
Advances in Pure Mathematics, 2015, 5, 1-20 
Published Online January 2015 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2015.51001  

How to cite this paper: Granata, A. (2015) The Factorizational Theory of Finite Asymptotic Expansions in the Real Domain: 
A Survey of the Main Results. Advances in Pure Mathematics, 5, 1-20. http://dx.doi.org/10.4236/apm.2015.51001  

 
 

The Factorizational Theory of Finite 
Asymptotic Expansions in the Real Domain: 
A Survey of the Main Results 
Antonio Granata 
Dipartimento di Matematica e Informatica, Università della Calabria, Cosenza, Italy 
Email: antonio.granata@unical.it 
 
Received 16 October 2014; revised 16 November 2014; accepted 3 December 2014 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
After studying finite asymptotic expansions in real powers, we have developed a general theory 
for expansions of type ( )∗  ( ) ( ) ( ) ( )( )  ,on n nf x a x a x o x x x1 1 ,= + + + →φ φ φ  where the ordered n-tuple 

( ) ( )( )1 , ,φ φnx x  forms an asymptotic scale at 0x , i.e. ( ) ( )( )1φ φi ix o x+ =  as 0x x→ , 1 1i n≤ ≤ − , 
and is practically assumed to be an extended complete Chebyshev system on a one-sided neigh- 
borhood of 0x . As in previous papers by the author concerning polynomial, real-power and 
two-term theory, the locution “factorizational theory” refers to the special approach based on 
various types of factorizations of a differential operator associated to ( )1 , ,φ φn . Moreover, the 
guiding thread of our theory is the property of formal differentiation and we aim at characterizing 
some n-tuples of asymptotic expansions formed by ( )∗  and n − 1 expansions obtained by formal 
applications of suitable linear differential operators of orders ,1 2, , 1n − . Some considerations 
lead to restrict the attention to two sets of operators naturally associated to “canonical factoriza- 
tions”. This gives rise to conjectures whose proofs build an analytic theory of finite asymptotic 
expansions in the real domain which, though not elementary, parallels the familiar results about 
Taylor’s formula. One of the results states that to each scale of the type under consideration it re-
mains associated an important class of functions (namely that of generalized convex functions) 
enjoying the property that the expansion ( )∗ , if valid, is automatically formally differentiable n − 
1 times in two special senses. 
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1. Introduction 
In this paper, we give the main results concerning a general analytic theory of asymptotic expansions of type 

( ) ( ) ( ) ( )( )1 1 0,     ;   3,n n nf x a x a x o x x x nφ φ φ= + + + → ≥                 (1.1) 

where 

( ) ( ) ( )1 2 ,     ,n ox x x x xφ φ φ →≫ ≫ ≫                         (1.2) 

and the Hardy notation ( ) ( )x xφ ψ≫ , 0x x→ , is alternative to ( ) ( )( )x o xψ φ= , ox x→ . Though asymptotic 
expansions are since long a very useful tool in pure and applied mathematics, as far as asymptotic expansions in 
the real domain are concerned the general theory lacks basic results paralleling, for instance: a) the classical 
Taylor’s formula for polynomial expansions at a point 0x ∈ ; b) the theory of polynomial expansions at ∞  
systematized in [1]; c) the (not-too-trivial) case 2n =  thoroughly investigated in [2]. Here, we have in mind 
characterizations of (1.1) via integro-differential conditions useful for applications unlike the trivial characteri-
zation of (1.1) by means of the existence (as finite numbers) of the following n limits defining the coefficients 

ia : 

( ) ( )
( ) ( ) ( )

( )0 0

1 1 1 1
1 1: lim ,   : lim ,     2 ,i i

ix x x x
i

f x a x a x
a f x x a i n

x
φ φ

φ
φ

− −

→ →

− − −  = = ≤ ≤


         (1.3) 

the iφ ’s being supposed non-vanishing on a deleted neighborhood of 0x . The three mentioned cases show that 
a proper approach to a satisfying theory consists in studying (1.1) not by itself but matched to other expansions 
obtained by formal application of certain differential operators. It is then necessary to make clear what regularity 
assumptions on the scale are suitable, what types of representations are available for a generic function f in terms 
of ( )1, , nφ φ  and what differential operators are likely to be applicable to (1.1) in order to have a meaningful 
theory. In § 2, we introduce the concept of Chebyshev asymptotic scale clarifying the relationships between the 
signs of the two sets of Wronskians ( )1, , iW φ φ  and ( ), ,n n iW φ φ −  which play a decisive role in the sequel: 
all this matter is indissolubly linked with certain special types of factorizations of disconjugate operators, called 
canonical factorizations. In § 3, we are led by heuristical considerations to select two sets of differential opera-
tors of orders 1, 2, , 1n −  and to formulate conjectures whose proofs are the core of our theory called “the 
factorizational theory” as in previous papers [1]-[3]. In § 4, 5, 6, we present the main results; the complete ex-
position will be published elsewhere but it is available in an electronic archive-arXiv:1406.4321v2 [math.CA], 
2014. The main features of this theory are: 

(i) It yields applicable analytic characterizations of an expansion (1.1) matched to other asymptotic relations 
obtained by formal differentiations in suitable senses. 

(ii) For each Chebyshev asymptotic scale there are at least two well-defined ( )1n − -tuples of linear differen-
tial operators ( )1 1, , nL L −  and ( )1 1, , nM M − , of orders 1, 2, , 1n −

 respectively, which can be formally 
applied to (1.1) under suitable integrability conditions. In one of the two circumstances useful representations of 
the remainders are also available. 

(iii) A special family of functions is associated to each Chebyshev asymptotic scale namely that of generalized 
convex functions, for which the validity of the sole relation (1.1) automatically implies its formal differentiability 
( )1n −  times in the two senses involving the above-mentioned operators ( )1 1, , nL L −  and ( )1 1, , nM M − . 

The introductions in [1] [2] contain other comments. 
Notations 

• ( ) ( )0f AC I AC I f∈ ≡ ⇔  is absolutely continuous on each compact subinterval of I ; 

• ( ) ( ) ( )kkf AC I f AC I∈ ⇔ ∈ ; 
• For ( )kf AC I∈  we write ( ) ( )

0

1lim k
x x f x+
→  meaning that x  runs through the points wherein ( )1kf +  

exists as a finite number. Applying L’Hospital’s rule in such a context means using Ostrowski’s version [4] 
valid for absolutely continuous functions. 

• { }:= ∪ ±∞   denotes the extended real line. 
• If no ambiguity arises we use the following shorthand notations or similar ones: 
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( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0

1 2 1 1 2 1
1 2 1 1 1 1 2 2 2 1 1 1d : d d d d

n n n n

x x x x x x x x
n n n n n n n nx t t t x t t t

f f f f t t f t t f t t f t t f t t
− − − −

− − − −=∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫   

wherein each integral 0x

t∫  or, alternatively, t

T∫  may be a proper or improper integral. A notation such as 

“
xo

f
→

∫ convergent” means that ( ) 0:
x

T
I f

−
= ∫


  exists as a Lebesgue integral for some 0T x<  and each  

] ]0, ox T∈ −  and that the ( )0
lim I+→

  exists in   so defining the improper integral 0x

T
f∫ . 

• The symbol ( ) ( )( )1 , , iW u x u x  denotes the Wronskian determinant of the ordered i-tuple ( ) ( )( )1 , , iu x u x , 
( )1i −  times differentiable at the specified point x ; ( )( ) ( ):W u x u x= . ( )1, , iW u u  denotes the Wrons-
kian viewed as the operator ( ) ( )( ) ( ) ( )( )1 1: , , , ,i iW u x u x W u x u x    on a specified interval. 

• The acronyms we systematically use: T.A.S. := “ Chebyshev asymptotic scale” as in Def. 2.1; 
C.F. := “canonical factorization” defined in Proposition 2.1-(iv) and (v). 

