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Abstract 
A real version of the Dirac equation is derived and its coupling to the electromagnetic field consi-
dered. First the four-component real Majorana equation is briefly discussed. Then the complex 
Dirac equation including an electromagnetic field will be written as an eight-component real spi-
nor equation by separating it into its real and imaginary parts. Through this decomposition, what 
becomes obvious is the way in which the electromagnetic field couples to charged fermions (elec-
tron and positron) when being described by real spinor fields. Thus, contrary to common expecta-
tion, charged fermions can also be described by a real Dirac equation if they are considered as a 
doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromag-
netic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation. 
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1. Introduction 
In modern elementary particle physics the complex Dirac equation [1] plays a fundamental role and is used in 
the standard model (SM) to describe the charged fermions (see, e.g., the textbooks by Lee [2] and Kaku [3]), 
which are represented in terms of four-component complex spinor fields or two-component complex Weyl spi-
nor fields [4] in the chiral representation for the massless case. The aim of the present work is to show that 
charged fermions can also be described by a purely real Dirac equation that does not involve any complex num-
bers at all but only real matrices and spinors. This approach is quite different from the abstract mathematical 
way of Hestenes [5], who reformulated the Dirac theory completely in terms of a real Clifford algebra characte-
rizing the geometrical properties of space-time. Our approach also differs substantially from the treatment by 
Ljolje [6], who argued that the analogy with the classical electromagnetic field suggests a full description also of 
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the Dirac field in the real domain. In this paper, the gauge symmetry considered thereafter for the coupling of 
fermions to an electromagnetic field is based on the SO(2) group. It is, while being its adjoint representation, 
closely related to the U(1) group which is commonly used in electrodynamic gauge theory of the standard com- 
plex Dirac equation. 

It is well known that fermions described by the real four-component Majorana [7]-[9] equation can not be 
coupled to the electromagnetic field. Therefore that equation can only describe neutral fermions and has found 
no application in the SM. We will show, however, that for the real version of the Dirac equation the coupling of 
charged fermions to an electromagnetic field is possible, and can be retained if in that equation the real and im-
aginary part of a complex Dirac spinor field are assembled in a doublet associated with the SO(2) symmetry 
group. This arrangement enables a matrix coupling to the electromagnetic field. We will subsequently derive the 
eigenfunctions of this real version of the Dirac in some detail, and also discuss some problems arising with the 
evaluation of the related Lorentz-invariant bilinear form that appear in the mass term. 

The outline of the paper is as follows: First, the four-component real Majorana equation is briefly discussed as 
the classical paradigm for a real spinor field equation. Second, the covariant derivative in electromagnetic gauge 
theory is reconsidered, and a way opened to introduce electromagnetism into a real spinor field equation. Third, 
the complex Dirac equation including an electromagnetic field will be transformed into a real Dirac equation for 
an eight-component real spinor field. Through this procedure it becomes obvious how the electromagnetic field 
couples to charged fermions (e.g., electrons and positrons) when being described by real spinor fields. The 
symmetries of the resulting real Dirac equation are also discussed. Fourth, the eigenfunctions of the real Dirac 
equation are derived. Fifth, the properties of bilinear forms are shortly addressed, and then we consider similari-
ty transformations. Finally, the conclusions are presented. 

2. The Majorana Equation 
At the start we rederive the real four-component spinor Majorana equation, without recourse to the Dirac 
equation (thereby following the recent work of Aste and Marsch [10]-[12]). The Majorana equation with a mass 
term provides a useful description of massive neutrinos. Its solutions include both kinetic helicities, as it is 
required for a massive relativistic particle. 

In the subsequent algebra we make use of conventional symbols, notations and definitions, and use units of 
1c= = . The covariant four-momentum operator, defined as ( )i i ,p tµ µ= ∂ = ∂ ∂ ∂ ∂x , acts for example on 

the scalar field ( ), tχ x  or the real four-component spinor field ( ), tφ x . Insertion of the differential operator 
pµ  into the relativistic energy and momentum relation, written in manifestly covariant form as mass-shell con- 

dition 2p p mµ
µ = , readily yields the real Klein-Gordon equation [13] [14] 

( ) ( ) ( )
2 2

2
2 2, , , ,t t m t

t
µ

µ χ χ χ
 ∂ ∂

∂ ∂ = − = − ∂ ∂ 
x x x

x
                    (1) 

for the scalar field ( ), tχ x . This equation is the starting point of any quantum field theory and involves only 
the second-order differential d’Alembert operator which obviously is invariant under a Lorentz transformation. 
Equation (1) can formally be linearized to read  

