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Abstract 
 
Three PRP-type direct search methods for unconstrained optimization are presented. The methods adopt 
three kinds of recently developed descent conjugate gradient methods and the idea of frame-based direct 
search method. Global convergence is shown for continuously differentiable functions. Data profile and per-
formance profile are adopted to analyze the numerical experiments and the results show that the proposed 
methods are effective. 
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1. Introduction 
 
Direct search methods form an important class of nu-
merical methods for solving optimization problems. 
They are particularly useful in the solution of the prob-
lems where the derivatives are not available, or difficult 
to compute. Early direct search methods can trace back 
to the compass search method [1] and the pattern search 
method [2]. In the 1960s, the direct search methods were 
widely applied. Due to the lack of convergence theory, 
direct search methods fell out of favor with the mathe-
matical optimization community by the early of 1970s.  

In the past twenty years, direct search methods have 
seen a revival. Significant interests have been provoked 
by new convergence results. For a direct search method 
to achieve convergence, it often needs to employ one of 
the following three techniques, namely line searches, 
trust regions and discrete grids [3]. In this paper we will 
adopt the discrete grid strategy to develop some globally 
convergent direct search methods. Alternative appro- 
aches based on line searches and trust regions can be 
found in [3-6] and the references therein. 

Early convergence theory based on discrete grids was 
established by Torczon et al. in [7-9]. They developed a 
framework for the GPS (generalized pattern search) me-
thod which contains many earlier algorithms, such as the 
compass search, Hooke and Jeeves’ pattern search, as 

special cases. The GPS methods have been extended to 
bound and linearly constrained problems [10,11], non- 
smooth problems [12] and general constrained problems 
[13]. 

The grids play an important role in the GPS methods 
and their extensions. In the GPS methods, each grid is 
often a subset of some member of a sequence of nested 
grids. 

Coope and Price [14] has shown that the grids can be 
chosen more freely. The grid-based methods proposed in 
[14] incorporated two arbitrary finite processes which 
may reoriented and reshaped the grids. Partly provoked 
by Coope and Price’s ideas, the review paper [15] pre-
sented a new unified presentation which was called GSS 
(generating set search) method for a large number of 
direct search methods including the GPS methods. The 
GSS methods have been also extended to linear con-
strained optimization [16,17]. 

The great freedom in the choice of grids permits to 
choose grids to reflect the information gathered during 
previous iterations, especially the possible gradient in-
formation. In [18], a concept called frame was proposed 
to gather the gradient information. Here a frame (see 
Definition 2.2) is a fragment of a grid. Loosely speaking, 
a frame is a set of points which surround a central point 
called frame center. Suppose that we already have a 
frame around the iterate kx , then the set of search direc-
tions must contain all the frame points and may contain 
an arbitrary infinite process. If there is no search direc-
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tion such that the objective function value is sufficiently 
less than  kf x , then kx  is called a quasi-minimal 
point (see Definition 2.3). After a quasi-minimal point is 
founded, the frame size must be reduced for conver-
gence. 

A direct search method which confirms to the frame- 
based template in [18] was proposed in [19], where the 
PRP+ method was used to make use of the gradient in-
formation gathered during previous iterations. The pre-
sented numerical experiments in [19] show that this 
frame-based conjugate gradients method is effective. 

In this paper, we consider the following unconstrained 
optimization 

 min  ,  ,nf x x R                (1) 

where the objective function  f x  is continuously dif-
ferential but the gradient of f  is not available or com-
putationally expensive. 

Our main purpose is to construct efficient direct search 
methods for solving (1). We also use the frame-based 
template in [18], but substitute PRP+ method with some 
descent conjugate gradient methods to make use of the 
gradient information. These descent conjugate gradient 
methods for solving unconstrained optimization prob-
lems enjoy some nice properties and good numerical 
behavior. A common property of these methods is that 
they can generate sufficient descent directions for the 
objective function. In the case when exact gradients are 
available, descent conjugate gradient methods are com-
putational more effective than PRP+ method [20-23]. We 
are going to include the descent conjugate gradient 
methods in the frame-based direct search framework to 
develop more efficient direct search methods for solving 
(1). 

We will consider descent conjugate gradient methods 
which we call the TTPRP (three-term PRP) method pro-
posed in [23], the TMPRP (two-term modified PRP) 
method proposed in [4] and the PRP-DC proposed in 
[24]. 

Let us have a simple review to these descent conjugate 
gradient methods. Each method generate a sequences of 
iterates  kx  by 

1 ,  0,1,k k k kx x d k      

where the step-length k  is determined by some line 
search, and the initial direction is set to  0 0d f x 

 1kd k 
. 