2. Canonical Factorizations of Disconjugate Operators and Chebyshev Asymptotic 
Scales 

Our theory is built upon appropriate integral representations stemming from a special structure of the asymptotic 
scale ( )1, , nφ φ : practically it forms a fundamental system of solutions of a disconjugate equation on a one- 
sided neighborhood of 0x  such that certain Wronskians do not vanish thereon, a property granted by a result by 
Levin [5] which justifies our definition of Chebyshev asymptotic scale given below. We preliminarly recall 
some facts about factorizations of differential operators. In this section nL , 2n ≥ , denotes a linear ordinary 
differential operator of type 

( ) ( ) ( ) ( ) ( )1 1
1 0: ,     ,n n n

n nL u u x u x u u AC Jα α− −
−= + + + ∀ ∈                 (2.1)1 

( )1
loc ,   0 1,   a generic interval of ,i L J i n Jα ∈ ≤ ≤ −                     (2.1)2 

where ( )1
locL J  denotes the class of functions Lebesgue-summable on every compact subinterval of J . The 

matters to be discussed depend on the property of disconjugacy and several characterizations involving factori-
zations are collected in the next proposition where special locutions are defined in the statement itself. For gen-
eral properties about disconjugacy we refer to the book by Coppel [6] and the paper by Levin [5], and for facts 
concerning canonical factorizations we refer to the papers by Trench [7] and the author [8] [9]. 

Proposition 2.1 (Disconjugacy on an open interval via factorizations). For an operator nL  of type ( )1,22.1 , 
2n ≥ , on an open interval ] [,a b , bounded or not, the following properties are equivalent: 

(i) nL  is disconjugate on ] [,a b  in the sense that: every nontrivial solution of 0nL u =  has at most ( )1n −  
zeros on ] [,a b  counting multiplicities or, equivalently, has at most ( )1n −  distinct zeros on ] [,a b . 

(ii) 0nL u =  has a fundamental system of solutions on ] [,a b , ( )1, , nu u , satisfying Pólya’s W -property: 

( ) ( )( ) ] [1 , , 0    , ,     1 ,iW u x u x x a b i n> ∀ ∈ ≤ ≤                      (2.2) 

or equivalently 0nL u =  has solutions 1 1, , nu u −  satisfying (2.2) for 1 1i n≤ ≤ − . 
(iii) nL  has a Pólya-Mammana factorization on ] [,a b  i.e. 

( ) ] [1
1 1 0 ,     , ,n

n n nL u r r r r u AC a b−
−

′ ′ ′  ′ ≡ ∀ ∈       

                     (2.3) 

where the ir ‘s are suitable functions such that: 

( ) ] [ ] [ [ ]1 00  , ;     , ,   0 1;     , .n i
i i nr x x a b r AC a b i n r AC a b− −> ∀ ∈ ∈ ≤ ≤ − ∈            (2.4) 

(iv) nL  has a “canonical factorization (C.F. for short) of type (I) at the endpoint a”, i.e. a factorization of 
type (2.3)-(2.4) with the additional conditions: 

( )1 ,     1 1,ia
r i n

→
= +∞ ≤ ≤ −∫                              (2.5)a 
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and a similar “C.F. of type (I) at the endpoint b”, i.e. with the ir ’s satisfying 

( )1 ,     1 1.
b

ir i n
→

= +∞ ≤ ≤ −∫                              (2.5)b 

(v) For each c , < <a c b , nL  has a “C.F. on the interval ] [,a c  which is of type (II) at the endpoint a ”, 
i.e. a factorization (2.3)-(2.4) valid on the interval ] [,a c  and with the ir ’s satisfying 

( )1 ,     1 1,ia
r i n

→
< +∞ ≤ ≤ −∫                             (2.6)a 

and nL  has a “C.F. on the interval ] [,c b  which is of type (II) at the endpoint b ”, i.e. a factorization (2.3)- 
(2.4) valid on the interval ] [,c b  and with the ir ’s satisfying 

( )1 ,     1 1.
b

ir i n
→

< +∞ ≤ ≤ −∫                              (2.6)b 

Remarks. Conditions (2.5) or (2.6) are required to hold for the index i  running from 1 to ( )1n − : there are 
no conditions on 0r  and nr . Factorizations in properties (iii)-(iv) are global i.e. valid on the whole given inter-
val ] [,a b , whereas property (v) claims the existence of local C.F.’s of type (II). A global C.F. of type (I) at a 
specified endpoint does always exist for a disconjugate operator on an open interval and is “essentially” unique 
in the sense that the functions ir  are determined up to multiplicative constants with product 1, and this is an 
historical result by Trench [7] which gave new impetus to the asymptotic theory of ordinary differential equa-
tions. The situation is quite different for C.F.’s of type (II). For example the operator ( )n

nL u≡  has no global 
C.F. on ( ),−∞ +∞  of type (II) at any of the endpoints for it has only “one” (up to constant factors) Pólya- 
Mammana factorization on ( ),−∞ +∞ , namely 

( ) ( )( )nu u
′′′≡    

and this is a special contingency characterized in [8] (Thm. 3.3) and in [9] (Thm. 7.1). But the operator ( )nu  
thought of as acting on the space )1 0,nAC −  +∞ , or even on the space )0,C∞  +∞ , has infinitely many “essen-
tially” different C.F.’s of type (II), for instance the following ones 

( )

( )
( ) ( )

( )

''''

2 2
1 1

1n
n n

uu x c x c
x c x c− −

        ≡ − −     − −       

   

which are C.F.’s of type (II) at both the endpoints “0” and “ +∞ ” whatever the choice of the constant 0c < . For 
0c =  we get a factorization on )0,] +∞  which is a C.F. of type (I) at “0” and of type (II) at “ +∞ ”; for 0c >  

we have nonglobal factorizations which are of type (II) at +∞ . 
C.F.’s are naturally linked to bases of ker nL  forming asymptotic scales at one or both endpoints and the 

following results, due to Levin ([5] § 2), highlight important properties of the Wronskians constructed with an 
asymptotic scale. 

Proposition 2.2 (Wronskians of asymptotic scales and their hierarchies). Let nL  be an operator of type 
1,2(2.1)  disconjugate on an open interval ] [,a b . Then: 

(i) Its kernel has some basis ( )1, , nφ φ  satisfying: 

( ) ] [
( ) ( ) ( )1 2

0 on some interval , ,     1 ;

,     .
i

n

x b b i n

x x x x b

φ ε

φ φ φ −

 > − ≤ ≤


→ ≫ ≫ ≫
                    (2.7) 

(ii) For each such basis: 
( ) ( ) ( )( ) ] [1, , , 0 on the whole interval , ,     1 ,n n iW x x x a b i nφ φ φ− > ≤ ≤            (2.8) 

noticing the reversed order of the iφ ’s in the Wronskians. 
(iii) For any strictly decreasing set of indexes { }1, , ki i , i.e. such that 

1 2 1,     1 1,kn i i i k n≥ > > > ≥ ≤ ≤ −                         (2.9) 
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we have: 

( ) ( )( )1
, , 0 on a left deleted neighborhood of 

ki iW x x bφ φ >
                 (2.10) 

and in particular we have the inequalities: 

( ) ( )( ) ( ) ( )1 2
1signW , , 1  on a left deleted neighborhood of ,     1 .i i

ix x b i nφ φ −= − ≤ ≤         (2.11) 

(iv) For each k , 1 1k n≤ ≤ − , and for any two distinct and strictly increasing sets of indexes 1, , ki i  and 
1, , kj j  such that h hi j≤ , 1 h k≤ ≤ , we have 

( ) ( )( ) ( ) ( )( )1 1
, , , , ,     .

k ki i j jW x x W x x x bφ φ φ φ −→ ≫                   (2.12) 

Notice the ordering of the iφ ’s and the jφ ’s in (2.12): if each iφ  has an order of growth at b−  greater 
than that of the corresponding jφ  then the same is true for the Wronskians. In the claim (iii), we have a differ-
ent ordering of the iφ ’s as this grants the positivity of the Wronskians in (2.10). 

To visualize (2.12), we list a few asymptotic scales at b−  constructed with the Wronskians: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 2 1 3 1

2 3 2 4 2

2 1 2

, , , ,

, , , ,
      ;

   
, , ,

n

n

n n n n

W W W

W W W
x b

W W

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ

−

− − −



 →










≫ ≫ ≫

≫ ≫ ≫

≫

                  (2.13) 

( ) ( ) ( )1 2 3 1 2 4 1 2, , , , , , ,     .nW W W x bφ φ φ φ φ φ φ φ φ −→≫ ≫ ≫                 (2.14) 

It is quite important to note the order of the iφ ’s forming the asymptotic scale in (2.7); if we maintain the 
same ordering in the analogous statement for x a+→ , i.e. ( ) ( ) ( )1 2 nx x xφ φ φ≫ ≫ ≫ , x a+→ , then the 
Wronskians in (2.8), (2.10) and (2.12) are the same, the essential point being the relative growth-order of the iφ
‘s. From the point of view of asymptotic expansions the correct numbering is that adopted by us irrespective of 
the limiting process. The above results substantiate the following definition of special asymptotic scales wherein 
we merely fix the neighborhood of b  left undefined in Proposition 2.2. From now on, the interval will be de-
noted as in the two-term theory [2]. 