,mµ
µγ φ φ∂ =                                        (2) 

with appropriately defined real spinor field ( ), tφ x , and by introduction of the non-commuting matrix operators 
µγ . Here we indicated the real gamma matrices as appearing in (2) by a top bar, in order to avoid confusion 

with the standard nomenclature of the Dirac [1] equation. By squaring now equation (2) one finds that, for 
reproducing (1), the gammas have to obey the algebra  

{ }, 2 .gµ ν µνγ γ = −                                    (3) 

Here g µν  is the Minkowskian metric tensor, and the brackets denote the anticommutator. We shall derive in 
the course of this paper various forms of the gamma matrix operators. 

Apparently, the condition (3) can be fulfilled by the real 4 4×  gamma matrices derived from the repre- 
sentation first found by Majorana [7], which then makes (2) a real spinor field equation. It is easily transformed 
into the standard Dirac equation by use of the purely imaginary gamma matrices iµ µγ γ= − , in which case the 
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spinor field φ  would also have to be complex and then is conventionally denoted by ψ . In order to formulate 
the Dirac matrices in their Majorana representation, we make use of the Pauli [13] matrices and the related 
three-vector ( )x y z, ,σ σ σ=σ . The three Pauli matrices are defined as: 

x x y y z z

0 1 0 i 1 0
, = i , .

1 0 i 0 0 1
σ λ σ λ σ λ

−     
= = = = =     −     

                    (4) 

Obviously, all three sigma matrices mutually anti-commute with each other and, when being squared, are 
equal to the 2 2×  unit matrix. The three lambda matrices are all real and also mutually anti-commute, and one 
finds 2 2

x z 2λ λ= = 1 , but note that 2
y 2λ = −1 . They will be used later to build up real higher-dimensional gamma 

matrices. Depending upon its dimension, the unit matrix will be denoted as 2,4,81  for two, four or eight 
dimensions. To ease the notation we may omit the index and simply write 1 for the unit matrix if no confusion 
can arise. The corresponding null matrices are always simply denoted by 0. 

In terms of the above lambda matrices the Majorana gamma matrices (see, e.g. Kaku [3]) can be written as:  

y yz x

y yz x

0 00 0
, , , ,

0 00 0
µ λ λλ λ

γ
λ λλ λ

 − −      
=         −       

                    (5) 

whereby ( )20
4γ = −1  and ( )2

4
jγ = 1 , and j  runs from 1 to 3. Thus in the Majorana representation,  

( )T0 0γ γ= −  is antisymmetric, whereas ( )Tj jγ γ=  is symmetric, where the superscript T indicates the  

transposed matrix. The standard representation of the Dirac matrices [3] is obtained from (5) by means of a 
similarity transformation. For subsequent use we also introduce another name for the real gamma matrix, writing 
it as ( ),µγ β= γ , with the three-vector matrix γ , the definition of which can be read of from (5). The 
Majorana equation then reads  

( ) ( ), , .t m t
t

β φ φ∂ ∂ + ⋅ = ∂ ∂ 
x x

x
γ                              (6) 

We emphasize that the Majorana equation, while being real, has two degrees of freedom (φ  is a real four- 
component spinor field) less than the standard Dirac equation (in which ψ  is a complex four-component 
spinor field), and thus can apply only to neutral fermions. However, as shown below we can obtain a real ver- 
sion of the Dirac equation, which looks similar than (6) but involves real eight-component spinor fields. Before 
doing so, we discuss the related covariant derivative. 

3. Covariant Derivative in Electromagnetic Gauge Theory 
As is well known from the classical work of Klein, Pauli and Weisskopf [3] [14] [15], the real scalar Klein- 
Gordon field can also be used for charged particles, namely by considering two independent scalar fields which 
both obey the Klein-Gordon equation and are associated with the positively and negatively charged bosons 
having the same mass. They can be arranged in a complex composite scalar field, such that iχ χ χ+ −= + . The 
same approach may be adopted for the real Majorana equation (2) or (6), a procedure that is in the spirit of the 
original paper by Majorana [7], and which yields iψ φ φ+ −= +  for the combined Majorana spinor field of 
electron and positron, both obeying separately the real Majorana equation with the same mass. By insertion of 
the above complex spinor field ψ  into (2) and by use of the Dirac matrix i µ µγ γ=  in Majorana represen- 
tation, we then retain of course the complex standard Dirac equation which reads  

i .mµ
µγ ψ ψ∂ =                                          (7) 

