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Abstract 
This paper presents building one-parameter motion by complex numbers on a time scale. Firstly, 
we assumed that E  and ′E  were moving in a fixed time scale complex plane and { }1 20, ,e e  and 

{ }′ ′ ′1 20 , ,e e  were their orthonormal frames, respectively. By using complex numbers, we investi-
gated the delta calculus equations of the motion on  . Secondly, we gave the velocities and their 
union rule on the time scale. Finally, by using the delta-derivative, we got interesting results and 
theorems for the instantaneous rotation pole and the pole curves (trajectory). In kinematics, in-
vestigating one-parameter motion by complex numbers is important for simplifying motion cal-
culation. In this study, our aim is to obtain an equation of motion by using complex numbers on 
the time scale. 
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1. Introduction 
The calculus on time scales was initiated by B. Aulbach and S. Hilger in order to create a theory that can unify 
discrete and continuous analysis, [1]. Some preliminary definitions and theorems about delta derivative can be 
found in the references [2]-[4]. 

In this study, some properties of motion in references [5]-[7] are investigated by using time scale complex 
planes. We find delta calculus equations of the motion and finally we get some results about the pole curves. 

2. Preliminaries 
A time scale is an arbitrary nonempty closed subset of the real numbers. 
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Definition 2.1. Let   be any time scale. The forward jump operator :σ →   is defined by 

( ) { }: inf :t s s tσ = ∈ >  

and the backward jump operator :ρ →   is defined by 

( ) { }: sup : ,    for  t s s t tρ = ∈ < ∈   

In this definition, we put inf supΦ =   (i.e. ( )t tσ = , if   has a maximum t) and sup infΦ =   (i.e. 
( )t tρ = , if   has a minimum t), where Φ  denotes the empty set. If ( )t tσ > , we say that t is right-scat- 

tered, while if ( )t tρ <  we say that t is left-scattered. Points that are right-scattered and left-scattered at the 
same time are called isolated. Also if supt <   and ( )t tσ = , then t is called right-dense, and if inft >   and 
( )t tρ = , then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense. 
Finally, the graininess function [ ): 0,µ → ∞  is defined by 

( ): .t tµ σ= −  

If :f →   is a function, then we define the function :f σ →   by 

( ) ( )( )    for all   ,   . .   .f t f t t i e f fσ σσ σ= ∈ =   

Let us define the interior of   relative to α  which is a function that maps   into   to be the set 

( ) ( ){ }: either   or    and  is not isolatedk t t t t t tα α= ∈ ≠ =   

Definition 2.2. Assume :f →  is a function and let kt∈ . Then we define ( )f t∆  to be the number (pro- 
vided it exists) with the property that given any ε > 0, there is a neighborhood U of t (i.e. ( ),U t tδ δ= − + ∩  
for some 0δ > ) such that 

( )( ) ( ) ( ) ( ) ( )   for all f t f s f t t s t s s Uσ σ ε σ∆ − − − ≤ − ∈     

We call ( )f t∆  the delta (or Hilger) derivative of f at t. Moreover, we say that f is delta (or Hilger) differen-
tiable on k  provided ( )f t∆  exists for all kt∈ . 

Theorem 2.1. Assume :f →   is a function and let kt∈ . Then we have the following: 
1) If f is differentiable at t, then f is continuous at t. 
2) If f is continuous at t and t is right-scattered, then f is differentiable at t with 

( )
( )( ) ( )
( )

f t f t
f t

t
σ
µ

∆ −
=  

3) If t is right-dense, then f is differential at t if the limit 

( ) ( )
lims t

f t f s
t s→

−
−

 

exists as a finite number. In this case a given 

( ) ( ) ( )
lims t

f t f s
f t

t s
∆

→

−
=

−
 

4) If f is differentiable at t then 

( )( ) ( ) ( ) ( )f t f t t f tσ µ ∆= +  

Theorem 2.2. Assume , :f g →   are differentiable at kt∈ . Then: 
1) The sum :f g+ →   is differentiable at t with 

( ) ( ) ( ) ( )f g t f t g t∆ ∆ ∆+ = +  
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2) For any constant, , :fα α →   is differentiable at t with 

