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Abstract 
The compressible miscible displacement in a porous media is considered in this paper. The prob-
lem is a nonlinear system with dispersion in non-periodic space. The concentration is treated by a 
characteristics collocation method, and the pressure is treated by an orthogonal collocation me-
thod. Optimal order estimates are derived. 
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1. Introduction 
The mathematical controlling model for compressible miscible displacement in porous media with dispersion is 
given by  

( ) ( ) [ ( ) ] , ( , ) , (0, ]p pd c u d c a c p q x y t T
t t

∂ ∂
+∇ ⋅ = −∇ ⋅ ∇ = ∈Ω ∈

∂ ∂
             (1) 

 ( ) ( ( ) ) ( ) , ( , ) , (0, ].c pb c u c D u c c c q x y t T
t t

ϕ ∂ ∂
+ + ⋅∇ −∇ ⋅ ∇ = − ∈Ω ∈

∂ ∂
              (2) 

where 1 21 ,c c c= = −  ( ) ( , , ) ( , ) / ( ),a c a x y c k x y cµ= =  
2

1 1
1

( ) ( , , ) ( , ) { },j j
j

b c b x y c x y c z z cϕ
=

= = −∑  

2

1
( ) ( , , ) ( , ) .j j

j
d c d x y c x y z cϕ

=

= = ∑  jc  and jz  denote the concentration and constant compressibility factor for 

the i component of the fluid mixture respectively. Let (0,1) (0,1)Ω = ×  with the boundary ∂Ω , ( , , )p x y t  the 
pressure in the mixture, u is the Darcy velocity of the fluid, and ( , , )c x y t  is the relative concentration of the 
injected fluid. ( , )k x y  and ( , )x yϕ  are the permeability and the porosity of porous media, ( )cµ  is the vis-
cosity of the fluid. ( ) { | | ( ( ) ( ))}m l tD u d I u d E u d E uϕ ⊥= + + +  are the molecular dissipation and dispersion 
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terms, where , ,m l td d d  are the molecular dissipation, longitudinal and tangential dispersion coefficients. I is a 2 
unit matrix, 2

2 2( ) ( / | | )k lE u u u u ×=  is a matrix representing orthogonal projection along the velocity vector and 
( ) ( )E u I E u⊥ = −  is the complementary projection. q and c  etc. refer to the definition and significance of [1] 

[2]. 
We shall assume that no flow occurs across the boundary 

0, ( ) 0, ( , ) ,u v D u c v x y= ∇ ⋅ = ∈∂Ω                               (3) 

where v is the outer normal to ∂Ω , and the initial conditions are 

0 0( , ,0) ( , ), ( , ,0) ( , ), ( , ) ,p x y p x y c x y c x y x y= = ∈Ω                     (4) 

The compressible flow problems are strongly nonlinear coupling system for partial differential equations of 
two different types, and we consider the system with dispersion in non-periodic space, so these factors lead to 
many difficulties for convergence analysis of algorithms. The collocation methods are widely used for solving 
practice problems in engineering due to its easiness of implementation and high-order accuracy. But the most 
parts of mathematical theory focused on one-dimensional or two-dimensional constant coefficient problems [3] 
[4]. [5] proposes the collocation method of two-dimensional variable coefficients elliptic problems. The charac-
teristics collocation scheme for the incompressible flow is given in [6]. The characteristics finite element me-
thod for the compressible miscible flow is proved in [7]. In the paper we shall use different technique to treat 
different types of equations, the orthogonal collocation methods solve the pressure equation and the characteris-
tics collocation scheme approximate the concentration equation. We develop some technique to analyze con-
vergence of these algorithms for this strongly nonlinear system with dispersion in non-periodic space. Finally 
we can obtain the optimal order error estimate. We shall assume the coefficients ( ), ( ), ( ),a c D u b c  ( , ), ( )x y d cϕ  
etc. and their partial derivatives have positive upper and lower bounds independently as well as smoothly. 
Throughout, the symbols K and ε  will denote, respectively, a generic constant and a generic small positive 
constant. 