This equation obeys U(1) symmetry, meaning that the spinor field ψ  can be multiplied by an arbitrary phase 
factor ( )exp iα  without changing the physical content of the theory. The symmetry is global for constant α , 
or local if it depends on the coordinate x  (which we use for ( ),x tµ = x  as a shorthand). Correspondingly, the 
electromagnetic interaction (with the related gauge field ( )A xµ  and coupling constant q ) must be introduced 
by the minimal coupling principle [3], whereby the space-time derivative µ∂  is replaced in (7) by the covariant 
derivative 
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i .D qAµ µ µ= ∂ +                                         (8) 

However, apparently this procedure does not work for the real Majorana Equation (2) or (6), without destroy- 
ing their real nature. So, the real four-component Majorana equation can not be coupled to an electromagnetic 
field (and also not to other gauge fields when being associated with complex phase factors) by means of the 
minimal coupling in the above form. 

Yet, there is another way to introduce electromagnetism in a real field equation, if we just assemble the real 
and imaginary parts of a complex spinor ψ  in an expanded two-component spinor, which corresponds to the 
symmetry group SO(2) (that is the adjoint representation of the U(1) symmetry group) of rotations in a plane. So 
let us consider a complex four-component spinor R Iiψ ψ ψ= +  and arrange it in a eight-component real spinor, 
such that ( )T T T

R I,ψ ψΨ = . The phase transformation ( ) ( )exp i cos i sinψ α ψ α α ψ′ = = +  can then be written 
equivalently in matrix (of determinant unity) form as ( )exp δα′Ψ = Ψ  with the antisymmetric matrix  

4

4

0
,

0
δ

− 
=  
 

1
1

                                        (9) 

which is a generator of the SO(2) group. Here use has been made of ( ) 8exp cos sinδα α δ α= +1 , and 
apparently, δ  obeys 2

8δ = −1 . In this way the covariant derivative can become real and be formally written  
.D qAµ µ µδ= ∂ +                                       (10) 

As shown below, when the Dirac equation is brought into its real form the SO(2) symmetry is obeyed instead 
of U(1), and thus a Dirac fermion can be charged if it is described in terms of a real eight-component spinor 
field. 

The transformation of the spinor field for a spatio-temporal varying phase ( )xα  corresponds now to 
( )( )exp xδα′Ψ = Ψ . The covariant derivative of the field [3] [16] then transforms like the field itself, and thus 

gauge invariance is ensured. Namely we have 

( )( )( ) ( )( ) ( )( ){ }exp exp exp ,q x D qA q x q x Dµ µ µ µ µδ α δ δ α δ α ′ ′ ′Ψ = ∂ + + ∂ − Ψ = Ψ         (11) 

if the gauge field is transformed as ( ) ( ) ( )A x A x xµ µ µα′ = − ∂ , which is the usual gauge transformation of 
electrodynamics. 

4. The Real Dirac Equation 
Following the reasoning in the previous sections, we now want to derive a real version of the Dirac equation. 
The complex standard Dirac equation for ψ  including the electromagnetic field reads  

( )i i .qA mµ
µ µγ ψ ψ∂ + =                                 (12) 

The Dirac matrices in their standard form can be written concisely as 

( )D Dx Dy Dz, , i , .µγ β γ γ γ=                                 (13) 

Using the above lambda matrices, we obtain 

2
D D

2

00
, .

00
j

j
j

λ
β γ

λ
  

= =    −−   

1
1

                            (14) 

Note that the three components of the vector Djγ  anticommute mutually because of the properties of the 
lambda matrices, and they all anticommute also with Dβ . Therefore the Dirac gamma matrices obey the Cli- 
fford algebra  

{ } 4, 2 .gµ ν µνγ γ = 1                                     (15) 

We can now decompose the complex Dirac Equation (12) into its real and imaginary parts. Thereby we 
assemble again the real and imaginary parts of a complex four-component Dirac spinor, R Iiψ ψ ψ= + , in an 
expanded eight-component real spinor, ( )T T T

R I,ψ ψΨ = , like we did above when discussing the covariant 
derivate. After considerable algebra one can collect the various terms in four blown-up 8 8×  real gamma 
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matrices, which we name R
µγ , with the subscript indicating that they are all real. This real Dirac equation can be 

written concisely as  

( )R .qA mµ
µ µγ δ∂ + Ψ = Ψ                                  (16) 

The gamma matrices have a 2 2×  block form, can be built on the above Dirac matrices and be written as 
( )R R R,µγ β= γ , with the three-vector matrix Rγ . Thus we obtain the four real gamma matrices in the form 

DyD Dx Dz
R

DyD Dx Dz

00 0 0
, , , .