( ) ( ) ( )f t f tα α∆ ∆=  

3) The product :fg →   is differentiable at t with 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )fg t f t g t f t g t f t g t f t g tσ σ∆ ∆ ∆ ∆ ∆= + = +  

4) If ( ) ( )( ) 0f t f tσ ≠  then 1
f

 is differentiable at t with 

( ) ( )
( ) ( )( )

1 f t
t

f f t f tσ

∆ ∆ 
= − 

 
 

5) If ( ) ( )( ) 0g t g tσ ≠ , then f
g

 is differentiable at t with 

( ) ( ) ( ) ( ) ( )
( ) ( )( )

f t g t f t g tf t
g g t g tσ

∆ ∆ ∆− 
= 

 
 

In the reference [3], the chain rule on time scales is given for various cases. 
Theorem 2.3. Assume :g →   is continuous, :g →   is delta differentiable on k , and :f →   

is continuously differentiable. Then, there exists c  in the real interval ( ),t tσ    with 

( ) ( ) ( )( ) ( )f g t f g c g t∆ ∆′=  

Theorem 2.4. Let :f →   be continuously differentiable and suppose :g →   is delta differentiable. 
Then :f g →   is delta differentiable and the formula 

( ) ( ) ( )( ) ( ) ( ){ } ( )1

0
= df g t f g t h t g t h g tµ∆ ∆ ∆′ +∫  

holds. 
Theorem 2.5. Assume that :v →   is strictly increasing function and ( ): v=   is a time scale. Let 
:w →  . If ( )v t∆  and ( )( )w v t∆  exist for kt∈ , then 

( ) ( )w v w v v∆ ∆ ∆= 

                                   (2.1) 

Definition 2.3. For the given time scales 1  and 2 , let us set 

{ }1 2 1 2i i : ,z x y x y+ = = + ∈ ∈                               (2.2) 

where i 1= −  is the imaginary unit. The set 1 2i+   is called the time scale complex plane. 
Definition 2.4. For 0h > , we define the cylinder transformation :h h hξ →   by 

( ) ( )1= Log 1h z zh
h

ξ +  

and for 0h = , let 0 :=  . 
Definition 2.5. If p∈ , then we define the exponential function by 

( ) ( ) ( )( )( ), exp    for  ,
t

p s
e t s p s tµ τξ τ τ= ∆ ∈∫   

where the cylinder transformation ( )h zξ  is introduced in Definition 2.4. 
Theorem 2.6. If ,  hp q∈  then 
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1) ( )0 , 1e t s ≡  and ( ), 1pe t t ≡ ; 

2) ( )( ) ( ) ( )( ) ( ), 1 ,p pe t s t p t e t sσ µ= + ; 

3) 
( )
1 ,

, p
p

e t s
e t s

=  ; 

4) ( ) ( ) ( )1, ,
,p p

p

e t s e s t
e s t

= =  ; 

5) ( ) ( ) ( ), , ,p p pe t s e s r e t r= ; 

6) ( ) ( ) ( ), , ,p q p qe t s e t s e t s⊕= ; 

7) 
( )
( ) ( )

,
,

,
p

p q
q

e t s
e t s

e t s
=  ; 

8) 
( )

( )
( )

1
, ,p p

p t
e t s e t sσ

∆
 

= −  
 

; 

Theorem 2.7. Assume ( )t tσ >  for t κ∈  

( ) ( ) ( )0 0, ,p pe t t p t e t t∆ =  

Theorem 2.8. If ,  hp q∈  then 

( ) ( ) ( )
( )

0
0

0

,
,

,
p

p q
q

e t t
e t t p q

e t tσ
∆ = −  

Theorem 2.9. If hp∈  and ,  ,  a b c∈  then 

( ) ( ), ,p pe c s p e c s
σ∆

   = −     

3. One Parameter Motion and Hilger Complex Numbers on a Time Scale 
Assume that   is a time scale. Let us set the time scale complex plane for as 

{ }i i : ,z x y x y+ = = + ∈ ∈                              (3.1) 