The organization of the rest of the paper is as follows. In Section 2, we will present the formulation of the 
characteristic collocation scheme for nonlinear system (1) (2). In Section 3, we will analyze convergent rate of 
the scheme defined in Section 2.  

2. Characteristic Collocation Scheme (CCS)  
2.1. Preliminaries  
In this subsection, we will give some basic notations and definition for the characteristics collocation methods, 
which will be used in this article. We make the partition of the domain Ω , which is quasi-uniform and equally 
spaced rectangular grid by xh  and yh  steps along x-direction and y-direction. Let  

0 1: 0 1;
xx Nx x xδ = < < < =

 0 1 1 1: 0 1, , ,
yy N x i i y j jy y y h x x h y yδ − −= < < < = = − = −  

{ } 1 1max , , ( ) ( ),x y ij i i j jh h h x x y y− −= Ω = − × −  1 1[0,1], [ ], [ ]i j
x i i y j jI I x x I y y− −= = − = − . 

Define function spaces as follows:  

( ) ( ) ( ){ }
( ) ( ){ }

1
1 3

1, 1

3, | , 1

3, 3, , (0) (1) 0)

i
x x x

P x x

m v C I v P I i N

m v m v v

δ

δ δ

= ∈ ∈ =

= ∈ = =



, 

where 3P  denotes the set of polynomials of degree 3≤ , similarly we can define ( ) ( )1 1,3, , 3,y P ym mδ δ . Let

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, 1, 1,3, 3, 3, , 3, 3, 3, ,x y P P x P ym m m m m mδ δ δ δ δ δ= ⊗ = ⊗  then let ( )1 3,m δ  be the spaces of 
piecewise Hermite bicubics. 

Next, we take four Gauss points as collocation points in ( ): , , , 1, 2x y
ij ik jl k lξ ξΩ = , and 1

x
ik i x kx hξ ξ−= + , 

1
y
jl j y ly hξ ξ−= + , where ( ) ( )1 23 3 6, 3 3 6ξ ξ= − = + . Introduce the following summation notation: 
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( )
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||| ||| , , , 3,

||| ||| , , , 3,
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E x x y yy x

u v u v u v u u u

u Du u dx Du u dy u m

u u u dx u u dy u m

δ

δ

Ω

= = =

= + ∀ ∈

= + ∀ ∈

∫ ∫

∫ ∫

 

Let ( )3, 1 3,T mδ δ∈  be the interpolation operator of piecewise Hermite bicubics on Ω , and ( )3, 1 3,
x xT mδ δ∈  

and ( )3, 1 3,
y yT mδ δ∈  be the interpolation operators of piecewise Hermite bicubics in x and in y, respectively, 

which may be defined by 3, 3, 3, 3, 3,x y y x
T v T T v T T vδ δ δ δ δ= =  for sufficiently smooth function v. 

2.2. CCS 
In this subsection we will present the fully discrete characteristic collocation scheme for nonlinear system (1) (2) 
with dispersion term in non-periodic space. At first time [0, ]T  can be discretized: 0 10 ,nt t t T= < < < =

  

1.n nt t t −∆ = −  We consider the concentration Equation (2), let 
1

2 2 2 2
1 2u uψ ϕ = + +  , and the characteristic di-

rection associated with the operator tc u cϕ + ∇  is denoted by ( , )x yτ , hence c c u c
t

ψ ϕ
τ
∂ ∂

= + ∇
∂ ∂


. 

The Equation (2) can be put in the form  

 ( ) ( ( ) ) ( ) , ( , ) , (0, ].c pb c D u c c c q x y t T
t

ψ
τ
∂ ∂

+ −∇ ⋅ ∇ = − ∈Ω ∈
∂ ∂

                 (5) 

For (5), we use a backward difference quotient for c
τ
∂
∂

 along the characteristic line: 

1
2

1 1

2 2

( , ) ( , )

1 | | /

n n n n nc c x y c x y c c
tt u

ψ ψ ϕ
τ ϕ

− −∂ − −
≈ =

∂ ∆ ∆ + 

  

                            (6) 

where 1 11 2( , , ), ,
n n

n n n n n n nu uf ft x y t x x t y y t
ϕ ϕ

− −= = − ∆ = − ∆


    . 