00 0 0
µ γβ γ γ

γ
γβ γ γ

 − − − −      
=         −       

            (17) 

These four matrices commute with δ , and like in (3) obey the algebraic relation  

{ }R R 8, 2 .gµ ν µνγ γ = − 1                                     (18) 

Let us discuss the general symmetries of the real Dirac equation. Concerning its space-time symmetries, we 
define conventionally the time and space coordinate inversion operations as   and  , acting on the spinor 
field Ψ  as follows, ( ) ( ), ,t tΨ = Ψ −x x , and ( ) ( ), ,t tΨ = Ψ −x x . We further note that the coordinate 
reversal operators   and   commute with Rβ  and Rγ . It then is easy to show that the real Dirac equation 
(16) is invariant under time reversal, if given by τ=  , and parity, if given by Rβ=  . The operator 

Rx Ry Rzτ γ γ γ=  is defined by the product of the three (mutually anticommuting) spatial gamma matrices, and as 
such commutes with each of them individually. However, it anticommutes with temporal gamma matrix Rβ , as 
required for the time-reversal operation. We finally have 

Dx Dy Dz

Dx Dy Dz

0
,

0
γ γ γ

τ
γ γ γ

 
=  
 

                               (19) 

whereby we find for the product of Dirac matrices the result  

x y z 2
Dx Dy Dz

x y z 2

0 0
.

0 0
λ λ λ

γ γ γ
λ λ λ
   

= =   
  

1
1

                    (20) 

The charge conjugation operation   requires an operator that commutes with all R
µγ  but anticommutes 

with δ , in order to be able to change the sign of the charge q  in (16). Close inspection of the gamma 
matrices makes clear that it can be defined by the help of the matrix 

Dy

Dy

0
,

0
γ

ζ
γ
 

=  
 

                                         (21) 

which is found to obey 2
8ζ = 1 , and apparently to anticommute with δ . Therefore, we can define charge con- 

jugation by ζ= . Consequently, if ( )qΨ  solves (16), then ( ) ( )q qζΨ − = Ψ  solves the charge-conjugated 
equation, and thus the real Dirac equation describes both a charged fermion and its antiparticle of opposite 
charge, yet without making use of complex numbers anywhere. Obviously, the matrix δ  plays kind of the role 
of the imaginary unit i . Furthermore, if ( )tΨ  solves (16) then ( )tτΨ −  solves it as well, and similarly, if 

( )Ψ x  solves (16) ( )Rβ Ψ −x  solves it also. Thus the real Dirac equation governing the charged spinor field 
Ψ  is invariant under the combined action of the triple transformation  . Trivially, for 0Aµ =  or 0q = , 
the real Dirac equation still remains invariant under  , which essentially amounts to interchanging the upper 
and lower components Rψ , respectively Iψ , of the spinor field Ψ , but multiplied with Dyγ . 

Finally, let us briefly discuss chiral symmetry. The real chiral matrix is defined appropriately as  
5 0 1 2 3
R R R R R Rγ γ γ γ γ β τ= = , from which we obtain 

2

25
R

2

2

0 0 0
0 0 0

,
0 0 0

0 0 0

γ

− 
 
 =
 
 
− 

1
1

1
1

                                (22) 



E. Marsch   
 

 
6 

which yields ( )25
R 8γ = 1 . By definition, it anticommutes with all four gamma matrices, and thus chiral sym- 

metry implies, that if ( )mΨ  solves the real Dirac Equation (16), then ( ) ( )5
Rm mγΨ − = Ψ  solves it with a 

negative mass term. Furthermore, 5
R , 0γ δ  =  , but { }5

R , 0γ ζ = . We can define as usually the idempotent pro- 

jection operators by ( )5
8 R

1
2

P γ± = ±1 , by means of which any spinor field can be decomposed into its right- and  

left-chiral components, i.e. P± ±Ψ = Ψ , which yields two Dirac equations, one for each of them. These equ- 
ations read  

( )R ,qA mµ
µ µγ δ ±∂ + Ψ = Ψ



                                (23) 

and are coupled by the mass term which obviously breaks chiral symmetry. 