Here, let E  and E′  be moving in a fixed time scale complex plane. The motion is called as one-parameter 
planar motion by the complex numbers on the time scale and denoted as 1H E E′=  for a planar motion of E 
relative to E′. { }1 20, ,e e  and { }1 20 , ,′ ′ ′e e  be their orthonormal frames, respectively. We suppose that { }1 20 , ,′ ′ ′e e  
is fixed, then we say that { }1 20, ,e e  moves with respect to { }1 20 , ,′ ′ ′e e , ie , ( )1,2i =  are the functions of a 
time scale parameter t. Let ( )1 2,x x=x  and ( )1 2,x x′ ′ ′=x  be the position vectors of a point X in the plane, as 
following we can write the coordinates of the point X by using complex numbers on the time scale with respect 
to a fixed or moving plane E  and E′ , respectively. So: 

1 2 1 2i    and   ix x x x′ ′ ′= + = +x x  

The translation vector O O′


 can be written as the following equation on a fixed plane E′ : 

1 2iu u′ ′= +u  

by using the definition of the time scale complex plane. The translation vector is more suitable as 

1 2iOO u u′= = − −


u  

for doing the formulas symmetric on the moving plane. 
Thus, u  is equivalent to the vector OO′



. Let ϕ  be a rotation angle between the vectors 1′e  and 1e  (or 
the time scale complex planes E  and E′ ), in Figure 1. So we can find the equation 
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*x ′
  

 
Figure 1. One parameter planar motion on time scale. 

 
( ) ( )( )0, ipe t t tϕ = −  u u                                 (3.2) 

For any point X , the vector ′x  is 

( ) ( )( )0, ipe t t tϕ ′ ′= +  x u x                               (3.3) 

By substituting ′u  in the Equation (3.3) 

( ) ( )( ) ( ) ( )( )0 0, i , ip pe t t t e t t tϕ ϕ   ′ = − +    x u x  

( ) ( ) ( )( )0, ipe t t tϕ ′ = − +  x u x                                    (3.4) 

Then, we can obtain the vector x  as follows: 

( ) ( )( )
( ) ( )( )0

0

, i
, i p

p

e t t t
e t t t

ϕ
ϕ

′
 ′= + = +    





xx u u x   

Here, assume the functions 

( ) ( ) ( ),    ,   t t tϕ ϕ′= = =u u u u  

are ∆ -differentiable functions and the parameter t is defined as 0 1t t t≤ ≤  on the   time scale. We will cal- 
culate the formulas for a fixed or moving plane. 

Definition 3.1. A velocity vector of the point X with respect to E is called ∆ -relative velocity vector of the 
point X on the time scale. The equation of relative ∆ -velocity vector is 

d
r t

∆
∆ = =

∆
xx x                                    (3.5) 

for the moving time scale complex plane. 
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Definition 3.2. A velocity vector of the point X with respect to E is called ∆ -relative velocity vector of the 
point X on the time scale. The equation of the relative ∆ -velocity vector is 

( ) ( )( )0, ir r pe t t tϕ∆ ∆  ′ =  x x                             (3.6) 

( ) ( )( )0, ipe t t tϕ∆  =  x                             (3.7) 

for the fixed time scale complex plane. 
Definition 3.3. A velocity vector of the point X with respect to the time scale complex plane E′  on the 

planar motion IH E E′=  which belongs to a curve ( )X ′  of the point X ′  on E′  is called the ∆ -absolute 
velocity vector of the point X on the time scale and is denoted by a∆x . 

Definition 3.4. On the planar motion IH E E′= , while the point X is fixed on the moving time scale 
complex plane E  (i.e. r∆ = 0x ), a velocity vector of the point X is called the ∆ -dragging velocity vector of 
this point on the time scale and is denoted by f∆x . 

So, we obtain the ∆ -absolute velocity a∆x , i.e. the velocity of X with respect to the plane E′ , from the 
Equation (3.4) using Equation (3.2). 

( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ){ }

( ) ( )( ){ }
( ) ( )( ) ( ) ( )( )

0

0 0

0

0 0

d , i

                        , i , i

                        , i

                        , i , i

  

a p

p p

p

p p

e t t t
t

e t t t e t t t

e t t t

e t t t e t t tσ

ϕ

ϕ ϕ

ϕ

ϕ ϕ

∆
∆

∆

∆

∆

∆∆ ∆

′
 ′ = = = − +  ∆

   = − +   

 ′= +  

   ′= + +   



 