So we can obtain the following discrete equation: 
1 1

1 1 1( ) ( ( ) ) ( ) 0, 1, 2 .
n n n n

n n n n nh h
h h h h

c c P Pb c D u c c c q n
t t

ϕ
− −

− − −− −
+ −∇ ⋅ ∇ − − = =

∆ ∆



  

Now that use the interpolation operator 3,T δ  and the Gauss points ( ),x y
ik jlξ ξ , we give the fully discrete cha-

racteristics collocation scheme (CCS): 
0 0

3, 0 3, 0( , ), ( , ),C T c x y P T p x yδ δ= =                              (7) 

1
1 1( ) ( ( ) ) ( , ) 0,

n n
n n n x y

ik jl
P Pd C a C P q

t
ξ ξ

−
− − −

−∇ ⋅ ∇ − = 
∆ 

                      (8) 

1 1
1 1 1( ) ( ( ) ) ( ) ( , ) 0,

n n n n
n n n n n x y

ik jl
C C P Pb C D U C C C q

t t
ϕ ξ ξ

− −
− − − − −

+ −∇ ⋅ ∇ − − = 
∆ ∆ 

           (9) 
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and 1( )n n nU a C P−= − ∇                                    (10) 

for 1 ,1 , , 1, 2,x yi N j N k l≤ ≤ ≤ ≤ =  computed in the order: at first nP  can be computed from (8), then from 
(10) and (9) we can solve nC . Because the system is non-periodic, we need to do a continuation as shown in 
Figure 1.  

We can understand the following method intuitively from above schematic diagram. When x̂  is through the 
boundary ∂Ω , we will do continuation according to specular reflection method, namely when x̂  is outside Ω , 
we do the normal from x̂  to ∂Ω , and the normal intersects ∂Ω  at Y . Then we do inner normal at Y , and 
we choose point x  so as to ˆxY xY=

, and the value of ( )c x  replaces the one of ˆ( )c x , in this way c and C 
etc. functions are certain meaning. Because c satisfies (3), the continuation is logical [7]. 

3. Convergence Analysis 
In this section we consider the existence and uniqueness of the numerical solution, and obtain the optimal error 
estimate. CCS (8) (9) can be rewritten as the discrete Galerkin method given by [3] [6] [8] 

( )
1

1 1
1,( ) ( ( ) ) , 0, 3,

n n
n n n

P
P Pd C a C P q m

t
χ χ δ

−
− −−

−∇ ⋅ ∇ − = ∀ ∈
∆

                  (11) 

( )
1 1

1 1 1
1,( ) ( ( ) ) ( ) , 0, 3,

n n n n
n n n n n

P
C C P Pb C D U C C C q Z Z m

t t
ϕ δ

− −
− − −− −

+ −∇ ⋅ ∇ − − = ∀ ∈
∆ ∆

   (12) 

We can get the following convergence conclusion for the above numerical Scheme (11) (12). 
Theorem 3.1 Suppose ( )t o h∆ = , then there exists a constant K such that, for h sufficiently small,  

/
2 2 2 8

0 0
max || || || || ( ).

T
t

T t
n n n n

n n
c C p P t K t h

∆

∆

 ≤ ≤ = 

− + − ∆ ≤ ∆ +∑  

Proof: Let 3, 3,, , , , , .c T c c C c c p T p p P p pδ δξ ζ π η= = − = − = = − = −       Subtracting (11) from the discrete 
Galerkin scheme of (1), we obtain the pressure error equation 

( )

1 1

1

1
1,

( ) , ( ( ) ),

[ ( ) ( )] , ( ) ,

( )( ), ( ( ) ),

[( ( ) ( )) ], , 3,

n n n n
t

n n n n n
t t

n
n n n n

t

n n n
P

d C d a C

d C d c d p d c d

pd c d p a c
t

a c a C p m

π χ π χ

χ η χ

χ η χ

χ χ δ

− −

−

−

〈 〉 − 〈∇ ⋅ ∇ 〉

= 〈 − 〉 − 〈 〉

∂
+〈 − 〉 + 〈∇ ⋅ ∇ 〉

∂
+〈∇ ⋅ − ∇ 〉 ∀ ∈





                     (13) 

where 
1n n

n
t

f fd f
t

−−
=

∆
, and choosing the test function nχ π=  in (13), and the right terms can be denoted 

by ' , 1, 2, ,5iT i =   in turn. For error estimate, we shall need an induction hypothesis. We assume that 

