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Abstract

In this paper an attempt has been made to study the unsteady incompressible flow of a genera-
lized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic
field. An exact solution for the velocity field has been obtained by means of Laplace and finite
Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence
of the velocity field on fractional as well as material parameters has been illustrated graphically.
The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and
ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the genera-
lized Oldroyd-B fluid.
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1. Introduction

The magneto hydrodynamic flow problem between two parallel plates has shown immense attention during the
last several decades. The study has significant applications in the field of hydrodynamical machines and appara-
tus, magnetic storage devices, computer storage devices, lubrication, crystal growth processes, radial diffusers,
MHD pumps, MHD power generators, purification of crude oil, petroleum industries etc. Bandelli et al. [1] dis-
cussed start-up flows of second grade fluids in domains with one finite dimension. Fetecau et al. [2] investigated
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exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between
two side walls perpendicular to the plate. Hayat et al. [3] made homotopy analysis of MHD boundary layer flow
of an upper-convected Maxwell fluid. Jamil and Khan [4] studied slip effects on fractional viscoelastic fluids.
Shen et al. [5] studied the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional
derivative model. Vieru et al. [6] discussed the flow of a generalized Oldroyd-B fluid due to a constantly acce-
lerating plate. Wenchang et al. [7] investigated unsteady flows of a viscoelastic fluid with the fractional Max-
well model between two parallel plates. Vieru et al. [8] studied the unsteady flow of a generalized Oldroyd-B
fluid due to an infinite plate subject to a time-dependent shear stress.

In the present paper we consider the flow of a generalized Oldroyd-B fluid between two oscillating infinite
parallel plates in presence of transverse magnetic field. We have formulated the expression for the velocity field
for the said flow in terms of Mittage-Leffler function. In the constitutive equation of the fluid model, the time
derivative of integral order has been replaced by Riemann-Liouville fractional calculus operator. The exact solu-
tion for the velocity field is obtained by using the method of integral transformations and the dependence of the
said field on the material as well as fractional calculus parameters is illustrated graphically.

2. Mathematical Formulation and Basic Equation

Let us consider an incompressible generalized Oldroyd-B fluid bounded by two infinite parallel plates as shown
in Figure 1. The plates are initially at rest and at t — 0" the plates start to oscillate in its plane with the veloc-
ity Vcos(et) and Vcos(w,t) where V is the fluid velocity. Due to the shear, the fluid is moved gradually.
We have taken Cartesian coordinate system. x- and y-coordinates are taken along and perpendicular to the pa-
rallel plates respectively. Accordingly, the initial condition is given by u(y,O):O, 0<y<1 and the boun-
dary conditions are given by u(0,t)=Vcos(at), u(d,t)=Vcos(wt).

We take the velocity and stress of the form

V=u(y,t)i, S=S(yt) @)

where u (y,t) is the velocity component in the x-direction.
The constitutive relationship for the fluid associated with the present problem is given by,
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In the relation (2), D and D/ are Caputo operators defined by
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Figure 1. Geometry of the problem.
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According to our problem,

S =95, =5,,=S
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We consider a generalized Oldroyd-B fluid between two infinite parallel disks in presence of an imposed
magnetic field B, that acts in the direction of the positive y-axis. Then in the presence of the body force

oBZu, the momentum equation is given by

pﬁ—u = ESXy ~oBlu
ot oy

where “ o ” is constant and “ p ” is the density of the fluid.
Eliminating S, between the Equations (2) and (4) we have the governing equation

(1+1“D1“)%m:v(l+ﬂthﬁ)%—M (1+2°D7 Ju(y.1)

. . L . BZ
where v =% is the kinematic viscosity and M = %0
P p

Introducing the non-dimensional quantities,

a 2
A:ﬂ:ﬂvfﬂ(izj ) V:ﬁa M*:Md_
d P v

we get the governing equation in non-dimensional quantities as

2

(1+27D¢ )w =(1+ sz(”)%— M (1+4°Df Ju(y.t)
(Omitting the dimensionless mark “*”)
subject to initial condition u(y,0)=0
and the boundary conditions u(0,t) =cos(at), for t>0
u(Lt)=cos(w,t) for t>0

Taking finite Fourier sine transformation we get from Equation (6)

(1+2°Df )%u (nt)=(1+2/D/ )Egyi;sin (nmy)dy—M (1+2°D¢ U, (n,t)

where U (n,t)= Eu(y,t)sin(nny)dy is the finite Fourier sine transformation of u(y,t).