5. Eigenfunctions of the Real Dirac Equation 
We return to the real Dirac Equation (16) with the aim to derive its eigenfunctions for 0Aµ = . For that purpose, 
we write it here in terms of the beta and three-vector gamma operators Rβ  and Rγ , of which we basically 
only need their algebraic properties, but which are 8 8×  matrices in matrix representation. To ease the notation 
we omit from now on their index R, and thus obtain the real Dirac equation as  

( ) ( ), , .t m t
t

β ∂ ∂ + ⋅ Ψ = Ψ ∂ ∂ 
x x

x
γ                              (24) 

It resembles very much the Majorana Equation (6), with the difference being in the dimension of the gamma 
matrix representation and the associated spinors. Since Equation (24) is real, and as each component of Ψ  
must obey the Klein-Gordon equation, we make the general sine-cosine propagating wave ansatz:  

( ) ( ) ( ) ( ) ( ) ( ){ }, , cos , sin ,t a U E x p V E x pα αΨ = ⋅ + + ⋅ +p px p p p                (25) 

with free real amplitude ( )a p  and phase angle α p . Here x p x p Etµ
µ⋅ = = − ⋅p x . The two polarization 

spinors, U and V, must of course also be real. Upon inserting the ansatz into (24) we obtain the linked polari- 
zation spinor equations:  

( ) ( ) ( ), , ,E U E mV Eβ− − ⋅ =p p pγ                             (26) 

( ) ( ) ( ), , .E V E mU Eβ+ − ⋅ =p p pγ                             (27) 

By insertion of the first into the second equation, or vice versa, the relativistic dispersion relation is obtained 
from: 

( )( ) ( ) ( ) ( )2 2 2 2 2, , 0E m U E E m p U Eβ − ⋅ + = − + + =p p pγ                  (28) 

which yields the two eigenvalues: 

( ) ( ) ( ) 2 2
1,2 with .E E p E p m p= ± = +p                        (29) 

The negative root in Equation (29) is related to antiparticles, the positive one to particles. By solving (26) for 
V  and inserting it back into (25), or vice versa, we obtain the two alternative solutions (with amplitude and 
phase which we chose to be unity and zero for the present calculation) which read  

( ) ( ) ( ) ( ) ( )1, ; cos sin , ,U E x x p E x p U E
m

β Ψ = ⋅ − − ⋅ ⋅ 
 

p p pγ                (30) 

( ) ( ) ( ) ( ) ( )1, ; sin cos , .V E x x p E x p V E
m

β Ψ = ⋅ + − ⋅ ⋅ 
 

p p pγ                (31) 

The second solution is obtained from first one if the free phase is chosen as π 2−  and V  replaced by U , 
and thus there is no new information. In what follows we therefore just consider UΨ  and omit the subscript 
again. When summing in a Fourier decomposition over the momentum p , one may equally well sum over − p , 
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since it is a mute index. For the two possible eigenvalues in (29) we therefore define the particle solution as 
( ) ( )( )P ; , ;x E p xΨ = Ψp p  and the antiparticle solution as ( ) ( )( )A ; , ;x E p xΨ = Ψ − −p p . Then the bracket in 

front of U  in (30) remains similar for both solutions and we obtain 

( ) ( ) ( ) ( )( ) ( ) ( )P P
1; cos sin ,x a x p E p x p U
m

α β α Ψ = ⋅ + − − ⋅ ⋅ + 
 

p pp p p pγ        (32) 

( ) ( ) ( ) ( )( ) ( ) ( )A A
1; cos sin ,x b x p E p x p U
m

β β β Ψ = ⋅ − − − ⋅ ⋅ − 
 

p pp p p pγ        (33) 

where the polarization vector is defined by ( ) ( )( )P,A ,U U E p= ± ±p p , and amplitudes with ( ) ( )b a= −p p  
and phases with β α−=p p  have explicitly been added. Note that charge conjugation mediated by the matrix 
ζ  of Equation (21) does not affect the kinetic part of these spinor fields, as it commutes with β  and γ  and 
therefore only acts on the polarization spinor U . 