1
1|| || , 0 1,n

W
C K h n l

∞

−≤ ≤ ≤ ≤ −                             (14) 

 

 
Figure 1. Continuation. 
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We start this induction by seeing that 1 1 1 1
0 0 0 0 1|| || || || || || || ||

W W W W
C c c K hξ

∞ ∞ ∞ ∞

−≤ + ≤ ≤ ≤   for h sufficiently small. 

We shall check that if n l= , (14) is right at the end of the proof. So we get the error estimate of the pressure [6] 
[8]. 

1 1
' 2 2 2 8 2 2
* * 1

1 1 1
|| || || || || || ( || || ),

m m m
n m n n

n n n
d t d t K h t tπ π π ξ

− −

= = =

∆ + + ∇ ∆ ≤ + ∆ + ∆∑ ∑ ∑             (15) 

for ε  sufficiently small. 
Next we will consider the concentration equation, subtracting (12) from the discrete Galerkin scheme of (2),  

1

1 1 1 1 1

1

1
1 1 1 1

, ( ( ) ),

ˆˆ
, , ,

, ( ( ) ), [ ( ) ( )] ,

[ ( ) ( )] , ( ) ( )

n n
n n

n n n n n n n
n n

n n
n n n n n

n n n
n n n n n n

Z D U Z
t

c c c c cu c Z Z Z
t t t t

Z D U Z D u D U c Z
t

P P pc c q Z b C b c
t

ξ ξϕ ξ

ξ ξϕ ϕ ϕ ϕ

ζ ζϕ ζ

ξ ζ

−

− − − − −

−

−
− − − −

−
− ∇ ⋅ ∇

∆

∂ − − −
= − + ⋅∇ − + −

∂ ∆ ∆ ∆

−
− + 〈∇ ⋅ ∇ 〉 + 〈∇ ⋅ − ∇ 〉

∆

− ∂
+〈 − + + − 〉 + 〈 −

∆ ∂

 

( )1,, 3,PZ Z m
t

δ〉 ∀ ∈

    (16) 

To obtain optical estimate for ξ  we choose nZ ξ=  as test function in (16), and we denote the resulting 
right-hand side terms by , 1, 2, ,8iT i =  . And we need another induction hypothesis, we assume that 

|| || , 0 1n
L

P K n l∞∇ ≤ ≤ ≤ −                              (17) 

If 1l = , we can start the induction by (15) to get 0 0 0 1 4|| || || || || || ( t)
L L L

P p K Kh h Kπ
∞ ∞ ∞

−≤ ∇ + ∇ ≤ + + ∆ ≤ ,  

for h sufficiently small and ( )t o h∆ = . We shall check that if n l= , (17) is right at the end of the proof. Simi-
lar to the discussion in [6] [8], and the relations (15) (17) and Gronwall lemma, we can get 

2 2 8

1
max || || ( ).n

n m
K t hξ

≤ ≤
≤ ∆ +  And it can be combined with (15) to show that  

/
2 2 8

1
|| || ( )

T t
n

n
t K t hπ

∆

=

∆ ≤ ∆ +∑ . 

At last we shall check the induction hypotheses (14) and (17) 

1 1 1
2 1 1 4 1

1 1 4

|| || || || || || || || ( ( )) ,

|| || || || || || || || ( ) ,

l l l l
W W W

l l l l
L L L

C c K Kh h Kh Kh t h h

P p K Kh K Kh t h K

ξ ξ

π π
∞ ∞ ∞

∞ ∞ ∞

− − − −

− −

≤ + ≤ + ≤ + ∆ + ≤

∇ ≤ ∇ + ∇ ≤ + ∇ ≤ + ∆ + ≤





 

for h sufficiently small , and the proof is complete.  
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