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ABSTRACT 

This paper studies the algorithms for coding and decoding Prufer codes of a labeled tree. The algorithms for coding 
and decoding Prufer codes of a labeled tree in the literatures require  time usually. Although there exist 

linear time algorithms for Prufer-like codes [1,2,3], the algorithms utilize the integer sorting algorithms. The special 
range of the integers to be sorted is utilized to obtain a linear time integer sorting algorithm. The Prufer code problem 
is reduced to integer sorting. In this paper we consider the Prufer code problem in a different angle and a more direct 
manner. We start from a naïve algorithm, then improved it gradually and finally we obtain a very practical linear time 
algorithm. The techniques we used in this paper are of interest in their own right.  

(O nlogn)
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1. Introduction 

Labeled trees are of interest in practical and theoretical 
areas of computer science. For example, Ethernet has a 
unique path between terminal devices, thus being a tree: 
labeling the tree nodes is necessary to uniquely identify 
each device in the network. An interesting alternative to 
the usual representations of tree data structures in com-
puter memories is based on coding labeled trees by 
means of strings of node labels. This representation was 
first used in the proof of Cayley’s theorem [4] to show 
a one-to-one correspondence between free labeled trees 
on n nodes and strings of length n-2. In addition to this 
purely mathematical use, string-based coding of trees 
has many practical applications. For instance, they 
make it possible to generate random uniformly distrib-
uted trees and random connected graphs: the generation 
of a random string followed by the use of a fast decod-
ing algorithm is typically more efficient than random 
tree generation by the addition of edges, since in the 
latter case one must pay attention not to introduce cy-
cles. In addition, tree codes are employed in genetic 
algorithms, where chromosomes in the population are 
represented as strings of integers, and in heuristics for 
computing minimum spanning trees with additional 
constraints, e.g., on the number of leaves or on the di-
ameter of the tree itself. Not last, tree codes are used for 
data compression and for computing the tree and for-

est volumes of graphs. 
Let T be a labeled tree whose nodes are numbered 

from 0 to n-1. For some vertex v in T, the degree of v, 
denoted by d[v], is the number of edges incident to v. If 
d[v]=1, then v is called a leaf. According to Prufer’s 
proof, any sequence of n-2 numbers, each number in 
{0,1,…,n-1} can determine a unique labeled tree of n 
nodes. Such a number sequence is the Prufer code of a 
labeled tree. Algorithm A is the straightforward imple-
mentation of Prufer’s proof. 

Algorithm A 

Input: A labeled tree T of n nodes as a list of n-1 
edges. 

Output: c, the Prufer code of T. 
Method: 
Step 1. B←{0,1,…,n-1}. 
Step 2. For i ← 0 to n-3 do 
Step 2.1. x ← min{kB: k is a leaf }. 
Step 2.2. B←B-{x}. 
Step 2.3. Remove x and its incident edge (x, y) from T. 
Step 2.4. c[i]←y. 
Step 3. Return c. 

End of Algorithm 

For example, let the input labeled tree T be the graph 
depicted in Figure 1. After the Algorithm A terminates,  
c = [2,4,0,1,3,3] which is the Prufer code of T . 
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Figure 1. A labelled tree 
 

The algorithms for coding and decoding Prufer codes 
of a labeled tree in the literatures require  tim- 

e usually. As stated in [3], although the problem of pro-
ducing a Prufer code in linear time is an exercise in two 
books [5, 6], there exists no explicit publication of a so-
lution. In [3] an  time algorithm for generating a 

Prufer code from a labeled tree was described, but the 
 time algorithm utilized the integer sorting algo-

rithms. The special range of the integers to be sorted was 
utilized to obtain a linear time integer sorting algorithm. 
The Prufer code problem is reduced to integer sorting. In 
this paper we consider the Prufer code problem in a dif-
ferent angle and present a very practical linear time algo-
rithm directly. The techniques we used in this paper are 
of interest in their own right. 
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2. A Linear Time Algorithm for Coding 

