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Abstract

udu transform method (HPSTM) is extended to
solve linear and nonlin ein“Gordon equations. To illustrate the reliability of the

tions is shown. As ication,of homotopy perturbation Sumudu transform method, the
presented work al differences with existing similar application, and also four

Nonlinear phenomena that appear in many areas of scientific fields such as solid state physics, plasma physics,
fluid dynamics, mathematical biology and chemical kinetics are modeled in terms of nonlinear partial differen-
tial equations and in many scientific and engineering applications; one of the corner stones of modeling is partial
differential equations. For example, the Klein-Gordon equation of the form

w, (x,t)+bw(x,t)+g(w(xt))= f(xt), (1)
with initial conditions
How to cite this paper: Mahdy, A.M.S., Mohamed, A.S. and Mtawa, A.A.H. (2015) Implementation of the Homotopy Per-

turbation Sumudu Transform Method for Solving Klein-Gordon Equation. Applied Mathematics, 6, 136-148.
http://dx.doi.org/10.4236/am.2015.61014



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61014
http://dx.doi.org/10.4236/am.2015.61014
http://www.scirp.org
mailto:amr-mahdy85@yahoo.com
mailto:3adel@live.nl
mailto:hussanahmad65@yahoo.com
http://creativecommons.org/licenses/by/4.0/

A. M. S. Mahdy et al.

w(x,0)=h(x), w(x,0)=k(x), 2

appears in modeling of problems in quantum field theory, relativistic physics, dispersive wave phenomena,
plasma physic, nonlinear optics and applied physical sciences. The complexity of the equations though requires
the use of numerical and analytical methods in most cases. Numerous analytical and numerical methods have
been presented in recent years. Some of these analytical methods are the Fourier transform method [1], the frac-
tional Green function method [2], the popular Laplace transform method [3] [4], the Sumudu transform method
[5], the iteration method [4], the Mellin transform method and the method of orthogonal polynomials [3].

Some numerical methods are also popular, such as the homotopy perturbation method (HPM) [6]-[8], the
modified homotopy perturbation method (MHPM) [9], the differential transform method (D14 01, the varia-

the other hand, various methods are combined with the homotopy perturbatio
homotopy perturbation method, which is a combination of the variational i

transform method [19].

The Sumudu transformation method is one of the most impor,
1990s by Gamage K. Watugala. It is a powerful tool for solvi
and engineering [20] [21]. And also various methods are
such as the homotopy analysis Sumudu transform meth
topy analysis method and the Sumudu transformation
method (SDM) [23], which is a combination of the Sum
method.

In this paper, an efficient approach is propd
(HPSTM) to derive the exact solution of variol
method and the Sumudu transform method. H ‘
transform method to obtain the exa tion of lifear and nonlinear equations which are PDEs of integer order.

(HASTD) [22], whiCh is a combination of the homo-
thod. Anothef example is the Sumudu decomposition

opy perturbation Sumudu transform method
which is a combination of the homotopy perturbation

©)

and try to show the
The paper is
tions of fractj

Definifion 1. A real function f (t),t >0, issaid to be in the space C_,o R, if there exists a real number
p>o Suchthat f(t)=t"f(t) where f (t)eC[0,0), and it is said to be in the space CT if ™ eC_,
meN.

Definition 2. The left sided Riemann-Liouville fractional integral of order « >0, of a function f eC_,
o >-1 isdefined as:

3£ (1) = ﬁﬁ(t—g)“ £(£)de, @)

where >0, t>0 and I'(«) isthe Gamma function.

()
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Definition 3. Let feC;, n eNU{O}. The Caputo fractional derivative of f is defined in [18] as fol-
lows:

1 t o
- _ na1f(n) dc. . n
D f(t)= F(n—a)'[o(t 5 (¢)d¢, n-l<a<n o
DI (1), a=n.

