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Abstract

This paper presents building one-parameter motion by complex numbers on a time scale. Firstly,
we assumed that E and E’ were moving in a fixed time scale complex plane and {0, €, ez} and

{O’,el’,e;} were their orthonormal frames, respectively. By using complex numbers, we investi-

gated the delta calculus equations of the motion on T. Secondly, we gave the velocities and their
union rule on the time scale. Finally, by using the delta-derivative, we got interesting results and
theorems for the instantaneous rotation pole and the pole curves (trajectory). In kinematics, in-
vestigating one-parameter motion by complex numbers is important for simplifying motion cal-
culation. In this study, our aim is to obtain an equation of motion by using complex numbers on
the time scale.

Keywords

Complex Numbers, Kinematic, Time Scales, Pole Curve

1. Introduction

The calculus on time scales was initiated by B. Aulbach and S. Hilger in order to create a theory that can unify
discrete and continuous analysis, [1]. Some preliminary definitions and theorems about delta derivative can be
found in the references [2]-[4].

In this study, some properties of motion in references [5]-[7] are investigated by using time scale complex
planes. We find delta calculus equations of the motion and finally we get some results about the pole curves.

2. Preliminaries

A time scale is an arbitrary nonempty closed subset of the real numbers.
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Definition 2.1. Let T be any time scale. The forward jump operator o :T — T is defined by
o(t)=inf{seT:s>t}
and the backward jump operator p:T — T is defined by
p(t)=sup{seT:s<t}, for teT

In this definition, we put inf® =supT (i.e. a(t):t, if T has a maximum t) and sup® =infT (i.e.
p(t)=t,if T has a minimum t), where ® denotes the empty set. If o (t)>t, we say that t is right-scat-
tered, while if p(t) <t we say that t is left-scattered. Points that are right-scattered and left-scattered at the
same time are called isolated. Also if t<supT and o(t) =t, then tis called right-dense, and if t>infT and
p(t) =t, then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense.

Finally, the graininess function x:T — [0,oo) is defined by

u=o(t)-t.
If f:T—R isa function, then we define the function f°:T >R by
f7(t)=f(o(t)) foral teT, ie. f*=foo.
Let us define the interior of T relativeto « which isa functionthatmaps T into T to be the set

T* ={te'}1‘:either a(t)=t or a(t)=t andt isnot isolated}

Definition 2.2. Assume f :T — T is a function and let t e T*. Then we define f*(t) to be the number (pro-
vided it exists) with the property that given any ¢ > 0, there is a neighborhood U of t (i.e. U = (t -o,t +5)rﬂl‘
for some & >0) such that

[F(e®)-f(s)]-t*(O[e(t)-s]<elo(t)-5| forallseu

We call f* (t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is delta (or Hilger) differen-
tiable on T* provided f*(t) exists forall teT*.

Theorem 2.1. Assume f :T — R isafunction and let t<T*. Then we have the following:

1) If f is differentiable at t, then f is continuous at t.

2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

fa (t) _ f (O-(:I)()t; f (t)

3) If tis right-dense, then f is differential at t if the limit

ft)-f(s)

t-s

lim

s—t

exists as a finite number. In this case a given

. f (t)— f (s)
f2(t)=1 —
( ) Ims»t t—S
4) If fis differentiable at t then

(o ()= 1O+ (0

Theorem 2.2. Assume f,g:T — R are differentiable at t € T*. Then:
1) Thesum f+g:T — R is differentiable at t with

(f+9)" ()=F*(1)+9"(1)
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2) For any constant, «,af : T — R is differentiable at t with

(af) (1) =at* (1)

3) The product fg:T — R is differentiable at t with
(fa)" () =F* (t)a(t)+f (o(t) 9" (1) =F (1) 9" (1) +1* (t) g (o (1))

4)1f f(t)f (a(t)) #0 then % is differentiable at t with

Ly ()
0= (O (o)

5)If g(t)g(o(t))=0, then é is differentiable at t with

)P g()-f(1)g* ()
(g) =5 0ele)

