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Abstract

This paper presents a novel conditionally suboptimal filtering algorithm on estimation problems that arise in
discrete nonlinear time-varying stochastic difference systems. The suboptimal state estimate is formed by
summing of conditionally nonlinear filtering estimates that their weights depend only on time instants, in
contrast to conditionally optimal filtering, the proposed conditionally suboptimal filtering allows parallel
processing of information and reduce online computational requirements in some nonlinear stochastic dif-
ference system. High accuracy and efficiency of the conditionally suboptimal nonlinear filtering are demon-

strated on a numerical example.
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1. Introduction

Some simple Kalman-Bucy filters [1-4] lead to some
conditionally optimal filtering [5-7]. This main idea is
that the absolute unconditional optimality is rejected and
in a class of admissible estimates with some nonlinear
stochastic differential equations or nonlinear stochastic
difference equations that can be solved online while re-
ceiving the results of the measurements, the optimal es-
timate is found. In this paper we are interesting in con-
stituting a novel conditionally filtering algorithm ad-
dressing estimation problems that suboptimal arise in
discrete nonlinear time-varying stochastic difference
systems with different types of measurements [8-10]. By
a weighted sum of local conditionally nonlinear stochas-
tic filtering estimates, the suboptimal estimate of state of
this conditionally nonlinear stochastic filtering is given,
thus due to its inherent parallel structure, it can be im-
plemented on a set of parallel processors. The aim of this
paper is to give an alternative conditionally suboptimal
filtering for that kind of discrete time nonlinear stochas-
tic difference systems. As same as the conditionally op-
timal filtering, the conditionally suboptimal filtering
represents the state estimate as a weighted sum of local
conditionally filtering estimates associated with the
weights depending only on time instants and being inde-
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pendent of current measurements.

2. Problem Statement for Nonlinear
Stochastic Difference Systems

In [6], consider a nonlinear discrete stochastic system
whose state vector X, € R" is determined by a nonlin-
ear stochastic difference system

X =8 X, 8 + (G + X Xy M- (1)

1+1

Suppose that the observation vector Y, is composed
of N differential types of observation sub-vectors, i.e.,

Y, = |:Y|(i),"',Y|(N):|T , ()

is determined by the stochastic system,

P4

where (Y,(i) )

i=1

Y =b0X b +(d) + 27 di X M, )

in (1) and (3), X, is the rth component of the vector
X,, | is discrete time, a,,co,,cr,,b,(i),dé:),dﬁ,i) are the
matrices, a, ,b(()i,) are the constant vectors of the respec-
tive dimension, {V,} is a sequence of independent ran-
dom variables with known distribution. We shall also
assume that

1) The state sequence of random variables {X,} and
the measurement noise sequence of random variables

{V,} are independent of each other, so that
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E[VV] ]=0, E[ XV, | =EXEV,.

2) The random variables {V,} is a sequence of Gaus-
sian white noise with zero mean and covariance matrix

E[VV/]=G =1. 4)

Usually, for a fixed i(I<i<N), t_he conditionally
optimal filter is to find an estimate X " of the random
state variable X, at each discrete tlme | by the meas-
urements of the previous random variables Y1( , Y,(1 ,
here, the class of admissible estimates are defined by the
difference equation

X0 = AW (O8N0 A
with a given sequence of the vector structural functions
"\ (u,y) and all possible values of the matrices of
coefficients SE )1 and the coefficients vectors 7/,(| The
class of admissible filtering is determined by the given
sequence of the structural functlons v (u,y). Cer-
tainly, such an estimate X M s required to minimize
the mean square error in some sense

(6)

at any discrete time |. This problem arises from the
multi-criteria equation, {8() },{}/l()} can be optlmal
Our problem is to find a suboptimal estimate X at any
discrete time | by using N different types of esti-
mates X,(]),--~,X,(N) such that

e[ -x [

n 2
E[X; - x|

(7

1s minimal in some sense.