Using the boundary conditions (8) the Equation (9) can be rewritten as

(1427 Dt“)%us (nt) = (1+ 2702 )| (1) cos(3t) + 005 (ent)} ~(nm)°U, ()]

—M (1+ 2D )U, (n,t)

Taking Laplace transformation and using U, (n, O) =0 we get from the above equation

(4)

®)

(6)

Y]

@)

)

(10)
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- il NP 1+ A7 p’
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Now in order to avoid the lengthy procedure of residues and contour integrals, we rewrite the Equation (11)
into series form as

(11)

~ (_1)n+1 0 w© (_1)k miske (K1) mewek ey gampgandd oy gepe
Us(n, p):—— 1_2 2(k+1) 11 M™ wl Ak - kel
o p+, | i%o(nm) mizo  MI! nwzo M iW2 A (/L "+ pﬁ)

1 p - 1 k mal=k+1 k+1 1 m+w=k k1 ﬂarﬁ pan1+l 1+ A pa
. 1- Z ( 2()k+1) ( 1 |) M z Iwi B(k+1) _ k+1 (12)
o (nm) mizo ML S lwl ) (27 +p”)

1)k ml=k K1 m+w=k k! ﬂak pa(k+1)—m
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k+1
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Now we have an important Laplace transformation of the nth order derivative of Mittage-Leffler function
E,.(z) givenby

a-
.[ e pttan+/1 1E!(Zn ( )dt _ n! p — (13)
(p*+a)
where
dr . (j+n)tz’
EM (z)=—E =y 14
w (2) dz" «:(2) ZJ:O jiM(aj+an+1) (14)
Taking Laplace Inverse transformation we get from the Equation (12)
(_1)n+1 ( 1)n+1 - (_1)k m+|:k+l(k+l)! mr11+W:k 1 lafh
U (nt)=—— M
s (n ) e COS(a)z ) nm ZO( ) (k+1) A mt! nito nl!W! ﬁrﬂ(kﬂ)
XL:COS(% (t_T))|:Tﬁ(k+l)_an1_l_1E§}k,,)B—an1—l (_/Ir—ﬂrﬂ)JrTﬁ(m) a(my+1)-1- E(ﬂk)ﬂ et ( /1 . )Jdr
12 (_1)k m+|:k+1(k +1)| mn1+w:k 1 /1"”‘1
il )—— M A
+ - COS(CU1 ) nm g(nn)z(kﬁ) Lo mil! ni,ZW;O nl!W! /lrﬂ(kJrl) (15)
XI; Cos(a)1 (t —r))[Tﬂ(kﬂ)*anrlflE(;L_am_, (—xlr'ﬂrﬂ)+/larﬁ(k+l) o+ lEg()ﬂ a1t (—ﬂr_ﬂrﬁ )]dr
ﬂﬁ el © (_1)k ml=k || mn1+w:k 1 ke B(kD)-a(k 1) rm-1 = (K) ~
—(-1 1 M —— pmip —APtF
nr |:( ) + j|§(n7[)2k ﬂf(k+1) m%o mt! m%;o nl!W! N a(k+1)+m( T )

Taking inverse finite Fourier sine transformation we get the velocity profile from the Equation (18) as
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(16)
3. Limiting Cases
Case-1 If « > 0.0, A — 0.0 then the equation of motion is given by
2
(1+/1a)a”(y’t)=a u(y't)—M(l+/1“)u(y,t) (17)

ot oy?
subject to the initial and boundary conditions given by the Equations (7) and (8) respectively.
The Equation (17) represents the governing equation of a classical Newtonian fluid and the corresponding
velocity field is given by

u = ycos(m,t)+(1-y)cos(emt)

0 _1k m+l=k+1 (k +1)1 s+i=k+1(k +1
25 iy 55T e S e (o)
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Case-Il If g=0.0, 4 — 0.0 then the equation is given by
au(yt) ou(y.t)
ot oyl
subject to the initial and boundary conditions given by the Equations (7) and (8).