Note that according to [13], Equations (4) and (5) become
a 1 a—
J; f(x,t)=mj';(t—§) " (x,¢)d¢, fora>0,t>0, (6)

and

D¢ f (x,t)=ﬁﬁ(t—g)"'“ 0 (2)de, n-1#b<n:

Definition 4. The single parameter and the two parameters variants
by E,(t) and E, ,(t), respectively, which are relevant for thei i i onal calculus, and are
defined as:

©)
9)

Some special cases of the Mittag-Leffler func

1) E(t)=¢';

2) E,.(t)=E,(t);

dk p-1 a

3) W[t Ea,ﬂ (at )

Other properties of tions can be found in [25]. These functions are generalizations of
the exponential fu use, most Mnear differential equations of fractional order have solutions that are
expressed in ter i

Definitio ver the following set of functions,

I |
L2 (1)|3M, 7,7, >0, (1) < Me™ if te(-1)' x[0,)¢, (10)
S[f(t)]=G(u)=["f (ut)edt, 11)

€ (7,,7,).
Some special properties of the Sumudu transform are as follows:
1) S[1]=1
2) S _T u™, m>0;

r'(m+1) ' '

1
3) S|e*|= ;
) [ ] 1-au
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4) Slaf(t)+pg(t)]=aS[f(t)]+pS[g(t)].

Other properties of the Sumudu transform can be found in [26].

Definition 6. G(u) isthe Sumudu transform of f (t). And according to ref. [26] we have:
1) G(¥/s)/s, isameromorphic function, with singularities having Re(s)<y, and

2) there exists a circular region I' with radius R and positive constants, M and k, with

G(s)

S

<MR™¥,

then the function f (t) is given by

. 1 o 1)ds : G(1s
SHG(s)|==—|" e'G [—J—= residuse| e —~—~ 12
[ ( )] 2nijf-‘°° s)s 2 S (12)
Definition 7. The Sumudu transform, S [f (t)] of the Caputo fractional
(13)
then it can be easily understood that
s[Drf(xt)]= (14)
3. The Basic Idea of the Homotopy Perturb
In this section, we will briefly present the algo this method. At first, the following nonlinear differential
equation is considered:
XxeQ, (15)
with the boundary conditions
(16)
where A, B, f( | differential function operator, a boundary operator, a known an

analytical function
osed into a linear operator, denoted by L, and a nonlinear operator,
(15) can be written as follows

L(u)+N(u)-f(x)=0. 17)
H(v, p)=(1-p)[L(v)-L(uy) ]+ p[ A(u)-f(x)]=0, 0<p<1, (18)

H(v, p)=L(v)-L(uy)+ pL(uy)+ p[N(v)- f(x)]=0, 0<p<1, (19)

where u, is the initial approximation of Equation (15) that satisfies the boundary condition and p is an em-
bedding parameter.
When the value of p is changed from zero to unity, we can easily see that

H(v,0)=L(v)-L(uy) =0, (20)

H(v,1)=L(v)-N(v)-f(x)=A(u)-f(x)=0, (21)
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in topology, this changing process is called deformation, and Equations (20) and (21) are called homotopic.
If the p-parameter is considered as small, then the solution of Equations (17) and (18) can be expressed as a
power series in p as follows

V=V, + py, + pAv, + iy 4 (22)
The best approximation for the solution of Equation (15) is

u:lpl_rnv:vo+v1+v2+v3+---. (23)

4. The Homotopy Perturbation Sumudu Transform Method

In order to elucidate the solution procedure of this method, we consider a general ffagiic r partial
differential equation of the form:

DIw(x,t) = Lw(x,t)+Nw(x,t)+q(xt), (24)
with n—-1<a <n, and subject to the initial condition
o 0
%:W(’)(X,O): £(x), (25)

where Dw(x,t) is the Caputo fractional derivative, g
N is the general nonlinear operator.
Taking the Sumudu transform (denoted throughout thi§ipaper by S) lpn both sides of Equation (24), we have

Using the property of the Sumudu transform imitial conditions in Equation (25), we have

n-1
u‘“S[w(x,t (@)

[Lw(x,t)+Nw(x,t)+q(xt)], (27)

(X)+ueS[Lw(x,t)+Nw(x,t)+q(x.t)]. (28)

:1 K1, (x)} +87 [uS[Lw(x,t)+ Nw(x,t)+q(xt)]]. (29)

w(x,t)= i p"W, (X,t), (30)

where p'e [0,1] is the homotopy parameter. The nonlinear term of Equation (29) can be decomposed as