Definition (Chebyshev asymptotic scales). The ordered n-tuple of real-valued functions ( )1, , nφ φ , 2n ≥  
is termed a “Chebyshev asymptotic scale” (T.A.S. for short) on the half-open interval [ [0,T x , T ∈ , 0x ≤ +∞ , 
provided the following properties are satisfied: 

[ [1
0, ,     1 ,n

i C T x i nφ −∈ ≤ ≤                            (2.15) 

( ) 00 on some left deleted neighborhood of  ,     1 ,i x x i nφ ≠ ≤ ≤              (2.16) 

( ) ( ) ( )1 2 ,     ,n ox x x x xφ φ φ −→≫ ≫ ≫                       (2.17) 

( ) ( )( ) [ [1 0, , 0 on , ,     1 .iW x x T x i nφ φ ≠ ≤ ≤                     (2.18) 

Whenever the iφ ’s satisfy the stronger regularity condition 

[ [1
0, ,     1n

i AC T x i nφ −∈ ≤ ≤                            (2.19) 

they remain associated to the operator: 

( ) ( )( ) ( ) ( )( )1 , , 1 1: , , , , ,
n n nL u W x x u W x xφ φ φ φ φ φ=



                   (2.20) 

which is the unique linear ordinary differential operator of type 1,2(2.1) , acting on the space [ [1
0,nAC T x−  

and such that ( )
1 , , 1ker span , ,

n nLφ φ φ φ=
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Remarks. 1. Condition (2.15) is the usual regularity assumption in approximation theory (Chebyshev systems 
and the like), whereas in matters involving differential equations/inequalities it is natural to assume (2.19). 
Choosing an half-open interval is a matter of convenience: the point 0x  involved in the asymptotic relations is 
characterized as the endpoint not belonging to the interval, possibly 0x = +∞ , whereas the other endpoint 
marks off an interval whereon the inequalities involving the Wronskians are satisfied and these in turn allow 
certain integral representations valid on the whole given interval and essential to our theory. 

2. In the definition we have merely supposed the non-vanishingness of various functions instead of specifying 
their signs as in Proposition 2.2; this avoids restrictions that are immaterial in asymptotic investigations. If the 

iφ ’s are strictly positive near 0x  then Levin’s theorem provides the exact signs of certain Wronskians. 
3. As concrete examples of such asymptotic scales on [ ),T +∞  the readers may think of scales whose 

non-identically zero and infinitely-differentiable functions are represented by linear combinations, products, ra-
tios and compositions of a finite number of powers, exponentials and logarithms. As a rule such functions and 
their Wronskians have a principal part at +∞  which can be expressed by products of similar functions, hence 
they do not vanish on a neighborhood of +∞ . 

When comparing our notations with other authors’ results the reader must carefully notice the numbering of 
the iφ ’s in the asymptotic scale (2.17) and in the Wronskians (2.18). 

The concept of Chebyshev asymptotic scale, even under the weak regularity (2.15), admits of useful characte-
rizations which generalize a classical result, ([10]; Ch. XI, Th. 1.2, p. 379) about those special asymptotic scales 
formed by functions with zeros of increasing multiplicities (namely 0,1, , 1n −

) at an endopint of a compact 
interval; also refer to ([10]; Ch. I) and [11] for locutions and facts about Chebyshev systems. Here we only men-
tion the properties necessary to give meaning to the results stated in this survey. 

Proposition 2.3 For ( )1, , nφ φ  a T.A.S. on [ [0,T x  we have the inequalities: 

( ) [ [00 on , ,     1 ,i x T x i nφ ≠ ≤ ≤                             (2.21) 

( ) ( ) ( )( ) [ [1 0, , , 0 on , ,     1, ,n n iW x x x T x i nφ φ φ− ≠ ≤ ≤                   (2.22) 

( ) ( )( )1
, , 0 near ,

ki i oW x x xφ φ ≠
                           (2.23) 

for any set of indexes satisfying (2.9) and we also have the hierarchies between the Wronskians stated in Propo- 
sition 2.2-(iv) and referred to 0x x−→ . Whenever the iφ ’s are strictly positive then all the Wronskians in (2.22) 
are strictly positive on [ [0,T x , but not necessarily all the Wronskians in (2.18); in this case the inverted n -tuple 
( )1, ,nφ φ  is an extended complete Chebyshev system on [ [0,T x . On the contrary, if the given n -tuple 
( )1, , nφ φ  is an extended complete Chebyshev system on [ [0,T x , i.e. all the Wronskians in (2.18) are strictly 
positive on [ [0,T x , then certain integral representations (not reported here) imply that the iφ ’s have alter- 
nating signs, namely: ( ) 1sign 1 i

iφ
−= −  on [ [0,T x . 

Notice that the converse of the inference “(2.18) ⇒  (2.22)” generally fails as easily checked for the scale: 

( )2 21 ,     0 ,     0cx x x x c−+ → >≫ ≫                         (2.24) 

on the interval ( ,0[−∞ , for which we have: 1φ  and ( )1 2 3, , 0W φ φ φ ≠  on ( ,0[−∞ ; 
( ) ( )2

1 2, 1, 2 0W W cx x c xφ φ ≡ + = + ≠  on ] [2,0c−  but not on ( ,0[−∞ . 
In the next proposition we collect all the facts essential to develop our theory of asymptotic expansions. 
Proposition 2.4 (Formulas concerning T.A.S.’s linked to differential operators). Let the ordered n -tuple 

( )1, , nφ φ  satisfy conditions (2.15) to (2.19), hence the operator in (2.20) is disconjugate on the open interval 
] [0,T x  and, as such, enjoys the properties in Propositions 2.1 and 2.2. Moreover, as an operator acting on 

[ [1
0,nAC T x−  it has the following further properties: 

(i) Define the following ( )1n +  functions on [ [0,T x : 

( ) ( )

( ) ( ) ( )
( ) ( )

2
0 1 1 1 1 2

2
1 1 1 1 1

1
0 1 1 1 1 1

: 1 ;     : , ;

: , , , , , , ,     2 1;

: , , , , .

i i i i

n n n n

q q W

q W W W i n

q q q q W W

φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ

− +

−
− −

 = =

  = ⋅ ≤ ≤ −  


= ≡

  

  

          (2.25) 
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Then the iq ’s satisfy the following regularity conditions: 

( ) [ [ [ [ [ [1 0
0 0 00  , ;    , ,  0 1;    , .n i

i i nq x x T x q AC T x i n q AC T x− −> ∀ ∈ ∈ ≤ ≤ − ∈            (2.26) 

Their reciprocals, left apart 0q  and nq , may be expressed as derivatives of certain ratios 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1
1 2 1

1 1

, , ,
1 ;     1 ,     2 1,

, , ,
i i

i
i i

W x x x
q x x x q x i n

W x x x
φ φ φ

φ φ
φ φ φ

− +

−

 ′= = ≤ ≤ − 
  





       (2.27) 

on the interval [ [0,T x , and 

( )0 1 ,     1 1.
x

iT
q i n< +∞ ≤ ≤ −∫                              (2.28) 

Our operator admits of the following factorization on [ [0,T x : 

( )
1 , , 1 0n n nL u q q q uφ φ −

′ ′ ′≡   
   



                            (2.29) 

which is a global C.F. of type (II) at both endpoints T  and 0x . 
(ii) Our T.A.S. (apart from the signs) admits of the following integral representation in terms of the iq ’s: 

( ) ( ) ( ) [ [0 0

2
1 0

0 0 1 1

1 1 1 1;   ,     2 ,   , ,
( ) i

x x
i x t

i

x x i n x T x
q x q x q q

φ φ
−

−

= = … ≤ ≤ ∈∫ ∫           (2.30) 

hence the iφ ’s, besides being everywhere non-zero on [ [0,T x , have the same order of growth at T , namely 

( )
( ) { }lim \ 0   .i

ij
x T j

x
c i j

x
φ
φ+→

= ∈ ∀ ≠                          (2.31) 

In the special case where all the Wronskians in (2.18) are strictly positive, i.e. when ( )1, , nφ φ  is an 
extended complete Chebyshev system on [ [0,T x , then the iφ ’s have alternating signs, namely 

( ) [ [1
0sign 1  on , .i

i T xφ −= −                              (2.32) 

(iii) Analogously we define the following ( )1n +  functions on [ [0,T x : 

( ) ( )
( ) ( ) ( )

( ) ( )