In the reference [3], the chain rule on time scales is given for various cases.
Theorem 2.3. Assume g:R — R is continuous, g:T — R is delta differentiable on T, and f:R —>R
is continuously differentiable. Then, there exists ¢ in the real interval [t,a(t)} with

(fe0)"(t)="F(a(c))a* (1)

Theorem 2.4. Let f:R — R be continuously differentiable and suppose g:T — R is delta differentiable.
Then fog:T — R isdelta differentiable and the formula

(129)" ()= {,1"(a(1))+hu(t)o* (t)an)g* (1)

holds.
Theorem 2.5. Assume that v:T — R is strictly increasing function and ’ﬁ‘:zv(’ﬂ‘) is a time scale. Let
w:T—>R.If v&(t) and w*(v(t)) existfor teT", then

(Wov)A = (wA ov)vA (2.1)
Definition 2.3. For the given time scales T, and T, , let us set
T, +iT, ={z=x+iy:xeT,yeT,} (2.2)

where i=+/-1 isthe imaginary unit. The set T, +iT, is called the time scale complex plane.
Definition 2.4. For h> 0, we define the cylinder transformation &, :C, - Z, by

1 Log(1+zh)

‘fh(z):ﬁ

andfor h=0,let Z,=C.
Definition 2.5. If p e R, then we define the exponential function by

e, (t,s)= exp(ﬁfﬂ(,) ( p(z‘))Ar) for s,teT

where the cylinder transformation &, (z) is introduced in Definition 2.4.

Theorem 2.6. If p, geR, then
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1) e&(t,s)=1 and e, (t,t)=1;
2 e, (c(1).5)= (L u(t) p(t))e, (t.5):

3)

(t
4) e, (t,s

6) e, (ts

)
) e

5) e, (t,s)e,(s,r)=¢e, (t,r);
) :
)

7)

1) e

8) — :

&ts) gty
Theorem 2.7. Assume o (t)>t for teT*

e, (Lt))=p(t)e, (tt)

Theorem 2.8. If p, ge R, then

epeq (L) =( p_q):‘z Et:%

Theorem29.If peR, and a, b, ceT then

[ep (c. S)]A = _p[ep (c. S)T

3. One Parameter Motion and Hilger Complex Numbers on a Time Scale

Assume that T is a time scale. Let us set the time scale complex plane for as

T+iR={z=x+iy:xeR,yeR}

(3.1)

Here, let E and E’ be moving in a fixed time scale complex plane. The motion is called as one-parameter
planar motion by the complex numbers on the time scale and denoted as H, = E/E’ for a planar motion of E
relative to E'. {0,e;,e,} and {0',e],e;} be their orthonormal frames, respectively. We suppose that {0’,e;,e;}
is fixed, then we say that {0,e;,e,} moves with respect to {0',e/,e;}, e, (i=12) are the functions of a
time scale parameter t. Let x=(x,x%,) and x'=(x/,X;) be the position vectors of a point X in the plane, as
following we can write the coordinates of the point X by using complex numbers on the time scale with respect

to a fixed or moving plane E and E’, respectively. So:

X=X +ix, and Xx'=x +ix,

The translation vector O'O can be written as the following equation on a fixed plane E’:

u=u +iu,

by using the definition of the time scale complex plane. The translation vector is more suitable as

— _
u=00"=-u, —iu,

for doing the formulas symmetric on the moving plane.

Thus, u is equivalent to the vector OO’. Let ¢ be a rotation angle between the vectors e, and e, (or

the time scale complex planes E and E'), in Figure 1. So we can find the equation



H. K. Samanci, A. Caliskan

El

Figure 1. One parameter planar motion on time scale.

u =—u[ep (t,to)o(iq)(t))] (3.2)

For any point X, the vector x' is
X' =u'+ x[ep (t,to)o(iw(t))] (3.3)
By substituting u’ in the Equation (3.3)

x'=-ule, (t.t)o(ip(t)) ]+ x[ e, (t.1,)o (in(t))]

X' =(-u+x)[ e, (tt)o(ip(t))] (3.4)
Then, we can obtain the vector x as follows:
x' , .
X=U+ =u+x[e6p(t,t0)o(|(p(t))]

(e (1) (in(1))]
Here, assume the functions
u=u(t), u'=u(t), p=9p(t)

are A -differentiable functions and the parameter t is defined as t, <t <t, onthe T time scale. We will cal-
culate the formulas for a fixed or moving plane.