The Equation (19) represents the governing equation of a generalized Maxwell fluid and the corresponding
velocity field is given by

(1+4°Dy) —M (1+2°Df Ju(y.t) (19)

u = ycos(m,t)+(1-y)cos(mt)
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Case-1l1 If a=0.0, 24— 0.0 then the equation of motion is given by
au(y,t o%u(y,t
QO (14 ar0) 220D gy, (21)
ot oy

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively.
The Equation (21) is the governing equation for a generalized second grade fluid and the velocity field is
given by
u = ycos(a,t)+(1-y)cos(at)
© (_1)k m+|:k+l(k +1) M™

+Zg%sin(nny)z

J. cos(aw, (t—7))z Alertprmk-2 E(ﬂk’)ﬂw%1 (—Iﬂrﬂ)dr

T
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k
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22’1 [( Y } nm g( ) 2P0 %Om!l!t Epgenn (~470).
Case-IVIf ¢ —>1.0, 4, — 0.0 then the equation of motion is given by
2
(1 /1(1 jau(yt) U(Z’t)—M[]ﬁﬂang(y,t) (23)
ot ot oy ot

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively.
The Equation (23) represents the governing equation of an ordinary Oldroyd-B fluid and the corresponding
velocity field is given by

u = ycos(m,t)+(1-y)cos(et)

“ (_1)n . - (_1)k m“:k*l(k-l‘l)! m|+w:k+l(k+1)!
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4. Conclusions and Numerical Results

In this paper we have presented the flow of a generalized Oldroyd-B fluid between two oscillating infinite pa-
rallel plates. The velocity field has been determined by means of Laplace and finite Fourier sine transformations
in series form in terms of Mittage-Leffler function. The dependence of the velocity field on the fractional calcu-
lus parameters and material parameters has been illustrated graphically. The solutions for the four limiting cases
have been discussed from the solution of the flow problems of a generalized Oldroyd-B fluid.

In Figure 2 the velocity is depicted against the distance from the lower plate for different values of the frac-
tional calculus parameter « . As «a increases, the fluid velocity increases and there are points of local mini-
mum and local maximum in the velocity curves which are oscillatory in nature. Negative velocity can be ob-
served near the upper plate for values of a near zero in Figure 2. The velocity is depicted against the distance
from the lower plate for different values of fractional calculus parameter g in Figure 3. As g increases, the
fluid velocity decreases, which is opposite to the case in Figure 2 and the points of local minimum and maxi-
mum can be observed in the velocity curves. The flow patterns are oscillatory in nature. In Figure 4 the velocity
is plotted against the distance from the lower plate for different values of the parameter M. As the parameter M
takes increasing values, the fluid velocity increases and the velocity curves are oscillatory in nature. The velocity
profile is plotted against the distance from the lower plate for different values of the frequency of oscillation @,
of the lower plate in Figure 5. It is evident from the figure that the fluid velocity decreases for higher values of
the parameter ;. The initial points of the velocity curves near the lower plate are different in domain of spatial

()
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Figure 2. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter @ . =12, @,=15, M =10, A=6, 4 =3, =08, t=n/4, a=01 , =02
, =03

Figure 3. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter . @ =12, w,=15, M =10, A=6, 2 =3, a=02, t=n/4, =06 , B=07

, =08 .
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Figure 4. The velocity is depicted against the distance from the lower plate for different values of parameter M . @, =1.2,

0,=15, 2=6, 4 =3, =02, =08, t=n/4, M =10 ,

M =11
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Figure 5. The velocity is depicted against the distance from the lower plate for different values of the parameter .

w,=15, M =10, 1=6, 4 =3, a=02, =08, t=n/4, @ =12
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, »,=18
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Figure 6. The velocity profile is depicted against the distance from the lower plate for different values of the parameter w,.
=12, M=10, A=6, A =3, =02, =08, t=n/4, ®,=15 , ©,=18 , @,=21
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Figure 7. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter « and for equal values of @, and w@,, @, =w,=12, M =10, 2=6, 4 =3, =08, t=n/4,

a=0.1 , a=0.2 , =03
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variable Y for different values of frequency of oscillation @, of the lower plate. There is negative velocity in
Figure 5 near the lower plate for values for higher frequency of oscillation of the lower plate. In Figure 6 as the
frequency of the oscillation @, of the upper plate changes, the terminal points of the velocity curves near the
upper plate differ. The fluid velocity decreases with the increase of the frequency of oscillation @, of the upper
plate near that one. It can be noticed that there are points of local minimum and maximum for velocity curves
for all the three cases. Negative velocity can be observed near the upper plate in Figure 6 for higher values of
the frequency of oscillation of the upper plate. In Figure 7 the velocity profile is depicted against the distance
from the lower plate for different values of the parameter « in which the frequencies of oscillations of the
plates are equal i.e. @, =,. The fluid velocity increases with increasing values of « and the velocity curves
are oscillatory in nature. It can be noticed that for equal frequency of oscillations of the two plates, the heights of
the initial and terminal points on the velocity curve in the domain of spatial variable are equal.
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