 

xx x u x

u x

u x

u x x

( ) ( )( ) ( ) ( )( ) ( )0 0                      , i , i i .p pe t t t e t t t tσϕ ϕ ϕ∆ ∆ ∆ ∆  ′= + +   


 u x x

 

by Theorem 2.5. Also 

( ) ( )( ) ( ) ( )( ) ( )0 0, i , i ia p pe t t t e t t t tσϕ ϕ ϕ∆ ∆ ∆ ∆
∆

  ′ ′= + +   


 x x u x  

and using Theorem 2.7, we have 

( ) ( )( ) ( ) ( )( ) ( )0 0, i , i ia p pe t t t pe t t t tσϕ ϕ ϕ∆ ∆ ∆
∆    ′ ′= + +    x x u x  

Here, ϕ∆  is called a delta-angular velocity of the motion IH  on a time scale, and remembering Equations 
(3.3) and (3.7), we can find the dragging velocity vector f∆x  of the point X 

( ) ( ) ( )( )0i , if pt p e t t tσϕ ϕ∆ ∆
∆  ′= + ⋅ x u x                         (3.8) 

( )( )ip t σ σϕ∆ ∆′ ′ ′= + −u x u                                   (3.9) 

with the restriction 0ϕ∆ ≠ , from Equation (3.2) by taking the ∆ -derivative with respect to the parameter t, we 
get the following equation. 

( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )( )

0

0 0

0 0

0 0

0 0

, i

     , i , i

     , i , i i

     , i , i i

     , i i , i .

p

p p

p p

p p

p p

u e t t t

e t t t e t t t

e t t t e t t t t

e t t t pe t t t t

e t t t p t e t t t

σ

σ

σ

σ

ϕ

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

∆∆

∆∆

∆ ∆ ∆

∆ ∆

∆ ∆

 ′ = − 

   = − −   
  = − −   

   = − −   
   = − −   





 

 

 

 

u

u u

u u

u u

u u

 

and using Equation (3.2), we get 
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( ) ( )( ) ( )0, i ipu e t t t p t σϕ ϕ∆ ∆ ∆ ′ ′= − + u u                         (3.10) 

Theorem 3.1. A ∆ -absolute velocity vector is equal to adding a ∆ -relative velocity vector and ∆ -dragging 
velocity vector on the motion IH E E′= , i.e. 

a f rx x x∆ ∆ ∆= +                                     (3.11) 

Proof. By using Equation (3.10) and Equation (3.5), we can get the following equations: 

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ){ } ( ) ( )( )

( ) ( )( ) ( )

0

0 0 0

0

, i

      , i , i i , i

      , i i

      .

a a p

p p p

p

r f

e t t t

e t t t pe t t t t e t t t

e t t t p t

σ

σ

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

∆ ∆

∆ ∆ ∆

∆ ∆

∆ ∆

 ′=  

     ′= + +     

 ′= + + 
= +



  



x x

x u x

x u x

x x







 

and thus, we get the relation of the velocities: 

a r r∆ ∆ ∆= +x x x  

We have 

( ) ( )( )0, if f pe t t tϕ∆ ∆  ′=  x x   

We will calculate f∆x  here using Equation (3.9) and Equation (3.10); 

( )( ){ } ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ){ } ( ) ( )( )

( ) ( ) ( )( ) ( ){ } ( ) ( )( )

0

0 0

0 0

0 0

i , i

     , i i , i

     , i i , i

         i , i i , i

     

f p

p p

p p

p p

u p t u e t t t

u e t t t p t u e t t t

e t t t p t e t t t

p t e t t t p t e t t t

σ σ

σ σ

σ

σ σ

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

∆ ∆
∆

∆ ∆

∆ ∆

∆ ∆

∆

 ′ ′ ′= + −  

   ′ ′ ′= + −   

   ′= − +   

   ′ ′+ −   

= −



 

 

 

x x

x

u u

x u

u



 



 

( ) ( ) ( )( )0i , i .pp t e t t tσϕ ϕ∆  ′+  x 

 

and 

( )( )if p t σ σϕ∆ ∆
∆ = − + −x u x u                            (3.12) 

Theorem 3.2. There is only one point at which the ∆ -dragging velocity is zero for any instant t∈ , i.e. 
which is fixed on the both of the planes E  and E′ , with the restriction 0ϕ∆ ≠  on the motion IH E E′= . 