2
0 1 1

2 1
1 1 1 2 1

1
0 1 1 1 1 1 2

: 1 ;     : , ;

: , , , , , , , , , ,     2 1;

: , , , , , , .

n n n n

i n n n i n n n i n n n i

n n n n n n

p p W

p W W W i n

p p p p W W

φ φ φ φ

φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ

−

−

− − + − − + − −

−
− − −

 = =
  = ⋅ ≤ ≤ −  


= ≡

  

  

   (2.33) 

They satisfy the same regularity conditions on the half-open interval [ [0,T x  as the iq ’s do in (2.26) and 
their reciprocals may be expressed as derivatives of the following ratios analogous to those in (2.27): 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

2
1 1

2 1

, , ,
1 ;    1 ,     2 1,

, , ,
n n i n i

n n i
n n i n i

W x x x
p x x x p x i n

W x x x
φ φ φ

φ φ
φ φ φ

− + −
−

− + − +

 ′= = ≤ ≤ − 
  





   (2.34) 

on the interval [ [0,T x . Moreover: 

( ) ( )1 ,   1 1;     1 ,   1 1;
xo

i iT
p i n p i n= +∞ ≤ ≤ − < +∞ ≤ ≤ −∫ ∫                  (2.35) 

hence, apart from constant factors, the associated factorization 

( )
1 , , 1 0n n nL u p p p uφ φ −

′ ′ ′≡   
   



                           (2.36) 
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is “the” global C.F. of 
1 , , n

Lφ φ

 of type (I) at 0x  and it turns out to be of type (II) at T . 
(iv) The special fundamental system of solutions to 

1 , , 0
n

L uφ φ =


 defined by 

( ) ( ) ( ) ( )
1

0
0 0 1

1 1 1 1: ;       : ,    1 1ix t
i T T

i

P x P x i n
p x p x p p

−= = ≤ ≤ −∫ ∫              (2.37) 

satisfies the asymptotic relations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 2 1

1 2 1 0 0

,
, .

n n

n n

P x P x P x P x x T
P x P x P x P x x x

+
− −

−
− −

 →


→





≫ ≫ ≫ ≫

≫ ≫ ≫ ≫
                 (2.38) 

Relations (2.38) uniquely determine the fundamental system ( )0 1, , nP P −  up to multiplicative constants. (In 
the terminology used by the author [2] [3] the n -tuple ( )0 1, , nP P −  is a “mixed hierarchical system” on 
] [0,T x  whereas Levin [5] (p. 80) would call it a “doubly hierarchical system” because he uses different ar-
rangements for asymptotic scales at the left or right endpoints [5] (p. 59). If the iφ ’s are strictly positive then the 
same is true for all the Wronskians in (2.33) hence the absolute values are redundant; in this case it is the 
inverted n -tuple ( )1, ,nφ φ  which forms an extended complete Chebyshev system on [ [0,T x . 

The construction of the two above factorizations starting from the given expressions of the coefficients iq  or 
ip  is the classical procedure by Pólya [12]. Notice that the functions ip ’s in (2.33), which are unique (constant 

factors apart) by a mentioned result by Trench, may be recovered from many different asymptotic scales and not 
just from one! The main feature of the above proposition is that we can express all the properties of our basic 
operator (at least those needed in our theory) in terms of the a-priori given Chebyshev asymptotic scale. The use 
of absolute values in the definitions of the iq ’s and ip ’s has the advantage of avoiding their use in the every-
where-present integral representations; and we must use them in at least one of the definitions as the two sets of 
Wronskians cannot have one and the same sign. 

3. Applying Differential Operators to Asymptotic Scales 
In the elementary case of Taylor’s formula, the simple condition 

( ) ( )0
nf x∃                                      (3.1) 

is not a mere sufficient condition for the validity of the asymptotic expansion 

( ) ( ) ( )( ) ( ) ( )( )0 0 0
0

,     ,
n i n n

i n o
i

f x a x x o x x T x o x x x x
=

= − + − ≡ + − →∑            (3.2) 

it in fact characterizes the set of the n  asymptotic expansions 

( ) ( ) ( ) ( ) ( )( )0 0
0

,     ,  0 1,
n k n kk k

n
i

f x T x o x x x x k n
−

−

=

= + − → ≤ ≤ −∑               (3.3) 

which is formed by (3.2) together with the relations obtained by formal differentiation 1,2, , 1n −
 times. In 

this case, we have the known formulas for the coeffficients: 

( ) ( )0 !,     0 .i
ia f x i i n= ≤ ≤                             (3.4) 

If we strenghten condition (3.1) by assuming 

( )0 0
,   : a neighborhood of ,n

x x of AC I I x∈                       (3.5) 

we also have the representation 

( ) ( ) ( ) ( ) ( ) ( )
0

1
0 d

xn n n

x
f x f x f t t+= + ∫                          (3.6) 

which, besides implying the validity of (3.3) for k n=  as well, gives rise to the integral representation formu-
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las of all the remainders in (3.3). A similar situation occurs in the factorizational theory of polynomial asymp-
totic expansions at +∞ , [1], where the standard operator of differentiation : d dD x=  happens to be formally 
applicable n  times to the expansion 

( ) ( )1 0 1 ,     ,n
nf x a x a x a o x= + + + + → +∞                      (3.7) 

in two quite different senses and under suitable integrability conditions. But in the analogous theory for expan-
sions in arbitrary real powers 

( ) ( ) ( )1
1 1,     ,  n n

n nf x a x a x o x xα αα α α= +…+ + → +∞ > >               (3.8) 

developed in [3], it turns out that the most natural operators on which to build a satisfying theory are those 
linked to the C.F.’s of the differential operator in (2.20) with ( ) : i

i x xαφ =  and not the operators kD  though, in 
this special instance, the set of the formally-differentiated expansions may be equivalently expressed by expan-
sions involving the standard derivatives. In the present general context Levin’s theorem on hierarchies suggests 
that the k th-order linear operators 

( )11 , , 1 2: , , , ,   1 ;    1 1
i i kk i i ku W u i i i n k nφ φ φ φ= ≤ < < < ≤ ≤ ≤ −


               (3.9) 

are likely to be formally applicable to an expansion (1.1) because they preserve the hierarchy (2.17) after sup-
pressing the identically-zero terms, which means that they transform an asymptotic expansion with a zero re-
mainder 

( ) ( ) ( )1 1 n nf x a x a xφ φ= + +                             (3.10) 

into a similar expansion, namely: 

( )11

1, ,

, , , , ,
i i kk

j

i n

i i i i
i i j

f a Wφ φ φ φ φ
=

≠ ∀

= ∑




                           (3.11) 

For instance, we have the identity: 

( ) ( ) ( ) ( )1 1 1 1 1 1, , , ,
k k k k k k k k n k nf a W a W a W a Wφ φ φ φ φ φ φ φ φ− − + += + + + + +            (3.12) 

wherein 

( ) ( ) ( ) ( ) ( )1 2 1 1 0, , , , , ,     k k k k k k k nW W W W W x xφ φ φ φ φ φ φ φ φ φ −
− + → ≫ ≫ ≫ ≫ ≫ ≫       (3.13) 

for each fixed k , 1 1k n≤ ≤ − , 3n ≥  (For 2n =  the chain (3.13) has only one term). 
Now in the Wronskians (3.9) a permutation of ( )1

, ,
ki iφ φ

 seems to be immaterial (a sign apart) but the ob-
ject of our study, in a general formulation, involves a sequence of “nested” operators: 

1 1 2 1 2, , , ,, , ,
i i i i i ikφ φ φ φ φ φ

                               (3.14) 

where “nested” refers to the inclusions of their kernels and the problem consists in finding sufficient, and possi-
bly necessary, conditions for the validity of the set of asymptotic relations 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

11
1

11

1
1, ,

1

1, ,

, ,

;

, ; ;

        

, , , ; .

i

i i kk
j

n

i i n
i

j n

i i i
i i

j n

i i i i k
i i j

f x a x o x

f x a W x o x

f x a W x o x

φ

φ φ

φ φ

φ φ ψ

φ φ φ ψ

=

=

≠

=

≠ ∀

 = +



= +   



 = +   


∑

∑

∑















              (3.15) 
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with proper choices of the iψ ’s. Once a subset ( )1
, ,

ki iφ φ
 has been fixed there is no a-priori reason to prefer 

one permutation of the iφ ’s to another but it turns out that each ordered k -tuple ( )1
, ,

ki iφ φ
 is linked to a 

special factorization of 
1 , ,i ikφ φ

 , possibly valid on a neighborhood of 0x  smaller than [ [0,T x  and calcula-
tions (to obtain meaningful results) can be successfully carried out only under proper integrability assumptions 
on the coefficients of the factorization, hence the order of the iφ ’s is not immaterial. A generic factorization of 

1, , nφ φ

 , say (2.3), assumed valid on [ [0,T x , involves the differential operators 

( ) ( ) ( )( ) ( ) ( ) ( )( )0 1 0 2 1 0;     ;     ; ...r x u r x r x u r x r x r x u
′ ′ ′

  
                  (3.16) 

which we label as “weighted derivatives of orders 0, 1, 2 etc. with respect to the weights ( )0 1, , , nr r r ”. 
Operators (3.16) are not always linked to operators of the type in (3.9) nor they preserve the hierarchy of the 

iφ ’s but the two C.F.’s highlighted in Proposition 2.1 yield two sequences of differential operators of orders 
0,1, 2, , 1n −

 which are strictly related to operators in (3.9) and preserve the hierarchy; these operators were 
the core of the asymptotic theory in the case of real-power expansions [3] [13] hence they deserve a special at-
tention and, as a matter of fact, the most meaningful results of our theory are based on them. 

