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Abstract 
 
This paper presents a novel conditionally suboptimal filtering algorithm on estimation problems that arise in 
discrete nonlinear time-varying stochastic difference systems. The suboptimal state estimate is formed by 
summing of conditionally nonlinear filtering estimates that their weights depend only on time instants, in 
contrast to conditionally optimal filtering, the proposed conditionally suboptimal filtering allows parallel 
processing of information and reduce online computational requirements in some nonlinear stochastic dif-
ference system. High accuracy and efficiency of the conditionally suboptimal nonlinear filtering are demon-
strated on a numerical example. 
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1. Introduction 
 
Some simple Kalman-Bucy filters [1-4] lead to some 
conditionally optimal filtering [5-7]. This main idea is 
that the absolute unconditional optimality is rejected and 
in a class of admissible estimates with some nonlinear 
stochastic differential equations or nonlinear stochastic 
difference equations that can be solved online while re-
ceiving the results of the measurements, the optimal es-
timate is found. In this paper we are interesting in con-
stituting a novel conditionally filtering algorithm ad-
dressing estimation problems that suboptimal arise in 
discrete nonlinear time-varying stochastic difference 
systems with different types of measurements [8-10]. By 
a weighted sum of local conditionally nonlinear stochas-
tic filtering estimates, the suboptimal estimate of state of 
this conditionally nonlinear stochastic filtering is given, 
thus due to its inherent parallel structure, it can be im-
plemented on a set of parallel processors. The aim of this 
paper is to give an alternative conditionally suboptimal 
filtering for that kind of discrete time nonlinear stochas-
tic difference systems. As same as the conditionally op-
timal filtering, the conditionally suboptimal filtering 
represents the state estimate as a weighted sum of local 
conditionally filtering estimates associated with the 
weights depending only on time instants and being inde-

pendent of current measurements. 
 
2. Problem Statement for Nonlinear  

Stochastic Difference Systems 
 
In [6], consider a nonlinear discrete stochastic system 
whose state vector  is determined by a nonlin-
ear stochastic difference system  

n
l RX

 1 0 0 1

n

l l l l l rl lrr
a a c c 

   X X X lV .    (1) 

Suppose that the observation vector l  is composed 
of  differential types of observation sub-vectors, i.e.,  

Y
N

    T

, ,i N
l l l

   Y Y Y ,            (2) 

where   
1

N
i

l
i

Y

   

 is determined by the stochastic system,  

    0 0 1

ni i i
l l l l l rl lrr

b b d d


   Y X Xi i
lV ,    (3) 

in (1) and (3), lrX  is the rth component of the vector 

lX ,  is discrete time,  are the 
matrices, 0 0l l  are the constant vectors of the respec-
tive dimension, 

l      
0 0, , , , ,i i i

l l rl l l rla c c b d d
 ib,a
 lV  is a sequence of independent ran-

dom variables with known distribution. We shall also 
assume that 

1) The state sequence of random variables  lX  and 
the measurement noise sequence of random variables 
 lV  are independent of each other, so that  
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2) The random variables  is a sequence of Gaus-
sian white noise with zero mean and covariance matrix 

 lV

T
l l lE V V G I     .               (4) 

Usually, for a fixed , the conditionally 
optimal filter is to find an estimate 

1i i N 
 ˆ i
lX  of the random 

state variable lX  at each discrete time  by the meas-
urements of the previous random variables 

l
   

1 1, ,i i
lY Y  , 

here, the class of admissible estimates are defined by the 
difference equation 

                
1 1 1 1

ˆ δ ,i i i i i i i
l l l l lX A U Y A 1

i
l              (5) 

with a given sequence of the vector structural functions 
 and all possible values of the matrices of 

coefficients  and the coefficients vectors 

  1 ,i
l u y  

 
1δ i

l
 

1
i

l  . The 
class of admissible filtering is determined by the given 
sequence of the structural functions 1 . Cer-
tainly, such an estimate 

 i
l   ,u y

 ˆ i
lX  is required to minimize 

the mean square error in some sense 

  2
ˆ i

l lE X X                  (6) 

at any discrete time l . This problem arises from the 
multi-criteria equation,      δ ,i i

l l  can be optimal. 
Our problem is to find a suboptimal estimate *ˆ

lX  at any 
discrete time  by using  different types of esti-
mates 

l
, ,

N
   1ˆ ˆ N
lX X l  such that  

2
*ˆ
l lE X X



                 (7) 

is minimal in some sense. 
 
