

A Characterization of the Members of a Subfamily of Power Series Distributions

G. Nanjundan

Department of Statistics, Bangalore University, Bangalore, India E-mail: nanzundan@gmail.com Received April 7, 2010; revised April 22, 2011; accepted April 25, 2011

Abstract

This paper discusses a characterization of the members of a subfamily of power series distributions when their probability generating functions f(s) satisfy the functional equation (a+bs)f'(s)=cf(s) where a,b and c are constants and f' is the derivative of f.

Keywords: Galton-Watson Process, Probability Generating Function, Binomial, Poisson, Negative Binomial Distributions

1. Introduction

Let a population behave like a Galton-Watson process $\{X_n; n \ge 0, X_0 = 1\}$ with a known offspring distribution $\{p_k\}_{k=0}^{\infty}$. Suppose that the generation size $(X_n = k)$ is observed and n, the age in generations, is to be estimated. Such a problem arises in many situations. For example, one might be interested in the length of existence of a certain species in its present form or how long ago a mutation took place, etc. (See Stigler [1]).

When the generation size $(X_n = k)$ is observed and the offspring distribution is known, the likelihood function is given by

$$\begin{split} L\left(n\right) &= P(X_n = k \,\middle|\, X_n > 0) \\ &= \frac{f_n^{(k)}\left(0\right)}{k! \Big[1 - f_n\left(0\right)\Big]}, \end{split}$$

where $f_n(s)$ is the n^{th} functional iteration of the offspring probability generating function (p.g.f.)

$$f(s) = \sum_{k=0}^{\infty} p_k s^k$$
 with $0 \le s \le 1$ and $f_n^{(k)}$ is the k^{th} de-

rivative of $f_n(s)$ with respect to s. The maximum likelihood estimator of n can be obtained by the method of calculus if $f_n(s)$ has a closed form expression. When the offspring distribution is binomial, Poisson or negative binomial, $f_n(s)$ does not have a closed form expression. Ades *et al.* [2] have obtained a recurrence formula to compute $P(X_n = k), k = 1, 2, 3, \cdots$ when the offspring p.g.f. satisfies the functional equation

$$(a+bs)f'(s) = cf(s)$$
(1.1)

where a, b and c are constants and f' is the derivative of f. We derive a characterization result using this differential equation.

2. Characterization

We establish the following theorem.

Theorem: Let X be a non-negative integer valued random variable with $P(X = k) = p_k$, $k = 0,1,\cdots$ and $p_k > 0$

at least for
$$k = 0, 1$$
. If the p.g.f. $f(s) = \sum_{k=0}^{\infty} p_k s^k$,

 $0 \le s \le 1$, satisfies (1.1), then the distribution of X is Poisson, binomial, or negative binomial.

Proof: It is straight forward to verify that

- 1) when X has a Poisson distribution with mean λ , (1.1) holds with a = 1, b = 0 and $c = \lambda$.
- 2) when *X* has a binomial (*N*,*p*)-distribution, (1.1) holds with a = q, b = p and c = Np with q = 1 p.
- 3) when *X* has a negative binomial (α,p) -distribution, (1.1) holds with $a=1,\ b=-q$ and $c=\alpha q$ where q=1-p.

Now let us have a close look at the possible values of the constants in (1.1).

- 1) If c = 0, then (1.1) reduces to (a + bs) f'(s) = 0 $\forall s \in [0,1]$. In particular, for s = 0, this becomes af'(s) = 0. Since $f'(0) = p_1 > 0$, a = 0. But then (1.1) turns out to be f'(s) = 0, $\forall s \in [0,1]$ which implies b = 0 and then (1.1) has no meaning. Thus $c \neq 0$.
- 2) Let $c \neq 0$. If a = 0, (1.1) reduces to bsf'(s) = cf(s), $\forall s \in [0,1]$. Then for s = 0, we get

Copyright © 2011 SciRes.

G. NANJUNDAN 751

cf(0) = 0 and hence c = 0 which is a contradiction. Therefore $a \neq 0$.

3) Let $c \neq 0$, $a \neq 0$. Suppose, if possible, b = 0. Then (1.1) becomes af'(s) = cf(s), $\forall s \in [0,1]$. Identifying this as a linear differential equation and solving, we get

$$\log f(s) = (c/a)s + k_1,$$

where k_1 is an arbitrary constant. Since f(1) = 1 and $k_1 = -c/a$, the above solution reduces to

$$f(s) = \exp\left[\frac{c}{a}(s-1)\right], \forall s \in [0,1].$$

Note that c/a cannot be negative because if c/a < 0, then f(0) > 1 which is impossible. Thus c/a > 0 and f(s) is the p.g.f. of a Poisson distribution with mean c/a.

4) Let $c \neq 0$, $a \neq 0$ and $b \neq 0$. Then

 $\frac{f'(s)}{f(s)} = \frac{c}{a+bs}$. Solving this differential equation, we get

 $f(s) = k(a+bs)^{\frac{c}{b}}$, where k is a constant. Since

$$f(1) = 1$$
, $k = (a+b)^{-\frac{c}{b}}$. Hence

$$f(s) = \left(\frac{a+bs}{a+b}\right)^{\frac{c}{b}}.$$
 (2.1)

Note that if a+b=0, then f(s) in (2.1) does not define a p.g.f.

Also, (2.1) can be expressed as

$$f(s) = (a^* + b^* s)^{\frac{c}{b}},$$
 (2.2)

where $a^* = \frac{a}{a+b}$, $b^* = \frac{b}{a+b}$, and $a^* + b^* = 1$.

Since $0 < f(0) = p_0 < 1$, $0 < a^* < 1$ and hence $0 < b^* < 1$. This also implies that a, b > 0. Thus, case (4)

reduces to $c \neq 0$, a > 0 and b > 0.

4a) Let c > 0. Then c/b > 0. Suppose that c = Nb where N is a positive integer. Then f(s) in (2.2) is the p.g.f. of a binomial (N, b^*) -distribution.

4b) Let c < 0. Then c/b < 0. Suppose that c = -Nb. Then, f(s) in (2.2) is the p.g.f. of a negative binomial (N, b^*) -distribution.

Now it remains to verify whether c/b can be a fraction with $c \neq 0$. Note that (2.2) can be rewritten as

$$f(s) = (a^*)^{\frac{c}{b}} \left(1 + \frac{b^*}{a^*}s\right)^{\frac{c}{b}}.$$
 (2.3)

The expansion of the RHS of (2.3) is a power series in s with some coefficients being negative if c/b is a fraction, which is not permitted because the coefficients p_k in

$$f(s) = \sum_{k=0}^{\infty} p_k s^k$$
, being probabilities, are non-negative.

Now the proof of the theorem is complete.

3. Acknowledgements

The author is extremely grateful to Prof. M. Sreehari for a very useful discussion.

4. References

- M. Stigler, "Estimating the Age of a Galton-Watson Branching Process," *Biometrika*, Vol. 57, No. 3, 1972, pp. 505-512.
- [2] M. Ades, J. P. Dion, G. Labelle and K. Nanthi, "Recurrence Formula and the Maximum Likelihood Estimation of the Age in a Simple Branching Process," *Journal of Applied Probability*, Vol. 19, No. 4, 1982, pp. 776-784. doi:10.2307/3213830