3. Construction of Conditionally Suboptimal
Nonlinear Filter

3.1. Conditionally Nonlinear Filter

For i(1<i<N), we firstly choose a sequence of struc-
tural functions

Y (u M y,0 ) - [x (iry (i ]T ’

let A=1,and substitute into (5) we can derive that
Xm :5(-))(( +62|)Y()+7|() (3)
where 8! = 55?59,)], X, =UP(i=1,2,--,N), this is

a class of admissible filters. The conditionally optimal
nonlinear filtering is consist of (1), (3) and (8), and it is
denoted by | . Applying conditionally optimal nonlinear
filter theory [5] we obtain the following results for this
conditionally optimal nonlinear filtering | : If
b RVBM +HY (i=1,--,N) is inverse, then

Copyright © 2011 SciRes.

ET AL.

. . . . . . . . -1
54 = (3R + L) (BT < HL) 9

6$P =4 —SQRb.“), (10)
=8y ~ ol)’ (11)
forany i(i=1,2,---,N), where
Hpy =CyGiCy + 20 m, (c Gc," +c,,G,cO,T) -
+ 30 (memg ki e Giey ’
H =c,Gdy" +3" m, (cO,GldfPT +c,,G|d(()i,)T) -

+er 1(mlrmls+klrs)crl | sI

H|(2)z:d0|Gd0| +Z mlr( VG,dY)

1l

+ Zr@:] (mlrmls + kIrs )drll)Gldsli !

el

>

(14)

G, is the covariance matrix of the random vector V,,

m, (r=12,---,n), are the components of the vector

m =EX,, Ky (r,s=1---,n) are the elements of the

covariance matrix K, =K, of the random vector X, .

Substitute (10) and (11) into (8) we obtain a sequence of
conditionally optimal filtering equations

+a0| +52| (

AL

X O

_al

-b). (15)

This is the usual Kalman filtering equation, but in
more general problem, Equations (1) and (3) are nonlin-
ear, the matrix coefficient 9,, is determined by Formu-
las (9) and (12)-(14) that are different from the corre-
sponding formula of Kalman linear filtering theory.

Let

m, = EX,,
K, =E(X, -m)(X,-m)",
Rl(i) — E)Zl(i))zl(i)T’

where X,(i) = Xl(i) — X, 1is the error of filtering. To give
out the solution of this problem, it is necessary to indi-
cate how the expectation m, and the covariance matrix
K, of the random vector X, and the covariance matrix
R, of the error of filtering X, can be found at each
step. For this purpose, we can deduce from (1) and (15)
the stochastic difference equation for the error of filter-
ing X,
X0

1+1

= (al + 6(2i|)b|(i) ) Xl(i)

[ c0,+z( Wd - )x,r}vI

for any i(i=1,-

(16)

,N). Taking into account that X,,
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X, are 1ndependent of V, and the unbiaseness of esti-

mate X() EX( EX,), we can deduce from (1) and
(16) that the d1fference equations for m,, K,, R/,
m,, =am +a,, (17)
K. =aKa'+H, (18)
R =aR"a™ -3l (bl(i)Rl(i)a,T +HT )+ H, ., (19
forany i(i=1---,N).

Remark 3.1 m,, K,, R, d, are determined by
the Equations (17)-(19) and the Equations (9), (17), (18)
are linear difference equations, so m,, K, are deter-
mined successively. However, it follows from the for-
mula (9) that &, depends on R, therefore, Equation
(19) is nonlinear difference equation with respect to R, .