3. Construction of Conditionally Suboptimal  

Nonlinear Filter 
 
3.1. Conditionally Nonlinear Filter 
 
For , we firstly choose a sequence of struc-
tural functions  

1i i N 

          ˆ,
Ti i i i iT T

l l l l lU Y X Y     , 

let A I , and substitute into (5) we can derive that 

           
1 1 2

ˆ ˆ ˆδ δi i i i i
l l l l lX X Y i

l    ,            (8) 

where l ,      
1 2δ δ δi i i

l l
   

   ˆ 1,2, ,i
l lX U i N   , this is 

a class of admissible filters. The conditionally optimal 
nonlinear filtering is consist of (1), (3) and (8), and it is 
denoted by I . Applying conditionally optimal nonlinear 
filter theory [5] we obtain the following results for this 
conditionally optimal nonlinear filtering I : If 

    22 1, ,i i i iT
l l l lb R b H i N        is inverse, then 

                  1

2 12δ i i i i i i i iT T
l l l l l l l l la R b H b R b H 22


     (9) 

     
1 2δ δi i
l l l la b  i

i i
l

,                (10) 

     
0 1 0δi

l l la b   ,               (11) 

for any  1,2, ,i i N 
n

, where  
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(14) 

lG

lr

 is the covariance matrix of the random vector l , 
 

V
m  1, 2, ,r  

EX
n , are the components of the vector 

l lm  ,  , 1, ,s n lrsk r  are the elements of the 
covariance matrix l xlK K  of the random vector lX . 
Substitute (10) and (11) into (8) we obtain a sequence of 
conditionally optimal filtering equations 

              1 0 2
ˆ ˆ ˆδi i i i i i

l l l l l l l l l0
iX a X a Y b X b      . (15) 

This is the usual Kalman filtering equation, but in 
more general problem, Equations (1) and (3) are nonlin-
ear, the matrix coefficient 2  is determined by Formu-
las (9) and (12)-(14) that are different from the corre-
sponding formula of Kalman linear filtering theory.  

δ l

Let  

,l lm EX  

  Tl l l l lK E X m X m   , 

      ,i i i T
l l lR EX X    

where l
   ˆi i
l lX X X   is the error of filtering. To give 

out the solution of this problem, it is necessary to indi-
cate how the expectation  and the covariance matrix lm

lK  of the random vector lX  and the covariance matrix 

l  of the error of filtering lR X  can be found at each 
step. For this purpose, we can deduce from (1) and (15) 
the stochastic difference equation for the error of filter-
ing lX  

        

        
1 2

2 0 0 2
1

δ

         δ δ

i i i i
l l l l l

n
i i i i
l l l l rl rl lr l

r

X a b X

d c d c X V





 

      


 

  (16) 

for any  1, ,i i N  . Taking into account that lX , 
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lX  are independent of l and the unbiaseness of esti-
mate l

V  
   ˆ ˆi i
l l X EX EX , we can deduce from (1) and 

(16) that the difference equations for , lm lK , , lR

1l l

1

0lm a lm a

l l

,               (17) 

11
T

l l lK a K a

 i
l lb

H

     
1 2δ

i i
l l l lR a R a 

 1, ,i i N 
m

,             (18) 

 i iT T
l lR a

  12lH 11
T

lHi ,   (19) 

for any .  
Remark 3.1 l , lK , l , 2  are determined by 

the Equations (17)-(19) and the Equations (9), (17), (18) 
are linear difference equations, so l , l

R δ l

m K  are deter-
mined successively. However, it follows from the for-
mula (9) that 2  depends on l , therefore, Equation 
(19) is nonlinear difference equation with respect to .  