Referring to the factorization of type (I) in (2.36), with the ip ’s in (2.33), we define the differential operators 
acting on [ [1

0,nAC T x− : 

( ) ( )
10 0 1 0 , ,: ;    : ,  1 ;    

nk k k nL u p x u L u p p p u k n L u L uφ φ−

′ ′ ′= = ≤ ≤ ≡  
   



          (3.17) 

which satisfy the recursive formula 

( )( )1: ,     1 .k k kL u p x L u k n−
′= ≤ ≤                          (3.18) 

And referring to the factorization of type (II) in (2.29), with the iq ’s in (2.25), we define the differential op-
erators acting on [ [1

0,nAC T x− : 

( ) ( ) ( ) ( )( ) 10 0 1 0 , ,: ;    : ,  1 ;    
nk k k nM u q x u M u q x q x q x u k n M u L uφ φ−

′ ′ ′ = = ≤ ≤ ≡ 
   



       (3.19) 

which satisfy the recursive formula 

( )( )1: ,     1 .k k kM u p x M u k n−
′= ≤ ≤                        (3.20) 

Now representations (2.30) and (2.36) imply that: 

( ) ( )1 1 1ker span , , , ;     ker span , , ,     1 1;k n n n k k kL M k nφ φ φ φ φ− − += = ≤ ≤ −          (3.21) 

hence, there exists never-vanishing functions kp , kq  such that: 

 ( )  ( )1 1 1, , , , ;    , , , ,     1 1.k k n n n k k k kL u p W u M u q W u k nφ φ φ φ φ− − += ⋅ = ⋅ ≤ ≤ − 
       (3.22) 

It follows that kL  and kM  preserve the hierarchy (2.17), namely we have the following asymptotic scales 

( ) ( ) ( )1 2 ,     ;k k k n k oL x L x L x x xφ φ φ −
− →          ≫ ≫ ≫                (3.23) 

( ) ( ) ( )1 2 ,     ;k k k k k n oM x M x M x x xφ φ φ −
+ + →          ≫ ≫ ≫            (3.24) 

for each fixed k , 0 2k n≤ ≤ − . For 0k =  they respectively reduce to 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 0 ,     ;n op x x p x x p x x x xφ φ φ −→≫ ≫ ≫             (3.25) 
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( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 0 ,     ;n oq x x q x x q x x x xφ φ φ −→≫ ≫ ≫                  (3.26) 

both equivalent to (2.17). Hence, applying each n -tuple of operators kL  and kM , 0 1k n≤ ≤ − , to (3.10) 
yields again asymptotic expansions with zero remainders and in this sense we may say that “the asymptotic ex- 
pansion (3.10) is formally differentiable ( )1n −  times with respect to the n -tuples of weights ( )0 1, , np p −  
and ( )0 1, , nq q − ” neglecting the n th-order weighted derivatives which yield identically-zero expressions. The 
above discussion leads to the following 

Conjecture. For each chosen C.F. of 
1 , , n

Lφ φ

 of type either (I) or (II) at 0x , 

( ) [ [
1

1
, , 1 0 0    , ,

n

n
n nL u r r r u u AC T xφ φ

−
−

′ ′ ′≡ ∀ ∈  
   



                    (3.27) 

there exists a linear subspace [ [1
0,nAC T x−∈ , such that: 

(i) ( )1span , , nφ φ
≠
⊃   

(ii) each f ∈  has an asymptotic expansion of type (1.1) which is formally differentiable ( )1n −  times 
with respect to the n-tuples of weights ( )0 1 1, , , nr r r − . 

The problem consists in finding out analytic conditions characterizing the elements of   for a C.F. of type (I) 
or (II) separately. The foregoing approach suggests a smallness condition involving the quantity ( )

1 , , n
L f xφ φ   

 
which is 0≡  whenever the remainder in the expansion is. 

There is another kind of considerations suggesting a special role of C.F.’s of type (II). If we wish to investi-
gate the possible expressions of the coefficients of an asymptotic expansion alternatively to the recurrent formu-
las (1.3), so generalizing (3.4), it is clear from the study of polynomial expansions in [1] that the C.F. of type (I) 
is of no use to this end whereas the right approach is via a C.F. of type (II) by establishing a link between the 
coefficients of (3.10) and the limits of the weighted derivatives. 

Proposition 3.1 (The coefficients of an asymptotic expansion with zero remainder). Referring to the T.A.S. in 
Proposition 2.4 and to the special factorization (2.29) the following facts hold true for the differential operators 

kM  in (3.19): 
(I) The kM ’s satisfy the following relations: 

( ) ( )10,    1 ;    constant 1,     1 1k i k k kM x i k M x k nφ φ += ≤ ≤ ≡ = = ± ≤ ≤ −                 (3.28) 

( ) ( )0
, 0

1 1

,

1 1 1 ,     ;

constant 1,          1 2,         ;

x
k h h k x

k h

h k

M x o x x
q q

k h h n

φ −

+ −

 = ⋅ = →   

 = = ± ≤ ≤ − ≤

∫ ∫


                    (3.29) 

( )
( )

1

1 1

, , ,
,     1 1.

, , ,
k

k k
k k

W u
M u k n

W
φ φ
φ φ φ +

≡ ≤ ≤ −




                          (3.30) 

(II) For a fixed k , 1 k n≤ ≤ , we have the logical equivalence: 

( )1 1 constant on some interval k k kM f x a J− −≡ ⋅ =                        (3.31) 

iff 

( ) ( ) ( )1 1  on  for some constants k k if x a x a x J aφ φ= +…+                   (3.32) 

ka  being the same as in (3.31) and 1k−  as in (3.28). 
If (3.31)-(3.32) hold true on a left neighborhood of 0x  then the following limits exist as finite numbers and 

( )
0

1 1lim ,     1h h h
x x

a M f x h k
−− −

→
⋅ = ≤ ≤                            (3.33) 

where, for h k=  (3.33) is the identity (3.31). 
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(III) In the special case where all the Wronskians in (2.18) are strictly positive then the constants in 
(3.28)-(3.29) have the values: 

( ) 1
,1,     1 .h k

k h k
+ += = −                                 (3.34) 

We stress that the equivalence “ ( ) ( )3.31 3.32⇔ ” is an algebraic fact based on (3.28)-(3.29) whereas the in-
ference “(3.31)-(3.32) ⇒  (3.33)” is an asymptotic property whose validity requires that ( )1, , kφ φ  be an 
asymptotic scale at 0x  and that the operators kM  be defined as specified. The above proposition suggests the 
following 

Conjecture. If all the limits in (3.33) exist as finite numbers for some function f  sufficiently regular on a 
left deleted neighborhood of 0x  then an asymptotic expansion 

( ) ( ) ( ) ( )( )1 1 ,     ,k k k of x a x a x o x x xφ φ φ −= +…+ + →                   (3.35) 

holds true matched to other expansions obtained by formal applications of the operators 1 1, , kM M − . Moreo-
ver, it is worth investigating if the validity of the sole last relation in (3.33), i.e. for h k= , implies the validity of 
the other relations. 

Our study gives complete answers to the above Conjectures and the main results are reported in the next sec-
tions. 