Returning now to the standard Dirac Equation (7), we can chose for it the standard basis 

1 2 1 2

1 0 0 0
0 1 0 0

, , , ,
0 0 1 0
0 0 0 1

u u v v

       
       
       = = = =
       
       
       

                          (34) 

corresponding to particles ( )u  and antiparticles ( )v , as we have D 1,2 1,2u uβ =  and D 1,2 1,2v vβ = − , and thus 
we retain the usual covariant normalization 1,2 1,2 1u u =  and 1,2 1,2 1v v = − . Inserting these basis vectors into the 
solution for the complex Dirac equation provides us with an orthogonal set of four eigenstates, which are the 
standard textbook [3] solutions. Admittedly, for the complex Dirac equation it seems more meaningful to use 
exponentials instead of trigonometric functions. For the real Dirac (and the Majorana) equation they are a 
natural choice in the ansatz (25). 

How many physical degrees of freedom does the real Dirac equation have? Of course it should not be more 
than the complex one, which has four, as the complex spinor fields ψ  and the adjoint one † 0ψ γ  are canoni- 
cally conjugate variables in the Lagrange formalism [3], or more precisely it is †iψ  which is the conjugate 
“momentum” of the spinor field ψ . Thus there are in fact only 4 degrees of freedom, equal to the dimension of 
the underlying vector space defining the complex Dirac spinors, and thus we obtain, as described by the fun- 
damental basis (34) above, the particle and its antiparticle, each having two spin degrees of freedom. The same 
must apply to the real Dirac equation. However, while decomposing the field ψ  into its real and imaginary 
parts, both have been treated as independent variables, and thus the resulting real vector space is 8-dimensional 
like the phase space of the complex Dirac equation, although there are only four independent physical degrees of 
freedom. 

Let us now determine the basis spinors of the real Dirac equation. Obviously, in the above general solutions 
(32) and (33) the polarization spinors can be chosen freely, and the question then arises how to chose them 
adequately for the real Dirac equation. For that purpose we make use of the standard basis vectors (34), and with 
their help construct the new extended fundamental basis as follows  

1,2 1,2
P1,2 A1,2 P3,4 A3,4

1,2 1,2

0 0
, , , ,

0 0
u v

U U U U
u v
      

= = = =      
       

                 (35) 

corresponding to particle and antiparticle states arranged in doublets of four-component spinors. Note that these 
basis spinors are eight-dimensional, corresponding to the dimension of the phase space of the complex standard 
Dirac equation, and form an orthonormal basis of the vector space of the real Dirac equation. Its solution is the 
doublet spinor field Ψ , which contains the spinor field ψ  of the complex Dirac equation, namely its real part 

Rψ  in the upper and its imaginary part Iψ  in the lower component of Ψ . Upon inserting the eight basis 
spinors (35) into the solutions (32) and (33), we obtain, respectively, four spinors ( )P ;j xΨ p  and ( )A ;j xΨ p  
(where j  runs from 1 to 4), which are eight linearly independent states of the real Dirac equation, correspond- 
ing respectively to a particle and its antiparticle, whereby each of them has momentum p  and energy ( )E p  
and two spin degrees of freedom, or two states of opposite kinetic helicity. 
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Let us also discuss briefly how the charge conjugation and the chiral operator act on the basis spinors. We 
recall the definition of the charge conjugation, which is given by ζ . It obeys 2 1ζ =  and, when using its 
matrix representation (21), is found to link the particle and antiparticle states like follows,  

P1 A4 P2 A3 P3 A2 P4 A1, , , ,U U U U U U U Uζ ζ ζ ζ= + = − = + = −                    (36) 

showing the tight connection between particle and antiparticle spinors. As the charge conjugation operator ζ  
anticommutes with δ , the particle and its antiparticle, as was to be expected, have opposites charges. Chiral 
symmetry is closely connected with charge exchange, because applying the operator 5

Rγ  on the particle spinors 
in (35) returns antiparticle spinors and vice versa. So we obtain  

5 5 5 5
R P1 A3 R P2 A4 R P3 A1 R P4 A2, , , ,U U U U U U U Uγ γ γ γ= − = − = + = +                 (37) 

which is in consistent with the fact that 5
Rγ  turns a solution of the real Dirac equation for positive mass into one 

with a negative mass, i.e. a particle into its antiparticle. 

