kalinkin et al.

310

row on average, while the sparsity of Flan_1565 is about 70 nonzero elements per row and the sparsity of
Geo_1438 is more than 400 nonzero elements per row. In both cases the time for Schur complement computa-
tions is almost the same when the number of threads is small for the Intel MKL and MUMPS, but the time
needed for Intel MKL PARDISO solver significantly decreases when the number of threads increases. Moreover,
comparison of Figure 5 and Figure 6 indicates that the performance of Intel MKL PARDISO becomes better if
sparsity increases.

4. Conclusion
We demonstrated an approach that calculates the Schur complement for a sparse matrix implemented in Intel
Math Kernel Library using the Intel MKL PARDISO interface. This implementation allows one to use a Schur
complement for sparse matrices appearing in various mathematical applications, from statistical analysis to al-
gebraic solvers. The proposed approach shows good scalability in terms of computational time and better per-
formance than similar approaches proposed elsewhere.

References
[1] Zhang, F. (2005) The Schur Complement and Its Applications, Series: Numerical Methods and Algorithms, Vol. 4,

Springer, USA.
[2] Haynsworth, E.V. (1968) On the Schur Complement. Basel Mathematical Notes, BMN 20, 17 p.
[3] Schur, I. (1986) On Power Series Which Are Bounded in the Interior of the Unit Circle, Series: Operator Theory: Ad-

vances and Applications, Birkhauser, Basel, Vol. 18, 31-59.
[4] Intel Math Kernel Library http://software.intel.com/en-us/intel-mkl
[5] Aleksandrov, V. and Samuel, H. (2010) The Schur Complement Method and Solution of Large-Scale Geophysical

Problems. Bayerisches Geoinstitut (BGI). http://karel.troja.mff.cuni.cz/documents/2010-ML-Aleksandrov.pdf
[6] Yamazaki, I. and Li, S.X. (2010) On Techniques to Improve Robustness and Scalability of the Schur Complement

Method. 9th International Conference on High Performance Computing for Computational Science, Berkeley, 22-25
June 2010, 14 p.

[7] MUMPS http://mumps.enseeiht.fr/
[8] Duff, I.S. and Reid, J.K. (1983) The Multifrontal Solution of Indefinite Sparse Symmetric Linear. ACM Transactions

on Mathematical Software, 9, 302-325. http://dx.doi.org/10.1145/356044.356047
[9] Liu, J.W.H. (1992) The Multifrontal Method for Sparse Matrix Solution: Theory and Practice. SIAM Review, 34, 82-

109. http://dx.doi.org/10.1137/1034004
[10] Karypis, G. and Kumar, V. (1996) Parallel Multilevel Graph Partitioning. Proceedings of the 10th International Paral-

lel Processing Symposium, Honolulu, 15-19 April 1996, 314-319.
[11] Karypis, G. and Kumar, V. (1998) A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering.

Journal of Parallel and Distributed Computing, 48, 71-85 http://dx.doi.org/10.1006/jpdc.1997.1403
[12] Amestoy, P.R., Duff, I.S., Pralet, S. and Voemel, C. (2003) Adapting a Parallel Sparse Direct Solver to Architectures

with Clusters of SMPs. Parallel Computing, 29, 1645-1668. http://dx.doi.org/10.1016/j.parco.2003.05.010
[13] Amestoy, P.R., Duff, I.S. and Vomel, C. (2005) Task Scheduling in an Asynchronous Distributed Memory Multifron-

tal Solver. SIAM Journal on Matrix Analysis and Applications, 26, 544-565.
http://dx.doi.org/10.1137/S0895479802419877

[14] Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006) Hybrid Scheduling for the Parallel Solution of
Linear Systems. Parallel Computing, 32, 136-156. http://dx.doi.org/10.1016/j.parco.2005.07.004

[15] Amestoy, P.R. and Duff, I.S. (1993) Memory Management Issues in Sparse Multifrontal Methods on Multiprocessors.
International Journal of High Performance Computing Applications, 7, 64-82.
http://dx.doi.org/10.1177/109434209300700105

[16] Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J. (2001) A Fully Asynchronous Multifrontal Solver Using
Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis and Applications, 23, 15-41.
http://dx.doi.org/10.1137/S0895479899358194

[17] Kalinkin, A. (2013) Intel Direct Sparse Solver for Clusters, a Research Project for Solving Large Sparse Systems of
Linear Algebraic Equations on Clusters. Sparse Days Meeting 2013 at CERFACS, Toulouse, 17-18 June 2013.
http://www.cerfacs.fr/6-27085-Sparse-Days-2013.php

http://software.intel.com/en-us/intel-mkl
http://karel.troja.mff.cuni.cz/documents/2010-ML-Aleksandrov.pdf
http://mumps.enseeiht.fr/
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1137/1034004
http://dx.doi.org/10.1006/jpdc.1997.1403
http://dx.doi.org/10.1016/j.parco.2003.05.010
http://dx.doi.org/10.1137/S0895479802419877
http://dx.doi.org/10.1016/j.parco.2005.07.004
http://dx.doi.org/10.1177/109434209300700105
http://dx.doi.org/10.1137/S0895479899358194
http://www.cerfacs.fr/6-27085-Sparse-Days-2013.php

A. Kalinkin et al.

311

[18] Kalinkin, A. (2013) Sparse Linear Algebra Support in Intel Math Kernel Library. Sparse Linear Algebra Solvers for
High Performance Computing Workshop, Scarman House, University of Warwick, 8-9 July 2013.
http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/linear solvers/programme/

[19] Kalinkin, A. and Arturov, K. (2013) Asynchronous Approach to Memory Management in Sparse Multifrontal Methods
on Multiprocessors. Applied Mathematics, 4, 33-39. http://dx.doi.org/10.4236/am.2013.412A004

[20] Kalinkin, A., Anders, A. and Anders, R. (2014) Intel® Math Kernel Library Parallel Direct Sparse Solver for Clusters.
EAGE Workshop on High Performance Computing for Upstream, Chania, Crete, 7-10 September 2014.
http://www.eage.org/events/index.php?evp=12682&ActiveMenu=2&Opendivs=s3
http://dx.doi.org/10.3997/2214-4609.20141926

[21] Davis, T.A. and Hu, Y. (2011) The University of Florida Sparse Matrix Collection. ACM Transactions on Mathemati-
cal Software, 38, 1:1-1:25. http://www.cise.ufl.edu/research/sparse/matrices

http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/linear%20solvers/programme/
http://dx.doi.org/10.4236/am.2013.412A004
http://www.eage.org/events/index.php?evp=12682&ActiveMenu=2&Opendivs=s3
http://dx.doi.org/10.3997/2214-4609.20141926
http://www.cise.ufl.edu/research/sparse/matrices

http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Schur Complement Computations in Intel® Math Kernel Library PARDISO
	Abstract
	Keywords
	1. Introduction
	2. Schur Complement Computational Algorithm
	3. Experiments
	4. Conclusion
	References