δ l R

lR
 
3.2. Conditionally Suboptimal Nonlinear Filter 
 
Next, we start with the suboptimal estimate of condition-
ally nonlinear filtering I , it follows from (15) and (19) 
that the conditionally nonlinear filtering I  has  
filtering estimates l l l

N
   ˆ,i 2ˆ ˆ, , NX X X

*
 at each step. Then 

the suboptimal estimate ˆ
lX  for the conditionally non- 

linear filtering I is constructed from these estimates 
     1 2ˆ ˆ ˆ, , , N
l l lX X X

 

*

 by the following equations  

   

 

1

ˆ ˆi i
l l

N
i i

l l
i

X p X

p p


 

1

0,

N

i

  l

I

,           (20) 

where I  is an unit matrix,   1 2, ,  , N
l l l  are posi-

tive semi-definite matrices and weighted coefficients that 
are determined by the following mean square criterion,  

p p p

 
   

*

2
*

1ˆ
min

l

N

l l li
X

E X X E X


  
2

ˆ ˆi i
lp Xmin

i
lp

l

ˆ
l

.  (21) 

Remark 3.2 The suboptimal estimate *X  is unbi-
ased. Since each estimate  ˆ i

l  ,1, 2,X i


i
l EX

l X

N

l


, N



l EX

l

 is unbi-
ased, , using (20), we can 
obtain  

  1,i
l lEX EX i  2,

l  

  

     *
1 1

ˆ ˆN Ni i
l li i

EX p EX p
 

 
  .   (22) 

 
3.3. The Accuracy of Conditionally Suboptimal  

Nonlinear Filter 
 
Now, we derive the equation for the actual variance ma-
trix  

*ˆ,  ,T
l l lR E X X X X             (23) 

where lX  is the state vector (1), *
lX̂  is the suboptimal 

filtering estimate (20), and  

       
1

ˆ,  ,
N i i i i

l l l l li lX p X X X X


    

0

n

      (24) 

substitute (24) into (23) we can derive that 

           
1
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where  is determined by Equation (19),  is 
determined by the following formula 
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where  

             0 2 0 0 2δ ,  δ  1, ,i i i i i i
l l l l rl l rl rlQ d c Q d c i       

The question is that there is a sequence of positive 
semi-definite matrices      1 2, , , N

l l lp p p

   1 2

 such that (21) 
has a minimal value. Here, we point out that the equa-
tions of the optimal coefficients  , , , N

l lp p lp  have 
the following form,  

         

      
     

    

2
1

1

2 2
1

                          

                          

                         0,

N Tj kj Nj
l l lk

jl

T
N kN N

l l l

N
i ik iN

l l
i

Nk NN
l l l

tr R p R R
p

p R R

p R R

p R R







        

 

   

  




    (27) 

for any 1, , 1k N  ,  

   1 N
l lp p I   .           (28) 

The proof of these equations is given in the Appendix. 
Then the actual variance matrix of the filtering error l  
and the actual mean square error  can be calcu-
lated by using the formula (25) and Equations (19), (26), 
(27). Thus the Equations (9), (12), (13), (14), (19), (26), 
and (27) completely define the new suboptimal linear 
filter for estimate 

R
 ltr R

*ˆ
lX  of the state vector lX . Note that 

the Equations (9), (12), (13), (14), (19), and (26) are 
separated for any  1, , Ni i  . Therefore, they can be 
solved in parallel.  
 
4. Example 
 
Consider the problem of recursive estimate of an un-
known scalar parameter [4]. To estimate the value of the 
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unknown parameter X  from two types of observations 
corrupted by additive white noises, the observation mod-
els of the stochastic system are given by  

1 0 0 1l l l l l l l  lX a X a c c X V     ,        (29) 

         1 1 1 1 1
0 0 1l l l l l l lY b X b d d X     lV

 lV

,      (30) 