Nw(x,t)=> p"H, (w), (31)
n=0
where H, are He’s polynomials, which can be calculated with the formula [27]
10" >
H, (Wo, Wy, Wy oo, W, ) = = — N(prij ,n=0,1,2,- (32)
n!op iz b0
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Substituting Equation (30) and (31) in Equation (29), we get
© n-1 0 ©
> p'w, (x,t)= S‘{Zuk f, (X):|+ pS‘{u“S{L(Z p"W,, (x,t)j+z p"H, (W)+q(x,t)ﬂ. (33)
n=0 k=0 n=0 n=0

Equating the terms with identical powers of p, we can obtain a series of equations as the follows:

P’y (x,t) =S

(34)
piw, (xt)=S"
By utilizing the results in Equation (34), and substituting them into Equati n of Equa-
tion (24) can be expressed as a power series in  p. The best approximatio Eguation (24) is:
(35)

5. Applications

In this section, in order to assess the applicability and the accuracy of the fractional homotopy Sumudu trans-
form method the following four examples.
Example 1. Consider the time-fractional partial differ | Klein-Ggrdon equation

(36)
subject to the initial conditions
W, (x,0)=x. (37)
Taking the Sumudu tra i Equation (36), thus we get
and
- . W(x,0)
S A) = uTw(x,0)+u" ———= | =S| D?w(x,t)-w(x,t)|.
us[(xt)] (u w(x,0)+u p ] [ DIw(x,t)-w(xt)]
the Sumudu transform and the initial condition in Equation (37), we have
s[w(xt)]= xt+u"S[wa(x,t)—w(x,t)] (38)
ith the Sumudu inverse on both sides of Equation (38) we get
[w(x,t)]=xt+S™ [u“S[wa(x,t)—w(x,t)ﬂ. (39)
By applying the homotopy perturbation method, and substituting Equation (30) in Equation(39) we have
i p"W, (x,t)=xt+ pS™ {U“S[(Df —1)[i p"W,, (xt)]ﬂ (40)
n=0 n=0

Equating the terms with identical powers of p, we get
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% 1wy (X,t) = xt,

a+l
L. )= —xt ,
ARy
2a+l
2. )= xt ,
P ew, () I'(20+2)
3a+1
3: ,t — _Xt :
P, (1) I'(3a+2)
_1\" ypna+l
p”:Wn(X,t):M

Thus the solution of Equation (36) is given by

(xt)_llmZp w, (x,t)

'Hno

ta+l t2a+1
=X|t- + (41)
I(a+2) T(2x

w (_ na+1
XZ( 1)" xt

n=0 (na+2)

e-fractional partial differential Klein-Gordon equation

—w(x,t)+2sinx, 1<a <2 (42)

w(x,0)=sin(x), w(x0)=1. (43)

rm on both sides of Equation (42), thus we get
S[D{”w(x,t)] = S[wa(x,t)—w(x,t)+ 25in(x)],
ow(x,0 .
u—as[w(x,t)]—[u‘“w(x,0)+u1—“ %) = S[wa(x,t)—w(x,t)Jr 2sin (x)]
Using the property of the Sumudu transform and the initial condition in Equation (43), we have
S[W(x,t)] =sin(x)+t +u"S[wa(x,t)—w(x,t)+ 25in(x)]. (44)
Operating with the Sumudu inverse on both sides of Equation (44) we get

[w(xt)]=sin(x)+t+S™ [U“S[wa(x,t)—w(x,t)+ 2sin (x)]] (45)
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By applying the homotopy perturbation method, and substituting Equation (30) in Equation (45) we have

2 p"W, (x,t)=sin(x)+t+pS™ {uas{(Df —1)(2 p"W,, (x,t)J+ Zsin(x)ﬂ. (46)

Equating the terms with identical powers of p, we get

p° 1wy (x,t) =sin(x)+t,
_ta+l

prow (X t)=

F(a+2)'
t2a+1
P, (x.t) = r(2+2)’

_t3a +1

r(3a+2)’

p’ :W3(X,t) =

Thus the solution of Equation (42) is given by

w(xt)= Ipl_rQnZ::O p"W, (x,t)
t3a+1

ta+1 +1
LR 47
"T(2a+2) T(@Bat2) 4

=sin(x)+tE, , ()
ion (42) and (43) with « =2, we obtain the exact solution

. (_1)n tha+1

) 2 har2)

=sin(x)+sint.