3.2. Conditionally Suboptimal Nonlinear Filter

Next, we start with the suboptimal estimate of condition-
ally nonlinear filtering 1, it follows from (15) and (19)
that the conditionally nonlinear filtering | has N
filtering estimates X D, X,z, N )Zl(N) at each step. Then
the suboptimal estimate X for the conditionally non-
linear filtering | is constructed from these estimates
)2,(1), )2,(2),---, )Zl(N) by the following equations

N
S SN0
iZ:I: P
, (20)

- (i)
>0,>.p =
i=1

where | is an unit matrix, pl(l), pl(z),u-, p,(N) are posi-
tive semi-definite matrices and weighted coefficients that
are determined by the following mean square criterion,

. o . N (i) (i) 2
min€[Xi—x | =min €[S, o -x, [ en
Remark 3.2 The suboptlmal estimate X is unbi-

ased. Since each estimate X| )( =1,2,- N) is unbi-
ased, EX( =EX ( =12, N) , using (20), we can
obtain

EX; =>" plEX =EX,. (22

[0 p Jex

3.3. The Accuracy of Conditionally Suboptimal
Nonlinear Filter

Now, we derive the equation for the actual variance ma-
trix
R=E[XX"]. X =X/ -X,, (23)

where X, is the state vector (1), X;
filtering estimate (20), and

is the suboptimal
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X, =20 pXE, X = X - X, (24)
substitute (24) into (23) we can derive that
. N
R = Zl’il pl(')R Y pl(u (J)T’ (25)

i,j=Li#]

where R,(i) is determined by Equation (19), R,(ij) is
determined by the following formula

R =E[X0%07]

= (a +8b )R (a + b’ ) +QlG,Ql)
FImaley +ymayeqyr
r=1 r=1
3 K QUGQUT (i% i i j= L),
b
where
QY =8%dy —c,, QY =a4)d) —c, (i=1,-.n)

The question is that there is a sequence of positive
semi-definite matrices pl(l), p,(Q),--', p,(N) such that (21)
has a minimal value. Here, we point out that the equa-

tions of the optimal coefficients pl(l), pl(z),---, p,(N) have
the following form,
tr( Z p V[ RW
6p, |: ] [ }
+ R
p" ( | ) @7
+ Z pz |: |N):|
+p (Rl(Nk) - R|(N)) =0,
forany k=1,---,N-1,
p) oo+ p™) =1 (28)

The proof of these equations is given in the Appendix.
Then the actual variance matrix of the filtering error R,
and the actual mean square error tr(R,) can be calcu-
lated by using the formula (25) and Equations (19), (26),
(27). Thus the Equations (9), (12), (13), (14), (19), (26),
and (27) completely define the new suboptimal linear
filter for estimate X of the state vector X, . Note that
the Equations (9), (12), (13), (14), (19), and (26) are
separated for any i(i=1,--, N) . Therefore, they can be
solved in parallel.

4. Example

Consider the problem of recursive estimate of an un-
known scalar parameter [4]. To estimate the value of the
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unknown parameter X from two types of observations
corrupted by additive white noises, the observation mod-
els of the stochastic system are given by

X :a,X|+a0,+(c0,+c,,X,)V,, 29

1+1

Y|(1) = b|(1)xl + bé}) + (dé}) + d1(|1)xl )VI 4 (30)
Y =%, 40 +(d +dPX M, @B

where X,, Y, ¥\’ eR, and V, ~N(0,1) are in-
dependent Gaussian noises, X, ~ N ()QO,PO). The op-
timal filtering estimates )2,(1) , )2,(2) based on observa-
tion system (30), (31) is determined by the structural
functions, respectively,

X =X +80 "+ ", (32)

1+1

()4 50y, 4 @) (33)

I+1 _81I

Then such this problem is a conditionally nonlinear
filtering estimation problem, and applying conditionally
nonlinear filtering theory, it follows from (9), (10), (11),
(12), (13), and (14) that

My, =am+3a,, (34)
K =aKa +Hy,, (35)

where

Hyii =€ GGy +2mic, Gicy, +(m|2 +K, )CIIGICII (36

and
-1
o = (a4 (RO« L) 6
R|(+)1 =8 R( )al +Hy, - 6(2|) (bl(])Rl(l)al + Hl(llg ) ) (38)
89) =49 _8(21|)b|(1) 5 (39)
7 =ay 3y, (40)
where
Hl(llg =m, (C0|G|d|(|1) +C||G|d(§}))
(1 (1) @1
2
+CyGydy +(ml + KI)CIIGIdII )
HI(;)Z =m, (d(g})Gldl(ll) + dl(ll)GId(()})) “2)
+d§'G,dy “‘(m|2 +K, )dfll)Gldﬁl)»
and