6. Bilinear Forms Associated with the Real Dirac Equation 
Like for the complex Dirac equation, bilinear forms involving the spinor field and its adjoint play an important 
role in a relativistic field theory. Therefore, we must consider such Lorentz-invariant bilinear forms (see, e.g., 
[3]) like † 0ψψ ψ γ ψ= , which also determines the mass term in the Lagrangian density in the complex Dirac 
equation. For the two Equations (6) and (24) we obtain similar bilinear forms, namely 

( )T ,φφ φ βφ= −                                       (38) 

( )T ,βΨΨ = −Ψ Ψ                                     (39) 

where Tβ β= −  and Tβ β= −  have been used, which both differ from the Dirac matrix ( )†0 0γ γ= , which  

means Dβ  is hermitian and symmetric, whereas the above two operators or matrices are antihermitian, that is 
antisymmetric. As such they can not have real eigenvalues or eigenvectors, which causes a serious problem that  

is intimately connected with the negative sign in front of the metric (3), which requires ( )20 1γ = − . In fact, we  

have 2
4β = −1 , and 2

8β = −1 . But remember that in contrast † =σ σ , T =γ γ  and T =γ γ , and thus that 
for any three-vector a  one has ( ) ( )2

2⋅ = ⋅ 1a a aσ , ( ) ( )2
4⋅ = ⋅ 1a a aγ  and ( ) ( )2

8⋅ = ⋅ 1a a aγ . 
Using these mathematical properties one finds after some algebra by means of (32) and (33) that for any pair 

of solution field spinors we have I J I Ji j i jU UΨ Ψ = , with the index I and J being A or P, and i and j run from 1 to 
4. That means orthogonality or normalization of the spinor fields just depends on the Lorentz invariant bilinear 
form (i.e., the inner product) of the respective polarization spinors involved. 

Let us consider a general polarization spinor of the real Dirac equation ( )T T T,U V W= , where V  and W  
stand for any real 4-component spinor constructed on the basis (34). Then the related covariant bilinear form 
reads  

( )T T T
D D ,UU V W W Vβ β βΨΨ = −Ψ Ψ = = −                          (40) 

which vanishes identically, in particular for any pair of the basis spinors in Equation (34), since beta is sym- 
metric: T

D Dβ β= . Similarly, for the real Majorana bilinear form with real spinor Tφ  and with ( )T T T,u v w= , 
where v  and w  are real two-component spinors, we obtain the result  

( ) ( )T T T
y y 0,uu v w w vφφ φ βφ λ λ= − = = − + =                          (41) 

since T
y yλ λ= − . The implications of the vanishing bilinear forms were for the Majorana equation already 

discussed long ago by Case [8] [9], and recently again by Pal [17] who emphasized that the solution to this 
dilemma is to consider anticommuting fermion quantum fields instead of classical ones, what we have done here 
so far. Since bilinear forms such as in Equations (38)-(39) play a key role in relativistic quantum field theory, we 
must conclude that Lorentz invariance forces one to consider quantized versions of the real “classical” fermion 
fields discussed before. 

The transition to quantization is readily achieved, if we rewrite (omitting the index P here) the real spinor 
field (32) by replacing the trigonometric by exponential functions. We then obtain  
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( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( )*1 exp i 1 i exp i 1 i ,
2

A x p A x p U− −Ψ = − ⋅ − Γ + ⋅ + Γp p p p p           (42) 

with a new abbreviation that is the operator ( ) ( )( )1 E p
m

β±Γ = ± ⋅p pγ . It is real and has the following  

properties 2 1±Γ = − , T
±Γ = −Γ



, and anticommutes with beta as follows: β β±Γ = Γ


. The complex amplitude  
is ( ) ( ) ( )expA a α= − pp p , which may be normalized to a module of unity. Using the properties of the capital 
gammas, it is straightforward to show that still UUΨΨ = . Note that of course *Ψ = Ψ  for the real Dirac 
equation. 

To render (42) becoming a quantum field, we just have to promote the amplitudes to fermion annihilation and 
creation operators that obey the canonical anti-commutation rule 

( ) ( ){ }†
,, .A A δ ′′ = p pp p                                   (43) 

With these comments and conclusions we shall close the discussion of the bilinear forms which determine the 
mass term in the Lagrangian density. 