2
Wt
t _9 V;(Z( )—WZ(X,t)+2X2—2t2+X4'[4, l<a<? (48)
X

@ the initial onditions
w(x,0)=0, w(x,0)=0. (49)

Takingithe Sumudu transform on both sides of Equation (48), thus we get
S[Df’W(X,t)J = S[wa(x,t)—w2 (x,t)+2x* —2t* + x“t“],

and

uS[w(x,t)] —{u“w(x,0)+ ut® aW(a)t( O)J = S[wa(x,t)—w2 (x.t)+2x% —2t* + x“t“].

Using the property of the Sumudu transform and the initial condition in Equation (49), we have
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S[w(x,t)]= u"S[wa(x,t)—W2 (x,t)+2x° —2t* + x“t“]. (50)
Operating with the Sumudu inverse on both sides of Equation (50) we get
[w(xt)]=s" [u"S[wa(x,t)—w2 (x,t)+2x° - 2t* + X"t ]] (51)

By applying the homotopy perturbation method, and substituting Equation (30) in Equation (51) we have

o o © 2
> p"w, (x,t)=pS™ [u"S{DX2 [Z p"W,, (x,t))—(z p"W,, (x,t)j +2x% =2t + xt* (52)
n=0 n=0 n=0
Equating the terms with identical powers of p, we get
P’ 1w, (x,t)=0,
2x%t”
L. ) =——,
P () =
4t2a 4X4t3a X4ta
2 1) = - _
Prew, (xt) L‘Z(owl) I (a11) “T(a+l)
Thus the solution of Equation (48) is given by
A 0 2X2t0! 2ta+2 X4ta+4
1) =1 " )= - 53
wat) =im 2, P (x ) = e F(a+l) T(a+l) ¢3)
If we put ¢ — 2 in Equation (53) or solve and (49) with « =2, and so on, we can find that
we obtain the exact solution
which is in full agree
Example 4. Consj i ighal linear inhomogeneous fractional Klein-Gordon equation
—w(x,t)+6x’t+6(x’ ~6x)t°, ,t>0, xe R, 1<z <2 (54)
subject to the S
w(x,0)=0, w(x,0)=0. (55)
du transform on both sides of Equation (54), thus we get
S[D{’W(x,t)] = S[wa(x,t)—w(x,t)+ 6x°t + 6(x3 —6x)t3]
and
B B . W(x,0)
a a l-a _ 2 3 3 3
u S[w(x,t)]—(u w(x,0)+u T] = S[wa(x,t)—w(x,t+6x t+6(x —6x)t )J
Using the property of the Sumudu transform and the initial condition in Equation (55), we have
S[w(xt)]= u"S[wa(x,t)—w(x,t)+ 6x°t +6(x3 —6x)t3]. (56)
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Operating with the Sumudu inverse on both sides of Equation (56) we get

[w(xt)]=s" [u“S[wa(x,t)—w(x,t)+6x3t +6(x3 —6x)t3ﬂ. (57)
By applying the homotopy perturbation method, and substituting Equation (30) in Equation (57) we have
i p"w, (x,t)= pS™ {UO’S{( D? —1)(i p"W, (x,t)) +6x°t+6(x° - 6x)t3ﬂ. (58)
n=0 n=0

Equating the terms with identical powers of p, we get
P’ 1w, (x,1) =0,
6(x* —6x)t**

pl W (X t) _ 6X3ta+1 .
B I'(a+2) I'(a+4) '
6(x —6x)t** 6(x*~12 3
2 t)=—
p Wz(x ) [ N )

I'(2a+2) ' (P

Thus the solution of Equation (54) is given by

at - — 3_ 2a+3
W(Xat)=|imipnwn(x,t)= ox’tet  6(x°—6x) 6(x°* —12x)t

Pl F(a+2)+ I( I'(2a+4) e 09

omotopy perturbation Sumudu transform solution of Eq-
. Figures 1-4 show the approximate solutions for Equation

Figure 1. Profiles of w(x, t) when o = 2: exact solution of (54).
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Figure 2. Profiles of w(x, t)

= 2: approximate solution of (54).

Figure 3. Profiles of w(x, t) when o = 1.5: approximate solution of (54).
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Figure 4. Profiles of w(x, t)

(HPSTM). The values of a =2 is the only cas
results of (HPSTM) are in excellen ment wi

6. Conclusion
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