-1
5 = (RPN + ) (BRI HE) L @)

|+1 = 8z| (b ( )al +H|(12))+a|R( )al +Hy, (44

SEIZ) =q _6(22|)b|(2) > (45)
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7 =ay =8y, (46)

where
H|(12) m, (Co|G du +¢,G, dOI )

) 2 2 @7
+CO|G|d0| +(m| +K|)C1|G|d1(| )

H|(222) =m, (d((nz)Gldflz) + dl(IZ)GId(()IZ)) 48)
+d;'Gdf +(m? + K, )diPGd.

Next, we will compute conditionally suboptimal non-
linear filtering with two different types of observations
and the error variance matrix R, . Firstly, we need com-
pute covariance

R = (3, + 30" R (3, + 65T

1+1

)+ Q0| G Q0|
M A2) M~ AQ) A A2)
+mQy GIQOI +m|Q1| G|Q0| +KlQn G|Q1| ,
Rl(fll) = (al + 8(22|)b|(2) ) R( ) (al + 62| )"' Q0| G Q0|
+m, Q(()IZ)GIQ((): + mIQ1I2 GIQO} + K|Q1|2 G|Ql|1 >

(49)

(50)

where
Q((J}) = 6(21I)d((J}) —Cy» Qo = (22|)d(§|2) —Cyr»
Qu = z| 1| Cu> Qu = 1|2) Cy

Secondly, we will find two we1ghted coefficients p,(i)
(i=1,2) such that the error variance R, is minimal. It
follows from Equation (27) at N =2 that

(1 12) R2) _R® | =
b |:RI :|+pl [ R J 0 51)
p|1 + pl2
moreover, we can derive from (51) that

0 RI(Z) _ RI(ZU

P R RI_RP R (52)
(1) _p(12)
pI(Z) = 1 RlZ RllZ 21) ? (53)
RY + R —R(™ —RP)
it follows from (20) that the suboptimal estimate
X\ =p"X\"+ pIXY (54)

and according to (25) the suboptimal estimation variance

of error R, has the form:
R = p/’)R" p(l) + pPRP p? )
@ 4 p@RED 1,
+p"Rp? + p P

where Rl(]), R,(Z) are determined by Equations (38),
(44), respectively; and R,(IZ), R,(ZI) are determined by
Equations (49), (50), respectively; pl(l), pl(z) are de-
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termined by the formulas (52), (53), respectively. These
equations (38), (44), (49), (50) and the formulas (52),
(53), (55) produce the actual accuracy of the condition-
ally suboptimal nonlinear filtering (29), (30), (31), (54)
and (52), (53). Note that p{”, p/’ must be all non-
negative, then

RY-R"™ >0and R —R® > 0. (56)
However, their expressed forms are quite complicate.
Then the simpler example is given as follows: let
b =0, by =0, b =0, b =0,
d¥=0,dP =0, a, =0, ¢, =0.
Then
R =a R"a_, R =a R"a,,
R® =a R%a , R* =a R¥a,.
When original conditions

R -R("™ >0, R —R(™ >0,
then

RU-R™ =a_ (RO -R)a, 20,  (57)

RV R =a, (R -R)a, 20, (58)

At this case, substitute all coefficients which are time
functions a =1/(I+1) and the original conditions
RV=2, RM™=1, RP=25 R"M=16 into(57)
and (58), we can get

Rl(l) _ Rl(lz) , R|(2) _ R|(21) :
furthermore, substitute these into (52) and (53) then we
can get p,(l) , pl(z) ; finally, substitute p,(l) and pl(z)
into (55) then we can get R,. Numerical simulation re-
sults are in Table 1.