Definition 3.1. A velocity vector of the point X with respect to E is called A -relative velocity vector of the
point X on the time scale. The equation of relative A -velocity vector is

dx
- = XA

== (3.5)

Ar

for the moving time scale complex plane.
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Definition 3.2. A velocity vector of the point X with respect to E is called A -relative velocity vector of the
point X on the time scale. The equation of the relative A -velocity vector is

X =Xy [ &, (t15) (i (1))] (3.6)
=x"[e, (t.t;)(ip(1))] 3.7)

for the fixed time scale complex plane.

Definition 3.3. A velocity vector of the point X with respect to the time scale complex plane E' on the
planar motion H, = E/E’ which belongs to a curve (X’) of the point X' on E' is called the A -absolute
velocity vector of the point X on the time scale and is denoted by x,, .

Definition 3.4. On the planar motion H, =E/E’, while the point X is fixed on the moving time scale
complex plane E (i.e. x, =0), a velocity vector of the point X is called the A -dragging velocity vector of
this point on the time scale and is denoted by x,; .

So, we obtain the A -absolute velocity x,,, i.e. the velocity of X with respect to the plane E', from the
Equation (3.4) using Equation (3.2).

Xl =%: x* = {(—u+ x)[ep (t,to)O(i(p(t))]}A
= {~u[e, (tt)o(ip() ]+ x[e, (L) o (in(t)) ]}

by Theorem 2.5. Also

Xia = X" e (L) o(ig (1)) J+ U™+ x [ €5 (1)« (i(1)) [ig" (1)
and using Theorem 2.7, we have

Xy = x*[e, (tty)o (i (t) ]+ u™ + x* [ pe, (t.t,)o (i (t)) Jio (t)

Here, ¢" is called a delta-angular velocity of the motion H, on a time scale, and remembering Equations
(3.3) and (3.7), we can find the dragging velocity vector x,, of the point X

Xy = U™ +ip* (1) x7[ pre, (tt)o(ip(t))] (3.8)
=u"* +ipe® (t)(x"’—u"’) (3.9)

with the restriction ¢* # 0, from Equation (3.2) by taking the A -derivative with respect to the parameter t, we
get the following equation.

ur [_uep (t,to)o(i(/’(t))]A

=-u*[e, (tt)o(ip(t))]-u7[e, (t.t)o(ip(t))]

= u e, (1) i ()] -7 [} ()= (10(0) Jio® (1)
=-u*[e, (tty)o(ip(t))]-u” [ pe, (t.t,)o(ig(t)) Jig* (1)
=-u*[e, (t.t)o(ip(t))|-ipp® (t)u7 e, (t.t)) o (ip(1)) ]

and using Equation (3.2), we get
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u =-u® [ep(t,tO)O(i¢(t))]+ip¢A (tyu” (3.10)

Theorem 3.1. A A -absolute velocity vector is equal to adding a A -relative velocity vector and A -dragging
velocity vector on the motion H, =E/E’, i.e.

Xaa = Xap + Xy (3.11)
Proof. By using Equation (3.10) and Equation (3.5), we can get the following equations:
Xoa = Xia [0 (1) (i0(1))]
={x* [, (Lt )o(ig(1)) |+ u™ +x7[ pe, (1.8 )o (ig()) ig® (1)} [ e, (tt) o (i (1)) ]
=x*+u™ [eep (t,to)o(iw(t))]+ pX“ig(t)

and thus, we get the relation of the velocities:
We have
Xy =Xy [&, (L) (in(1)]
We will calculate x,, here using Equation (3.9) and Equation (3.10);
Xy ={u” +ipp (6)(x7 —u” e ()i (t))J
=u’A[e0 (tt )O(igo(t))JHp(o )(x'7 —u" [ )o gp(t))}
={-u*[e, (tts)o(in(1) | +ipo* ()u e, () ( (t))]
+ipp® ()% {[e, (L) ( t))] ing® (t)u}[e., (tt;)e(io(t)]
=-u" +ipp* ( "’[e )]
and
X =-U" +ipep® (t)(x“—u") (3.12)