         2 2 2 2 2
0 0 1l l l l l l lY b X b d d X    ,     (31) 

where lX , l , l , and  are in-
dependent Gaussian noises, 

 1  2Y Y R 


0,1lV N
0 0 0

ˆ ,X N X P
 

. The op-
timal filtering estimates 1ˆ

lX ,  2ˆ
lX  based on observa-

tion system (30), (31) is determined by the structural 
functions, respectively,  

           1 1 1 1 1
1 1 2

ˆ ˆδ δl l l l lX X Y 1
l    ,          (32) 

           2 2 2 2 2
1 1 2

ˆ ˆδ δl l l l lX X Y 2
l    .         (33) 

Then such this problem is a conditionally nonlinear 
filtering estimation problem, and applying conditionally 
nonlinear filtering theory, it follows from (9), (10), (11), 
(12), (13), and (14) that 

1l l lm a m a   0l

11l

,              (34) 

1l l l lK a K a H   ,            (35) 

where  

 2
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and  
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Next, we will compute conditionally suboptimal non- 
linear filtering with two different types of observations 
and the error variance matrix . Firstly, we need com-
pute covariance 

lR

                 

           

12 1 1 12 2 2 1 2
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δ δ
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where  

           1 1 1 2 2 2
0 2 0 0 0 2 0δ ,  δl l l l l l lQ d c Q d    ,  

           1 1 1 2 2 2
1 2 1 1 1 2 1δ ,  δl l l l l l lQ d c Q d 1lc     

Secondly, we will find two weighted coefficients   i
lp

 1,2i   such that the error variance l  is minimal. It 
follows from Equation (27) at  that  

R
2N 

           

   

1 1 12 2 21 2

1 2

0

,

l l l l l l

l l

p R R p R R

p p I
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moreover, we can derive from (51) that 

 
   

       

2 21
1

1 2 12 21
l l

l

l l l l

R R
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R R R R
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1 12
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l
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R R
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it follows from (20) that the suboptimal estimate  

       1 1 2 2*ˆ ˆ ˆ
l l l l lX p X p X  ,            (54) 

and according to (25) the suboptimal estimation variance 
of error  has the form:  lR

           

           

1 1 1 2 2 2

1 12 2 2 21 1      ,

l l l l l l l

l l l l l l

R p R p p R p

p R p p R p

 

 
        (55) 

where ,  are determined by Equations (38), 
(44), respectively; and ,  are determined by 
Equations (49), (50), respectively; ,  are de-

 1
lR  2

lR
 12
lR  21

lR
 1
lp  2

lp
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5. Conclusions termined by the formulas (52), (53), respectively. These 
equations (38), (44), (49), (50) and the formulas (52), 
(53), (55) produce the actual accuracy of the condition-
ally suboptimal nonlinear filtering (29), (30), (31), (54) 
and (52), (53). Note that ,  must be all non-
negative, then  

 1
lp

 and 

  0,

0 0,

 12
1l R

21
1l R

 0, R

 
1 1l lR 

 1 1l lR 

 2
lp

 2
lR 

2
0 0l  

0,la 

,  ,a 

,  .l a 

2
0 0,R

 1
lR 

 2
lR 

 
The new conditionally suboptimal nonlinear filtering is 
derived for a class of nonlinear discrete systems deter-
mined by stochastic difference equations. These stochas-
tic equations all have a parallel structure, therefore, par-
allel computers can be used in the design of these filters. 
The numerical example demonstrates the efficiency of 
the proposed conditionally suboptimal nonlinear filtering. 
The suboptimal filtering with different types of observa-
tions can be widely used in the different areas of applica-
tions: military, target tracking, inertial navigation, and 
others [11].  

    1 12 210 0.l l lR R R         (56) 
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Appendix 
 
Derivation of Formula (26). It follows from (16) that 
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(57) 

Derivation of Equation (27). We seek the optimal ma-
trices  minimizing the mean square 
error, i.e.,  
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Next, we use the following formulae  
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to differentiate the function  with respect to 
 , we can derive that for any ,  
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substitute (59) into the following equation, we can derive 
that for any ,  k
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Substitute (59) into the following equations, we can 
derive that  
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for any  k  1, , 1k N  . Substitute (62)-(66) into 
61), we can derive that  (   
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let the result be zero, we get (27). 
 