Table 1. Numerical values of the optimal estimation vari-
ances R"Y, R? and of the suboptimal estimation vari-
ance R, for difference time | when b®=0, bi!=0,
b?=0, bP=0, d¥=0, dP?=0, a,=0,c,=0,
RP=2, R®=1, RP=25, R™=16.

| RIU) RI(Z) R

1 2.0 2.5 1.78947

2 0.5 0.625 0.447368

3 0.0555556 0.0694444 0.0497076
4 0.00347222 0.00434028 0.00310673
5 0.000138889 0.000173611 0.000124269
6 3.85802x10° 4.82253x10° 3.45192x10°
7 7.87352x10° 9.8419x10°° 7.04473%10™
8 1.23024x10” 1.5378x10” 1.10074x10”
9 1.51881x10™ 1.89851x10™" 1.35894x107"

Copyright © 2011 SciRes.

ET AL. 761

5. Conclusions

The new conditionally suboptimal nonlinear filtering is
derived for a class of nonlinear discrete systems deter-
mined by stochastic difference equations. These stochas-
tic equations all have a parallel structure, therefore, par-
allel computers can be used in the design of these filters.
The numerical example demonstrates the efficiency of
the proposed conditionally suboptimal nonlinear filtering.
The suboptimal filtering with different types of observa-
tions can be widely used in the different areas of applica-
tions: military, target tracking, inertial navigation, and
others [11].
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Appendix

Derivation of Formula (26). It follows from (16) that
R _ E [)zl@l KT }

1+1

. . T
—Cy )xlr j E (VIVIT )(ng)délj) —Co ) 5
(56)
set QO, = (Qil)d((),) Cor > Qfli) = 52(:)df,i) —C, , then it fol-
lows from (56) that

R|(+1) —(a| +62|)b ))R( )(al +8 +82| ) +Q0| G Q0|

v m 09600 £33 m ofg ol
+ZmIrQOI Qn +Zm|rQn 1Qoi

r=1 r=1
+ZklrsQr(|i)G|Q§|j)T (ii IHN :1,"',N)-

=

(57)
Derlvatlon of Equatlon (27). We seek the optimal ma-
trices pI ( i=L1--,N) minimizing the mean square

error, i.e.,
N N
tr(R,):Ztr(p,()R() ()T)+ > tr(pI )T)(SS)
i=1 i,j=1i#j
>op=1,p >0 (59)
Next, we use the following formulae
itr(ABAT )= ABT + AB,
OA (60)

0 0 :
Ztr(AB)=—-tr(BA) =BT,
Al (AB)=—1tr(BA)

to differentiate the function tr(R/) with respect to
p,(k) (k=1,---,N —1), we can derive that for any k,

%l(k)[tr(a )= 86(” Litr( pIRO pir )}
apl L liﬂtr(a )}

Copyright © 2011 SciRes.

(61)

substitute (59) into the following equation, we can derive
that for any Kk,

op("! [Ztr( PR )}

" —2R™ (62)
+2(p"p™ o p" )

(63)
0 | ( (MR ()T
+ trip, 'RP
| Sola )
0 | (RN pNT
+ap|(k) |:i| tr(pl RI pl ) s
a N-1 i i
P (k)|: _ tr(p,()R,(’)pl(”T )}
P, i,j=lizj (64)
NS R, N )Rk
= pl(J)R|(J + Z PR
j=1, j=k i=1izk

Substitute (59) into the following equations, we can
derive that

for any k (k=1---,N
(61), we can derive that

—1). Substitute (62)-(66) into
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ajk) [tl’(R| )] = = pl(j) |:Rl(kj) _ RI(NJ'):|T . pl(k) |:Rl(kk) B R(Nk):|T

|
j=Lj=k
N-1 )
+ Z pl(l)I:Rl(lk)_Rl(lN):|+pl(k)|:R|(kk)_Rl(kN):|
i=1,i=k
= N-L T T
S (REY S B (R (RE) R - 2pMRM) )
j:] i=1
N-T ) AT T
=5 ol (R -R ) (RO -R)
j=1
N-1

let the result be zero, we get (27).
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