4. The First Factorizational Approach 
We start from the “unique” C.F. of our operator 

1, , n
Lφ φ

 on the interval [ [0,T x  of type (I) at 0x , i.e. identity 
(2.36) with conditions (2.35) and the ip ’s satisfying the same conditions as do the iq ’s in (2.26). In this ap-
proach, the appropriate differential operators are the kL ’s defined in (3.17) which satisfy: 

( )
, 0 1,

0 0 .
n k

k n i

b i k n
L x

i k
φ −

−

≤ = ≤ −
≡    ≤ <

                          (4.1) 

with suitable non-zero constants ib ’s, and we have the asymptotic scales as 0x x−→ : 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

0 1 0 2 0

1 1 1 2 1 1

2 1 2 2 2 2

2 1 2 2

[ ;

;

;

     

.

n

n

n

n n

L x L x L x

L x L x L x

L x L x L x

L x L x

φ φ φ

φ φ φ

φ φ φ

φ φ

−

−

− −

           
           
           

       









≫ ≫ ≫

≫ ≫ ≫

≫ ≫ ≫

≫

                      (4.2) 

Moreover any function [ [1
0,nf AC T x−∈  admits of a representation of type: 

( ) ( ) ( ) ( )
( )

( ) [ [2 1 1 , ,
1 1 0

0 1 1

1 1 1 d ,     ,n n nx t t
n n T T T

n n

L f t
f x c x c x t x T x

p x p p p t
φ φφ φ − −

−

  = + + + ∈∫ ∫ ∫


         (4.3) 

with suitable constants ic . And applying the operators kL  to (4.3), we get the following representations of the 
weighted derivatives with respect to the weight functions ( )1 1, , np p − : 

( ) ( ) ( ) ( ) ( )
( )

( )
2 1 1 , ,1 1

1 1
1 1 1 1

d d
d ,

                                                                                                   

n n nx t tk n
k k n k k n k T T T

k k n n n

L f tt t
L f x c L x c L x t

p t p t p t
φ φφ φ − −+ −

− −
+ + − −

  = + + +           ∫ ∫ ∫


 

( )
( )

( )
1 , ,

1 1 1 1

                                       1 2;

d ,      as in (4.1).nx
n T

n

k n
L f t

L f x c b t b
p t

φ φ
−




 ≤ ≤ −
    = +  

∫


  (4.4) 

Here is one of the main results obtainable by this approach. 
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Theorem 4.1 (Asymptotic expansions formally differentiable according to the C.F. of type (I)). For  
[ [1

0,nf AC T x−∈  the following are equivalent properties: 
(i) The set of asymptotic expansions as 0x x−→  for suitable constants 1, , na a : 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

1 1

constant

,

1 ,     1 1,
n n n

k k n k k n k

f x a x a x o x

L f x a L x a L x o k n

φ φ φ

φ φ− −

 = + + +

 = + + + ≤ ≤ −          








             (4.5) 

where the last term in each expansion is lost in the successive expansion. 
(ii) The iterated improper integral 

( )
( )

0 0 0 1

2 1

, ,

1 1

1 1 d    convergesn

n n

x x x

T t t
n n

L f t
t

p p p t
φ φ

− −
−

  ∫ ∫ ∫


                       (4.6) 

(iii) There exist n  real numbers 1, , na a  and a function nΦ  Lebesgue-summable on [ [0,T x  such that 

( ) ( ) ( ) ( )
( ) [ [0 0 0 0

1 2 1
1 1 0

0 1 2 1

1 1 1 1) d ,     , .
n n

n
x x x x

n n nx t t t
n

f x a x a x t x T x
p x p p p

φ φ
− −

−

−
= + + + Φ ∈∫ ∫ ∫ ∫         (4.7) 

If this is the case nΦ  is determined up to a set of measure zero and 

( ) ( ) ( ) [ [
1 , , 0

1  . . on  , .
nn

n

x L f x a e T x
p x φ φΦ =   

                      (4.8) 

The phenomenon appearing in (4.5) is intrinsic in the theory; it occurs even in the seemingly elementary case 
of real-power expansions, [3] (Thm. 4.2-(ii), p. 181, and formula (7.2), p. 195), where the asymptotic scale en-
joys the most favourable algebraic properties. This type of formal differentiation of an asymptotic expansion 
does not frequently occur in the literature though the results in this section show that it is one of the possible 
natural situations. An instance (not inserted in a general theory) is to be found in a paper by Schoenberg [14] 
(Thm. 3, p. 258) and refers to the asymptotic expansion 

( ) ( )1 2 1
1 2 ,     .n n

nf x a x a x a x O x x− − − − −= + + + + → +∞                    (4.9) 

Starting from an “incomplete asymptotic expansion” 

( ) ( ) ( ) ( )( )1 ,     1 1,i n i if x a x a x o x i nφ φ φ= + + + ≤ ≤ −                   (4.10) 

our study would characterize a set of more involved expansions not reported here. 

5. The Second Factorizational Approach and Numerical Estimates of the 
Remainder  

Now, we face our problem starting from a C.F. of type (II) at 0x . Referring to Proposition 2.4 the most natural 
choice is the special C.F. of 

1, , n
Lφ φ

 in (2.29), with the iq ’s in (2.25) and satisfying conditions (2.26). Ac-
cording to the Conjectures in §  3 we shall characterize a set of asymptotic expansions, involving the operators 

kM  defined in (3.19) and described in Proposition 3.1, wherein each coefficient of the first expansion may be 
found by an independent limiting process instead of the recursive formulas (1.3), and the existence of the sole 
last coefficient implies the existence of all the preceding coefficients. 

In this new context, a representation of the following type is appropriate for any function [ [1
0,nf AC T x−∈  

( ) ( ) ( ) ( )
( )

( ) [ [2 1 1 , ,
1 1 0

0 1 1

1 1 1 d ,     , ,n n nx t t
n n T T T

n n

L f t
f x c x c x t x T x

q x q q q t
φ φφ φ − −

−

  = + + + ∈∫ ∫ ∫


        (5.1) 
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with suitable constants ic . Applying the operators kM  to (5.1) we get the following representations of the 
weighted derivatives of f  with respect to the weight functions ( )0 , , nq q  

( ) ( ) ( ) ( ) ( )
( )

( )
2 1 1 , ,1 1

1 1
1 1 1 1

d d
d ,

                                                                                                   

n n nx t tk n
k k k k n k n T T T

k k n n n

L f tt t
M f x c M x c M x t

q t q t q t
φ φφ φ − −+ −

+ +
+ + − −

  = + + +           ∫ ∫ ∫


 

                                             0 1.k n≤ ≤ −

 (5.2) 

To simplify formulas and to leave no ambiguity about the signs of the involved quantities we assume in this 
section that the Wronskians in (2.18) are strictly positive. 

Hence, by (3.34) 1k =  and the last relation in (5.2) explicitly is 

( )
( )

( ) [ [1 , ,
1 0d ,     , .nx

n n T
n

L f t
M f x c t x T x

q t
φ φ

−

  = + ∈   ∫
                      (5.3) 

Theorem 5.1 (Asymptotic expansions formally differentiable according to a C.F. of type (II)). Let our T.A.S. 
be such that all the Wronskians in (2.18) are strictly positive and let [ [1

0,nf AC T x−∈ . 
(I) The following are equivalent properties: 
(i) There exist n  real numbers 1, , na a  such that: 

( ) ( ) ( ) ( )( )1 1 ,     ;n n n of x a x a x o x x xφ φ φ −= + + + →                       (5.4) 

( ) ( ) ( ) ( )( )1 1 0,     ,   1 1,k k k k n k n k nM f x a M x a M x o M x x x k nφ φ φ −
+ += + + + → ≤ ≤ −              

    (5.5) 

where the first term in each expansion is lost in the successive expansion as in Taylor’s formula. (The relation 
that would be obtained in (5.5) for 0k =  differed from relation in (5.4) by the common factor ( )0q x .) 

(ii) All the following limits exist as finite numbers: 

( )
0

1lim ,     0 1,k k
x x

M f x a k n
− +

→
≡ ≤ ≤ −                              (5.6) 

where the ka ’s coincide with those in (5.4). 
(iii) The single last limit in (5.6) exists as a finite number, i.e. 