Theorem 3.2. There is only one point at which the A -dragging velocity is zero for any instant te T, i.e.
which is fixed on the both of the planes E and E’, with the restriction ¢" =0 onthe motion H, =E/E’.

Proof. The points at which the A -dragging velocity vector is zero for any instant t<T have to stay fixed
for not only the plane E, but also for the plane E’ on the motion H, =E/E’. By taking x,, =X, =0 for
fixed and moving planes, from (3.15) and (3.8):

X, =-Uu* +ipp" (t)(x"—u")zo (3.13)
X}, = U™ +ipp” (t)(x"’ - u"’): 0 (3.19)
we can obtain the following complex vectors;
uA
P? =u° +i (3.15)
pe” (1)
u/A
P'? =u" —i (3.16)
pe” (t)
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which are given o -instantaneous rotation pole P on both coordinate systems. Because, the affine axioms P,
P’ are the end-points of X7, X'7, respectively.

Definition 3.5. The point P° which corresponds to the position vector P° :(pf, pg’) is called the for-
ward pole or the instantaneous rotation pole or the instantaneous rotation center for the moving plane on the
time scale motion H,, in Figure 2.

Definition 3.6. The point P’® which corresponds to the position vector P'c = ( P, p;") is called the for-
ward pole or the instantaneous rotation pole or the instantaneous rotation center for the fixed plane on the time
scale motion H,, in Figure 2.

We can get the following equations from Equation (3.15) and Equation (3.16):

u* =ipe* (t)(P" —u") (3.17)
U™ = —ipg* (t)(P"" —u") (3.18)

By eliminating u* and u'® from Equation (3.13) and Equation (3.14), the dragging velocity becomes as
following:

Xy =ipp” (t)(x"—P") (3.19)
=ipp" (t)P7x” (3.20)
and,;
X =ipp” (t)(x"’ - P’C’)
=ipe" (t)P"7x".
4. Conclusions

Result 4.1. Two results for the A -dragging velocity of the point X on the moving plane can be obtained as
follows:

Figure 2. The pole curve on time scale.
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1) Since scalar product of the vector is
PoX7 =(x7 —p7 ) +i(x —p7)

and the vector x,, is zero, these vectors are perpendicular.
2) The length of the vector x, can be calculated as follows:

x| =0 07 ) +(x5 — p5) po® =[P X pr®

here [P°X“| denotes for the length of P?X? . From this result, we get the following theorem:

Theorem 4.1. On the motion H,, the points X of the moving plane E draw trajectories on the fixed time
scale complex plane E’ which their normals (trajectory normals) pass from the instantaneous rotation pole
Pe.

Theorem 4.2. Every point of X of the moving plane E is doing rotational movement (instantaneous rotation
movement) with a P? -centered, ¢" -angular velocity and p factor on instant t.

Since X is an arbitrary point of the time scale complex plane E, we can give the following theorem:

Theorem 4.3. A one-parameter motion consists of rotation with ¢" angular velocity and p factor around
the instantaneous rotation pole P¢ of the moving plane E on t instant, i.e. the plane E rotates with the angle
¢" and the factor p around the point P° on the time element At .

Theorem 4.4. The velocity vectors of the instantaneous rotation pole P“ which draws the forward pole
curves on the moving and fixed planes is the same vector at each instant t.

Theorem 4.5. On one-parameter planar motion H, the moving pole curve (P") of the plane E rolls onto
the fixed pole curve (P'?) of the plane E’ without sliding.

Result 4.2. Without being depended on time, a motion H, occurs by rolling, without sliding, the curve (P)
of E onto the curve (P’) of E'.
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