Proof. The points at which the ∆ -dragging velocity vector is zero for any instant t∈  have to stay fixed 
for not only the plane E , but also for the plane E′  on the motion IH E E′= . By taking 0f fx x∆ ∆′= =  for 
fixed and moving planes, from (3.15) and (3.8): 

( )( )i 0f p t σ σϕ∆ ∆
∆ = − + − =x u x u                           (3.13) 

( )( )i 0f p t σ σϕ∆ ∆
∆′ ′ ′ ′= + − =x u x u                           (3.14) 

we can obtain the following complex vectors; 

( )
iP

p t
σ σ σ

ϕ

∆

∆= = +
ux u                               (3.15) 

( )
iP

p t
σ σ σ

ϕ

∆

∆

′
′ ′ ′= = −

ux u                              (3.16) 
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which are given σ -instantaneous rotation pole P on both coordinate systems. Because, the affine axioms Pσ , 
P σ′  are the end-points of X σ , X σ′ , respectively. 

Definition 3.5. The point Pσ  which corresponds to the position vector ( )1 2,P p pσ σ σ=  is called the for- 
ward pole or the instantaneous rotation pole or the instantaneous rotation center for the moving plane on the 
time scale motion IH , in Figure 2. 

Definition 3.6. The point P σ′  which corresponds to the position vector ( )1 2,P p pσ σσ′ ′ ′=  is called the for- 
ward pole or the instantaneous rotation pole or the instantaneous rotation center for the fixed plane on the time 
scale motion IH , in Figure 2. 

We can get the following equations from Equation (3.15) and Equation (3.16): 

( )( )ip t σ σϕ∆ ∆= −u P u                                  (3.17) 

( )( )ip t σ σϕ∆ ∆′ ′ ′= − −u P u                               (3.18) 

By eliminating ∆u  and ∆′u  from Equation (3.13) and Equation (3.14), the dragging velocity becomes as 
following: 

( )( )if p t σ σϕ∆
∆ = −x x P                               (3.19) 

( )ip t σ σϕ∆= P x                                  (3.20) 

and; 

( )( )
( )

i

     i .

f p t

p t

σ σ

σ σ

ϕ

ϕ

∆
∆

∆

′ ′ ′= −

′ ′=

x x P

P x
 

4. Conclusions 
Result 4.1. Two results for the ∆ -dragging velocity of the point X  on the moving plane can be obtained as 
follows: 
 

 
Figure 2. The pole curve on time scale. 
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1) Since scalar product of the vector is 

( ) ( )1 1 2 2ix p x pσ σ σ σ σ σ= − + −P X  

and the vector f∆x  is zero, these vectors are perpendicular. 
2) The length of the vector fx  can be calculated as follows: 

( ) ( )2 2

1 1 2 2f x p x p p pσ σ σ σ σ σϕ ϕ∆ ∆
∆ = − + − =x P X  

here σ σP X  denotes for the length of σ σP X . From this result, we get the following theorem: 
Theorem 4.1. On the motion IH , the points X of the moving plane E draw trajectories on the fixed time 

scale complex plane E′  which their normals (trajectory normals) pass from the instantaneous rotation pole 
Pσ . 

Theorem 4.2. Every point of X of the moving plane E is doing rotational movement (instantaneous rotation 
movement) with a Pσ -centered, ϕ∆ -angular velocity and p factor on instant t. 

Since X is an arbitrary point of the time scale complex plane E, we can give the following theorem: 
Theorem 4.3. A one-parameter motion consists of rotation with ϕ∆  angular velocity and p factor around 

the instantaneous rotation pole Pσ  of the moving plane E on t instant, i.e. the plane E rotates with the angle 
ϕ∆  and the factor p around the point Pσ  on the time element t∆ . 

Theorem 4.4. The velocity vectors of the instantaneous rotation pole Pσ  which draws the forward pole 
curves on the moving and fixed planes is the same vector at each instant t. 

Theorem 4.5. On one-parameter planar motion IH  the moving pole curve ( )Pσ  of the plane E rolls onto 
the fixed pole curve ( )P σ′  of the plane E′  without sliding. 

Result 4.2. Without being depended on time, a motion IH  occurs by rolling, without sliding, the curve ( )P  
of E onto the curve ( )P′  of E′ . 
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