( )
0

1lim n n
x x

M f x a
− −

→
≡                                     (5.7) 

and (5.7) is nothing but the relation in (5.5) for 1k n= −  which reads ( ) ( )1 = 1n nM f x a o− +   , 0x x−→  
(iv) The improper integral 

( )
( )

0 1 , , d     convergesnx

T
n

L f t
t

q t
φ φ→   ∫
                             (5.8) 

and automatically also the iterated improper integral 

( )
( )

0 1 , ,

1 2 1

1 1 1 d     convergesnx xo xo xo

T
n n

L f t
t

q q q q t
φ φ

−

  ∫ ∫ ∫ ∫


                       (5.9) 

(v) There exist n  real numbers 1, , na a  and a function nΨ  Lebesgue-summable on [ [0,T x  such that 

( ) ( ) ( )
( ) ( ) [ [0 0 0

2 1
0

1 0 1 1

1 1 1 d ,     , ,
n n

nn x x x
i i nx t t

i n

f x a x t t x T x
q x q q

φ
− −= −

−
= + Ψ ∈∑ ∫ ∫ ∫               (5.10) 

where we remind that, by (2.25), ( ) ( )0 11 q x xφ= . In this case, nΨ  is determined up to a set of measure zero 
and 
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( ) ( ) ( ) [ [
1 , , 0

1  . . on , .
nn

n

x L f x a e T x
q x φ φΨ =   

                       (5.11) 

(II) Whenever properties in part (I) hold true we have integral representation formulas for the remainders 

( ) ( ) ( ) ( ) ( ) ( )0
1 1

: ;   : ,     1 1,
n n k

i i k k k i k k i
i i

R x f x a x R x M f x a M x k nφ φ
−

+ +
= =

= − = − ≤ ≤ −      ∑ ∑      (5.12) 

namely: 

( ) ( )
( )

( )
( )

0 0 0 1

2 1

, ,
0

0 1 1

1 1 1 d ;n

n n

n
x x x

x t t
n n

L f t
R x t

q x q q q t
φ φ

− −
−

 −  = ∫ ∫ ∫


                    (5.13) 

( ) ( )
( )

( )
0 0 0 1

2 1

, ,

1 1

1 11 d ;n

n n

x x xn k
k x t t

k n n

L f t
R x t

q q q t
φ φ

− −

+

+ −

  = − ∫ ∫ ∫


                   (5.14) 

for [ [0,x T x∈ , 1 1.k n≤ ≤ −  From (5.13), we get the following estimate of 0R  wherein the order of small-
ness with respect to nφ  is made more explicit than in Theorem 4.1 (formula in (2.30) for i n=  is used): 

( ) ( )
( )

( ) [ [0 1 , ,
0 0sup d ,     , .nx

n tt x n

L f
R x x x T x

q
φ φ τ

φ τ
τ≥

  ≤ ⋅ ∈∫
                  (5.15) 

Under the stronger hypothesis of absolute convergence for the improper integral we get: 

( ) ( )
( )

( )
[ [0 1 , ,

0 0d ,     , .nx
n x

n

L f t
R x x t x T x

q t
φ φφ

  ≤ ⋅ ∈∫


                   (5.16) 

Similar estimates can be obtained for the kR ’s. 
Remarks. 1. As noticed in [3] (Remark 1 after Thm. 4.1, pp. 179, 180) the remarkable inference “ ( ) ( )iii ii⇒ ” is 

true for the special operator 1nM −  stemming out from a C.F. of type (II) at 0x  but not for any ( )1n − th-order 
differential operator originating from an arbitrary factorization of 

1, , n
Lφ φ

. 
2. Condition (5.8) involves the sole coefficient nq  which admits of the explicit expression in (2.25) in terms 

of 1, , nφ φ : ( ) ( )1 1 1, , , ,n n nq W Wφ φ φ φ −=    hence (5.8) can be rewritten as 

( ) ( )( )
( ) ( )( ) ( )0

1

1 1
, ,

1

, ,
d    converges

, , n

x n

T
n

W t t
L f t t

W t t φ φ

φ φ

φ φ
→ −   ∫ 





                 (5.17) 

For 2n = , the ratio inside the integral equals ( )1 1 2,Wφ φ φ  and we reobtain the result in [2], condition 
(5.15), p. 265. 

3. In Theorem 4.1, generally speaking, no such estimates as in (5.15)-(5.16) can be obtained due to the diver-
gence of all the improper integrals in (4.6) if the innermost integral is factored out. 

4. It has been proved in [1] for polynomial expansions, in [3] for real-power expansions, and in [2] for two- 
term expansions that properties in Proposition 5.1 are stronger than those in Proposition 4.1; this does not seem 
an easy fact to prove or disprove for a general expansion if 3n ≥ . In the next section we highlight two cases 
(important for applications) wherein the two types of formal differentiability are equivalent. 

6. Absolute Convergence and Solutions of Differential Inequalities 
The foregoing theory becomes particularly simple when the involved improper integrals are absolutely conver-
gent and still more expressive for a function f  satisfying the nh-order differential inequality: 

( ) [ [
1 , , 00 . . on ,

n
L f x a e T xφ φ ≥  

                          (6.1) 

If ( ) ( )( )1 , , 0iW x xφ φ >  on [ [0,T x , 1 i n≤ ≤ , this is a subclass of the so-called “generalized convex fun- 
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ions with respect to the (extended complete Chebyshev) system ( )1, , nφ φ ” and we make this assumption, as in 
the preceding section, to simplify relations involving the operators kM  and to state precise inequalities for the 
remainders. The nice result stated in the next theorem claims that: if such a function admits of an asymptotic 
expansion (1.1) then this expansion is automatically differentiable ( )1n −  times (which is a special circums-
tance) in the senses of both relations (4.4) and (5.5). 

Theorem 6.1. If all the Wronskians in (2.18) are strictly positive and if [ [1
0,nf AC T x−∈  satisfies (6.1)  

then the following are equivalent properties: 
(i) There exist ( )1n −  real numbers 1 1, , na a −  such that: 

( ) ( ) ( ) ( )( )1 1 1 1 0,     n n nf x a x a x O x x xφ φ φ −
− −= + + + →                   (6.2) 

(ii) There exist n  real numbers 1, , na a  such that: 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 0,     n n n n nf x a x a x a x o x x xφ φ φ φ −
− −= + + + + →               (6.3) 

(iii) The following set of asymptotic expansions holds true: 

( ) ( ) ( ) ( )1 1 0

constant

1 ,     ,   0 1;   see (4.4)k k n k k n kL f x a L x a L x o x x k nφ φ −
− −= + + + → ≤ ≤ −          



    (6.4) 

(iv) The following set of asymptotic expansions holds true: 

( ) ( ) ( ) ( )( )1 1

0

,     

;    0 1;   see (5.5)

k k k k n k n k nM f x a M x a M x o M x

x x k n

φ φ φ+ +

−

= + + +              

→ ≤ ≤ −



          (6.5) 

(v) The following integral condition is satisfied: 

( )
( )

0 0 0 1

2 1

, ,

1 1

1 1 d ;   see (4.5)n

n n

x x x

T t t
n n

L f t
t

p p p t
φ φ

− −
−

   < +∞∫ ∫ ∫


                  (6.6) 

(vi) The following integral condition is satisfied: 

( ) ( )0

1 , ,
1 d < ,  see (5.8) and (5.17)

n

x

T
n

L f t t
q t φ φ +∞  ∫ 

                  (6.7) 

To this list, we may obviously add the other properties in Theorem 5.1. 
If this is the case, the remainder ( )0R x  in (6.3) admits of the two representations on [:,[ 0xT  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

0 0 0 1

2 1

0 0 0 1

2 1

, ,
0

0 1 1

, ,

0 1 1

1 1 1 d

1 1 1         d ,

n

n n

n

n n

n
x x x

x t t
n n

n
x x x

x t t
n n

L f t
R x t

p x p p p t

L f t
t

q x q q q t

φ φ

φ φ

− −

− −

−

−

 −  =

 −  =

∫ ∫ ∫

∫ ∫ ∫









                 (6.8) 

whence it follows that ( ) ( )01 0n R x− ≥ [ [0, .x T x∀ ∈  
In addition to the equivalence (iii)⇔ (iv) stated in Theorem 6.1, there is another remarkable circumstance 

wherein the two types of formal differentiations are simultaneously admissible namely when the convergence of 
the pertinent improper integrals is absolute. 

Theorem 6.2. For [ [1
0,nf AC T x−∈  the following integral conditions are equivalent: 

( ) ( )0 0 0

12 1
, ,

1 1

1 1 1 d ;
nn n

x x x

T t t
n n

L f t t
p p p t φ φ

− −
−

< +∞  ∫ ∫ ∫ 


                  (6.9) 
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( ) ( )

( ) ( ) ( ) ( ) ( )

0

1

3 2

, ,

1 2 1

1 1 2 2 1 1

d ,     where

d d d1: ;

n

x
nT

t t tn
n T T T

n n n

P t L f t t

t t tP t
p t p t p t p t

φ φ

−

− −

 < +∞  


=


∫

∫ ∫ ∫









                    (6.10) 

( )
( )

( ) ( )( )
( ) ( )( ) ( )0 1

1

, , 1 10
, ,

1

, ,
d d .