The most time consuming step in Algorithm A is Step 2. 
The leaf elimination scheme of the Prufer code implicitly 
defines a root for the labeled tree T. Actually, it is easy 
to see that the last element in the code is n-1 which is the 
root of the labeled tree T. Given a list of n-1 edges, we 
can build the parent array f and the degree array d of the 
labeled tree T with only  preprocessing time, wh- 

ich allows checking and updating a node's degree in 
 time. With this preprocessing, the Step 2.3 of Alg- 

orithm A can be implemented in  time. Using a he- 

ap, the leaf with the smallest number can be found in 
 time. Hence, Step 2 takes  time to- 

tally. The time complexity of Algorithm A is also 
. 
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We can improve the algorithms further. An insight 
into the problem is that for the heap operations in the 
Step 2.1 of Algorithm A, there is a special kind of nodes 
that they are deleted from the heap immediately after 
they are inserted into the heap. This kind of nodes can be 
treated easily without heap operation. The remained heap 
operation can be replaced by a linear scan of the degree 
array d. Therefore the total time to find x in the Step 2.1 
is reduced to O(n). 

The linear time algorithm can be presented detailed as 
follows. 

Coding Algorithm: 
1: index ← x ← min{0≤k<n: d[k]=1} 
2: for i ← 0 to n-3 do 
3:   y ← f[x] 
4:   c[i] ← y 
5:   d[y] ← d[y]-1 
6:   if y<index and d[y]=1 then x ← y 
7:   else index ← x ← min{index<k<n: d[k]=1}

 
In the algorithm described above, d[v] is the degree of 

node v and f[v] is the parent node of the node v. The 
variable index is a cursor of degree array d. On line 6, 
when node y becomes a leaf and the label of y is less 
than the current cursor index, the node y must be the 
kind of nodes that are deleted from the heap immediately 
after they are inserted into the heap. In this case, the 
node y becomes the next node with minimal label. Oth-
erwise, on line 7 the cursor index moves to the next leaf 
node in the degree array d. The computing time of line 1 
and line 7 is , since the cursor index goes through 

the degree array d from left to right once. The remaining 
time is clearly , leading to complexity for 

the entire algorithm.  

( )O n

(O n) ( )O n

3. A Linear Time Algorithm for Decoding 

Decoding is to build the tree T corresponding to the 
given Prufer code c. As far as c is computed, each node 
label in it represents the parent of a leaf eliminated from 
T. Hence, in order to reconstruct T , it is sufficient to co- 
mpute the ordered sequence of labels of the eliminated 
leaves, say s: for each i {0,1,…,n-1}, the pair (c[i], s[i]) 
will thus be an edge in the tree.  

We first observe that the leaves of T are exactly those 
nodes that do not appear in the code, as they are not par-
ents of any node. Each internal node, say v, in general 
may appear in c more than once; each appearance corre-
sponds to the elimination of one of its children, and 
therefore to decreasing the degree of v by 1. After the 
rightmost occurrence in the code, v is clearly a leaf and 
thus becomes a candidate for being eliminated. Therefore, 
the times of a node v appears in c is exactly the degree of 
v minus 1. A linear scan of code array c can determine 
the degree array d.  

Using a heap, the leaf with the smallest number can be 
found in  time, leading an  time de- 
coding algorithm. Like the coding algorithm, we can 
improve the algorithms further. An insight into the prob-
lem is also that for the heap operations of the decoding 
algorithm, there is a special kind of nodes that they are 
deleted from the heap immediately after they are inserted 
into the heap. This kind of nodes can be treated easily 
without heap operation. The remained heap operation 
can be replaced by a linear scan of the degree array d. 

(O nlogn (O nlogn
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The linear time algorithm can be presented detailed as 
follows. 