7. Similarity Transformations 
Finally, we will return to the Majorana equation and present its eight-component version which can be obtained 
by a similarity transformation from the real Dirac Equation (16). The similarity transformation matrix associated 
with the standard Dirac equation can be written as  

( ) ( )1
D y Dy

1 11 1 i .
2 2

U γ γ± = ± = ±                          (44) 

By definition it is unitary and has the property 1 1
D D 4U U+ − = 1 . The real Majorana matrices, which were quoted 

already in Equation (5), are obtained from the Dirac matrices in standard representation through the trans- 
formation  

1 1
D Di .U Uµ µγ γ+ −=                                       (45) 

In a similar way we can now subject the real Dirac Equation (16) to a corresponding similarity transformation 
defined as  

( )1
R Ry

1 1 ,
2

U δγ± =                                     (46) 

where use is made of the y-component of the gamma matrix four vector as given in Equation (17). Note that 
again the matrix δ  plays the role of the imaginary unit i. We also have the property 1 1

M M 8U U+ − = 1 . As a 
consequence, we can get the related 8 8×  Majorana matrices by help of formula  

1 1
M R R R .U Uµ µγ γ+ −=                                        (47) 

Remember that δ  commutes with the eight-dimensional gamma matrices, and therefore also with 1
RU ± . 

Moreover, the covariant derivate Dµ  is not affected by a similarity transformation, which when being applied 
to the real Dirac Equation (16) then yields the eight-component real Majorana equation in the concise form  

( )M ,qA mµ
µ µγ δ∂ + Φ = Φ                                 (48) 

which includes the coupling to the electromagnetic field via the matrix δ , whereby gauge invariance is ensured 
as was discussed previously. The Majorana matrices attain, after some algebra, a simple block-diagonal form 
and read 

M
0

,
0

µ
µ

µ

γ
γ

γ
 

=  
 

                                      (49) 

and the Majorana spinor field is connected to the Dirac spinor field by the transformation 1
RU +Φ = Ψ . This can 

be written in terms of the real and imaginary part of the original Dirac spinor field ψ  as follows  
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R y I1

I y R2

1 .
2

ψ γ ψφ
ψ γ ψφ

+  
Φ = =    −   

                             (50) 

Without an electromagnetic field for 0Aµ =  in (48), this Majorana equation is reducible and can be de- 
composed into two independent real four-component equations as presented before in the second section. The 
free spinor fields 1φ  and 2φ  represent the electron and positron, which here are assembled in a charge doublet 
and become inextricably linked once an electromagnetic field is switched on. The real Majorana Equations 
(48)-(50) are fully equivalent to the complex standard Dirac Equation (12), and even appear to be more trans- 
parent than the equally valid real Dirac Equation (16). 

8. Conclusions 
In this paper we have shown that the standard complex Dirac equation can be transformed into a real Dirac 
equation, which still permits the electromagnetic field to be introduced by minimal coupling, and which enables 
the real nature of that equation to be preserved in an eight-component spinor representation. This coupling to the 
electromagnetic field is established via the SO(2) symmetry group, which is equivalent to the U(1) symmetry of 
the complex Dirac equation. Thus the real Dirac equation also describes massive charged fermions coupled to an 
electromagnetic field. Coupling to other non-abelian gauge symmetry groups may also be possible, while pre- 
serving the real nature of that equation, if for the involved group use is made of its adjoint representation, which 
is purely imaginary and thus yields a real covariant derivative. 

The real Dirac equation has a beta matrix that is antisymmetric, a property which causes problems for the 
fundamental Lorentz-invariant bilinear forms, such as ΨΨ  which vanishes identically. This can only be re- 
medied by promoting the spinor field Ψ  from a classical to a quantum field. A similar problem arises already 
in the complex Majorana equation, if it is derived from the standard Dirac equation [8] by requiring the spinor 
ψ  be identical with its charge-conjugated version, which means ψ ψ=   (see, e.g., [17]). In this case the 
mass term in the resulting Lagrangian density also vanishes, unless anticommuting fermion fields are considered. 
So unlike the complex one, the real Dirac equation at the outset seems to make sense only as an equation for a 
quantum but not classical spinor field. 

The real Dirac equation as here derived has essentially the same physical content as its complex ancestor, but 
looks somewhat cumbersome due to the larger gamma matrices involved. This is the mathematical price to be 
paid if complex numbers are fully avoided. The related Majorana version appears to be more transparent and 
seems easier to handle. The electromagnetic gauge field coupling in this equation is of matrix nature, as the 
imaginary unit is effectively replaced by the matrix δ , being a generator of the SO(2) group of rotations in a 
plane. Thus the real Dirac equation is equivalent to the complex standard one which is more concise and con- 
venient. Yet there might be physical problems for which the real Dirac equation, in particular in its simpler 
Majorana version, will turn out to be advantageous. 
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