, ,
n

n

x x n

T T
n n

L f t W t t
t L f t t

q t W t t
φ φ

φ φ

φ φ

φ φ
−   ≡ < +∞  ∫ ∫









            (6.11) 

Hence, each of these three conditions implies both sets of asymptotic expansions (4.4) and (5.5). (Here the 
signs of the Wronskians are immaterial.) 

The equivalence between (6.9) and (6.10) easily follows from Fubini’s theorem by interchanging the order of 
integrations in (6.9) whereas the equivalence between (6.10) and (6.11) is by no means an obvious fact. A proof 
may be obtained by showing a stronger result, namely the following asymptotic relation: 

( )
( ) ( )( )
( ) ( )( )

1 1

1

, ,
,     .

, ,
n

n o
n

W t t
P x x x

W t t
φ φ

φ φ
− −→









                       (6.12) 

7. Example: A Special Class of Chebyshev Asymptotic Scales 
The foregoing results are well illustrated by the special class of scales of the form: 

( )( ) ( )( )1 ,     ,n
ox x x x

α α
φ φ −→≫ ≫                          (7.1) 

where 
( )
( )

0

0

1

1

either  lim   and  ,

or        lim 0   and  .
nx x

nx x

x

x

φ α α

φ α α

−

−

→

+
→

= +∞ > >


= < <





                      (7.2) 

We also assume: 
[ [ ( ) ( ) [ [1

0 0, ;    > 0;    0 on , .nAC T x x x T xφ φ φ− ′∈ ≠                     (7.3) 

Now, using a proper device it can be given an elementary proof of the formula: 

( )( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )

[ [

1 1 1 2 1 2
1

0

, , , , ,     

, ,     2,

n n n n n n
nW g x g x V g x g x

x T x n

α α α α
α α

+ + − − −   ′= ⋅ ⋅

∈ ≥



 

       (7.4) 

where ( )1, , nV α α  denotes the Vandermonde determinant of the n  distinct numbers 1, , nα α , hence our 
assumptions imply the non-vanishingness of all the Wronskians involved in our theory and the scale (7.1) is a 
Chebyshev asymptotic scale on [ [0,T x . We denote by Lφ  the differential operator associated, as in (2.20), to 
our scale. 

Proposition 7.1. Under the above assumptions and notations: 
(I) The “unique” ..FC  of Lφ  of type (I) at 0x− , constant factors apart, is: 

1 2 12 1
1

'''''1 1 11 n n n n

n

n
uL u

α α α αα α
α

φ α

φ φ φ φφ
φ φ φ φ φ

− − −
− − + − +− +

     ′       ≡ ⋅ …       ′ ′ ′           



              (7.5) 

which also gives the differential operators 1 1, , nL L −  defined in (3.17). 
(II) A special ..FC  of Lφ  of type (II) at 0x− , apart from the signs of the coefficients, is: 

1 2 3 1 2

1

'''''1 1 1 1n n
n

n
uL u

α α α α α α
α

φ α

φ φ φ φφ
φ φ φ φ φ

−
− − + − + − +

     ′       ≡ ⋅ …       ′ ′ ′           



               (7.6) 
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which also gives the differential operators 1 1, , nM M −  defined in (3.19). 
Identities (7.5)-(7.6) can be proved either using (7.4) and formulas in Proposition 2.4 or writing out the n- 

tuple (2.37) and checking that its span coincides with ker Lφ . Now, we can specialize Theorems 4.1, 5.1. 
Proposition 7.2. (I) Referring to Theorem 4.1 we have the equivalence of the following three properties: 
(i) The set of asymptotic expansions as 0x x−→  for suitable constants 1, , na a  

( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )

1

1

1

1

constant

;

1 ,     1 1.

n n

n k

n

k k n k k

f x a x a x o x

L f x a L x a L x o k n

α α α

α α

φ φ φ

φ φ −

−

 = + + +
    = + + + ≤ ≤ −         








            (7.7) 

(ii) The improper integral 

( )( )
( )( )

( )
1

0 0 0 0

1 1 2 2 12 1

1

1 1 1 11
d    converges

n n n n n n

n
x x x x

nT t t t

t
L f t t

t

α

φα α α α α α

φφ φ φ
φφ φ φ− − − − −

− −

− + − + − + −

′ ′ ′
  

′
∫ ∫ ∫ ∫ 

            (7.8) 

(iii) For suitable constants 1, , na a  the following representation holds true on [ [0,T x  

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( )( )

( )

1

1
0 0 0 0

1 1 2 2 12 1

1

1

1 1 1 11
             1 d .

n

n

n n n n n n

n

n
x x x xn

nx t t t

f x a x a x

t
x L f t t

t

α α

α
α

φα α α α α α

φ φ

φφ φ φφ
φφ φ φ− − − − −

− −

− + − + − + −

= + +

′ ′ ′
+ −   

′
∫ ∫ ∫ ∫







     (7.9) 

(II) Referring to Theorem 5.1, we have the equivalence of the following three properties:  
(iv) The set of asymptotic expansions as 0x x−→  for suitable constants 1, , na a  

( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( )( )

1

1

1

1

,

,     1 1.

n n

k n n

n

k k k n k k

f x a x a x o x

M f x a M x a M x o M x k n

α α α

α α α

φ φ φ

φ φ φ+

+

 = + + +


      = + + + ≤ ≤ −             





    (7.10) 

(v) The improper integral 

( )( )
( )( )

( )0

1

1 d    converges
nn

x

nT

x
L f t t

x

α

φ

φ

φ

− −
→

−   
′

∫                            (7.11) 

(vi) For suitable constants 1, , na a , the following representation holds true on [ [0,T x  

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( )( )

( )

1

0 0 0 01

1 2 2 3 11 2 1

1

1

1 1 1 1             1 d .

n

n

n nn n

n

n
x x x xn

nx t t t

f x a x a x

x
x L f t t

x

α α

α
α

φα α α α α α

φ φ

φφ φ φφ
φ φ φ φ−− −

− −

− + − + − + −

= +…+

′ ′ ′
+ − …   

′
∫ ∫ ∫ ∫ 

     (7.12) 

We visualize Proposition 7.2 for five remarkable choices of φ  and 0x = +∞  in a simplified form listing the 
forms assumed by condition (7.11) and the respective expansions they imply (without derivatives). The same 
symbol Lφ  obviously has a different meaning in each case, being the operator of type (2.1) whose kernel is 
spanned by the asymptotic scale at hand. 

Corollary 7.3. (I) ( )( ): logx xφ = . For any real numbers 1 2 nα α α> > >  

( ) ( )

( ) ( ) ( )( )

1 1

1

log d     convergent

log log ,     .n

n nn

n
i

i
i

t t L f t t

f x a x o x x

α
φ

α α

+∞ − − −

=

 ⇒  


= + → +∞


∫

∑



                        (7.13) 
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(II) ( )( ):x xφ = . For any real numbers 1 2 nα α α> > >  

( ) ( ) ( )1

1
d   convergent ,     n i n

n
n

i
i

t L f t t f x a x o x xα α α
φ

+∞ − −

=

⇒ = + → +∞   ∑∫                   (7.14) 

see the theory developed in [3]. 

(III) ( ) ( )( ): exp logx x αφ  =   . For any real numbers 1 2 nc c c> > >  and 0α > , 1α ≠  

( ) ( )( )( ) ( )

( ) ( ) ( )( )

1 1 1

1

exp log log d     convergent

exp log exp log ,     .

n n
n

n

i i n
i

c t t t L f t t

f x a c x o c x x

α α
φ

α α

+∞ − − −

=

  − ⇒   


    = + → +∞   

∫

∑



                   (7.15) 

(IV) ( )( ): exxφ = . For any real numbers 1 2 nc c c> > >  

( ) ( ) ( )
1

e d   convergent e e ,     .n i n
n

c t x x
i

i

c cL f t t f x a o xφ
+∞ −

=

⇒ = + → +∞   ∑∫                    (7.16) 

(V) ( )( ): expx xαφ = . For any real numbers 1 2 nc c c> > >  and 0α >  
( )( ) ( )

( ) ( )

1 1

1

exp d    convergent

exp exp ,     .

n
n

n

i i n
i

c t t L f t t

f x a c x o c x x

αα
φ

α α

+∞ − −

=

  − ⇒   


   = + → +∞    

∫

∑



                       (7.17) 
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