 
Decoding Algorithm: 
1: index ← x ← min{0≤k<n: d[k]=1} 
2: for i ← 0 to n-2 do 
3:   y ← c[i] 
4:   add edge (x,y) to T 
5:   d[y] ← d[y]-1 
6:   if y<index and d[y]=1 then x ← y 
7:   else index ← x ← min{index<k<n: d[k]=1} 

 
Like the coding algorithm, the time required by the 

decoding is also . ( )O n

4. Examples 

We use the labeled tree T depicted in Figure 1 as an ex-
ample to demonstrate the algorithms for coding and de-
coding Prufer codes described above. The input of the 
labeled tree T is an edge list {0,1}{0,4}{1,3}{4,2}{3,6} 
{3,7}{2,5}. There are 8(n) nodes labeled 0,1,2,3,4,5,6,7 
and 7(n-1) edges. 

It is easy to see that the last element 7 is the root of the 
labeled tree T. For the given edge list, we can build the 
parent array f and the degree array d of the labeled tree T 
by a depth first search with only  time. ( )O n

With this two arrays, the Step 2.3 of Algorithm A can 
be implemented in  time. (1)O

For our linear time coding algorithm, we first go 
through the degree array d to find an index such that in-
dex=min{0≤k<n: d[k]=1}. It is clear that the index equals 
5 for the first time in our example as shown in Table 1. 
 

Table 1. The parent array f and the degree array d of T 

i 

 0 1 2 3 4 5 6 7 

f[i] 1 3 4 7 0 2 3 -1 

d[i] 2 2 2 3 2 1 1 1 

      
↑ 

index 
  

 
Table 2. After edge {2,5} is deleted 

i 

 0 1 2 3 4 [5] 6 7 

f[i] 1 3 4 7 0 2 3 -1

d[i] 2 2 1 3 2 1 1 1 

      
↑ 

index 
  

Table 3. After edge {4,2} is deleted 

i 

 0 1 [2] 3 4 [5] 6 7 

f[i] 1 3 4 7 0 2 3 -1

d[i] 2 2 1 3 1 1 1 1 

      
↑ 

index 
  

 
Table 4. After the edges {0,4}, {0,1} and {1,3} are deleted 

i 

 [0] [1] [2] 3 [4] [5] 6 7 

f[i] 1 3 4 7 0 2 3 -1

d[i] 1 1 1 2 1 1 1 1 

      
↑ 

index 
  

 
Table 5. After the edge {3,6} is deleted 

i 

 [0] [1] [2] 3 [4] [5] [6] 7 

f[i] 1 3 4 7 0 2 3 -1

d[i] 1 1 1 1 1 1 1 1 

       
↑ 

index
 

 
f[index]=f[5]=2 is the first value of the Prufer code c. 

The edge {2,5} is deleted and d[2] is decreased by 1 on 
line 5 of the coding algorithm. The status of the tree T 
now becomes Table 2. 

Follows the coding algorithm on line 6 the next node to 
be deleted is 2. The father node of 2 is node 4, the next 
value of the Prufer code c. The edge {4,2} is deleted and 
d[4] is decreased by 1 on line 5 of the coding algorithm. 
The status of the tree T now becomes Table 3. 

Similarly, in the next three steps we obtain the next 
three values 0,1 and 3 of the Prufer code c. The edges 
{0,4}, {0,1} and {1,3} are deleted accordingly. The Prufer 
code we have obtained up to now is (2,4,0,1,3). The status 
of the tree T now becomes Table 4. 

Look at the Table 4, the next node to be deleted is 6 
which is determined on line 7 of our coding algorithm. We 
do not scan the degree array d from the beginning. We 
scan the degree array d from index (5) to right and the 
index is moved to 6. This is a key point to see the algo-
rithm running in linear time. 

 The father node of 6 is node 3, the next value of the 
Prufer code c. The edge {3,6} is deleted and d[3] is de-
creased by 1 on line 5 of the coding algorithm. The status 
of the tree T now becomes Table 5. 

Copyright © 2009 SciRes                                                                                 JSEA 



An Optimal Algorithm for Prufer Codes 114 

Table 6. The initio status of the decoding algorithm 

i 

 0 1 2 3 4 5 6 7 

c[i] 2 4 0 1 3 3 7 -1

d[i] 2 2 2 3 2 1 1 1 

      
↑ 

index 
  

 
Table 7. After edge {2,5} is added 

i 

 0 1 2 3 4 [5] 6 7 

c[i] 2 4 0 1 3 3 7 -1 

d[i] 2 2 1 3 2 1 1 1 

      
↑ 

index 
  

 
Table 8. After edge {2,4} is added 

i 

 0 1 [2] 3 4 [5] 6 7 

c[i] 2 4 0 1 3 3 7 -1 

d[i] 2 2 1 3 1 1 1 1 

      
↑ 

index 
  

 
We now have the n-2 values of the Prufer code 

(2,4,0,1,3,3). The algorithm terminates. 
Using the same labeled tree T depicted in Figure 1 as 

an example we can demonstrate the algorithm for de-
coding Prufer codes as follows.  

The input of the decoding algorithm is the Prufer code 
c of the tree T. In our example the Prufer code of the tree 
T is (2,4,0,1,3,3). We fist noted that the times of a node v 
appears in the Prufer code c is exactly the degree of v 
minus 1. A linear scan of code array c can determine the 
degree array d as shown in Table 6. 

For our linear time decoding algorithm, we first go 
through the degree array d to find an index such that in-
dex=min{0≤k<n:d[k]=1}. It is clear that the index equals 
5 for the first time in our example as shown in Table 6 
which is the first leaf node deleted in the coding algo-
rithm. 

c[0]=2 is the other node label of the edge to be added. 
The edge {2,5} is added and d[2] is decreased by 1 on 
line 5 of the decoding algorithm. The status of the tree T 
now becomes Table 7. 

Follows the decoding algorithm on line 6 the next 
node to be added is 2. c[1]=4 is the other node label of 
the edge to be added. The edge {2,4} is added and d[4] is 

decreased by 1 on line 5 of the decoding algorithm. The 
status of the tree T now becomes Table 8. 

Similarly, in the next three steps we obtain the next 
three edges {0,4}, {0,1} and {1,3}. The status of the tree 
T now becomes Table 9. 

Look at the Table 9. The next node to be added is 6 
which is determined on line 7 of our decoding algorithm. 
We do not scan the degree array d from the beginning. 
We scan the degree array d from index (5) to right and 
the index is moved to 6. This is a key point to see the 
decoding algorithm running in linear time. 

 The other node label of the edge to be added is 
c[5]=3. The edge {3,6} is added and d[3] is decreased by 
1 on line 5 of the decoding algorithm. The status of the 
tree T now becomes Table 10. 

Follows the decoding algorithm on line 6 the next 
node to be added is 3. c[6]=7 is the other node label of 
the edge to be added. The edge {3,7} is added. We now 
have the n-1 edges of the tree T. The decoding algorithm 
terminates. 

5. Conclusions 

Prufer codes for labeled trees have many practical appli-
cations. The algorithms for coding and decoding Prufer 
codes of a labeled tree are of interest in practical and 
theoretical areas of computer science. The existing linear 
time algorithms for Prufer-like codes utilized the integer 
sorting algorithms. The special range of the integers to 
be sorted is utilized to obtain a linear time integer sorting 
algorithm. The optimal algorithms for coding and de-
coding Prufer codes presented in this paper are very 
practical linear time algorithms. The techniques used in 
these algorithms are of interest in their own right. 
 

Table 9. After the edges {0,4}, {0,1} and {1,3} are added 

i 

 [0] [1] [2] 3 [4] [5] 6 7 

c[i] 2 4 0 1 3 3 7 -1 

d[i] 1 1 1 2 1 1 1 1 

      
↑ 

index 
  

 
Table 10. After the edge {3,6} is added 

i 

 [0] [1] [2] 3 [4] [5] [6] 7 

c[i] 2 4 0 1 3 3 7 -1 

d[i] 1 1 1 1 1 1 1 1 

      
↑ 

index 
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