In the TTPRP method, the direction  is de-
termined by 

   
 

 
 

1 1
1 12 2

1 1

,
T T

k k k k
k k

k k

f x y f x d
d f d y

f x f x

 
 

 

 
  

 

1k  I

k kx   

(2) 

where n the TMPRP method, 

the direction 
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where I  denotes the identity matrix. In the PRP-DC 
method, the direction  1kd k   is determined by  
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   (4) 

where 1 1k k ks x x   . 
As the computation of the gradient f  is not avail-

able in the direct search methods, we need to find some 
estimation of the gradient f  instead of f  in (2), (3) 
and (4). Based on these conjugate gradient directions, we 
then design direct search methods. Under mild condi-
tions, we will prove that these methods are globally con-
vergent. Our numerical results show that the proposed 
methods are efficient.  

In the next section, we describe our direct search algo-
rithm framework. In Section 3 we establish a global con-
vergence theorem for this algorithm framework. In Sec-
tion 4, we compare the performance of the proposed 
methods with some existing methods. 
 
2. The Algorithm 
 
In this section, we first introduce some concepts and then 
describe our algorithms. 

Definition 2.1. A set of vectors is called a positive 
basis for if and only if 

V
nR

1) every vector in  is a nonnegative linear combi-
nation of the members of , and 

nR
V

V2) no proper subset of   satisfies 1). 
Positive basis was first proposed in [25], and has be-

come an important concept in direct search methods. In 
general, if  1 2, , , nv v v  is a basis for , then nR
 1 2, , ,v v v v  
The

1 2, , , ,n v v   n is a positive basis for nR . 
re are many other important positive bases, see [25] 

for more details. 
The following two definitions define the frame and 

quasi-minimal frame proposed by Coope and Price in [18] 
and [19] respectively. 

Definition 2.2. A frame round x with size  > 0 is de-
fined by 

h

   , , :x h V x hv v V      

where V  is a positive basis. 
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Definition 2.3. A frame  , ,x h V  is called quasi- 
minimal if and only if 

    ,   f x f x hv v V      ,       (5) 

where , and  h 1 
 , ,

 is a given constant. 
If a frame x h V  is quasi-minimal, then the 

frame center


x is called a quasi-minimal point. If there is 
a frame point  , , y x h V  such that  

   f y f x    ,              (6) 

then the frame is not quasi-minimal, and we say that the 
function value at  is sufficiently less than that of the 
frame center or that at the frame point  the objective 
function obtain sufficient decrease. In a frame which is 
not a quasi-minimal frame, there is at least a frame point 
at which the objective function can obtain sufficient de-
crease. 

y
y

In this paper, we use the well-known positive basis 
 to define a quasi-minimal 

frame, where  is the  unit vector. 
 1 1, , , , ,nV e e e e   

e thi
n

i

We now describe our PRP-type direct search algo-
rithm. 

Firstly, a frame is constructed centered at the current 
iterate kx . Using the function values at the frame points, 
we estimate kg  as an approximation to the gradient 

 k f x . The  element of thi kg  is given by 

   
2

k k i k k i

k

f x h e f x h e

h

  
 

The next search direction is then calculated according 
to (2) for TTPRP (or (3) for TMPRP or (4) for PRP-DC) 
in which  kf x  is replaced by kg . 

We use the line search method proposed in [19] to get 
a step-length k . Specifically, we solve the following 
one dimension optimization problem to get k : 

   min  k k k k
R

f x h d d


  


  ,        (7) 

where the current iterate kx , the frame size k  and the 
conjugate direction  are given. The next iterate is 
then set to be 

h

kd

1k k k k kx x h d d  . If the current 
frame is quasi-minimal, then decrease the frame size by 
letting 1 4k kh h  . Otherwise, if k  is large enough 
such that 2 2k n   , then increase the frame size by 
letting 1 5 2k kh h  . 

As the search direction may not be a descent direction, 
the step-length k determined by (7) may be negative. 

In our method, we adopt the n-step restart strategy. 
Because the n-step restart conjugate gradient method 
possesses n-step quadratic convergence property when 
applied to minimizing a twice continuously differentiable 
function. Specifically, at iterate , we use 1kn1kn  g   
as the search direction. For the purpose of convergence, 
we need to set 1knx   equal to the lowest known point 

before the next reset. That is to say, we let 1knx   be de-
termined by the following rule. 

      j i1
      1
( 1)

min ,kn j j
i n

k n j kn

f x f x  
  

 f x h e ,   (8) 

We summarize the above process as the algorithm be-
low. 

Algorithm. 
1) Initialize: Set = 1, j = n + 1, h0 = 1. k
2) While (stopping conditions do not hold) do 
a) Construct a frame centered at the current iterate kx . 

Calculate the function values at the frame points, and 
form the gradient estimation kg . 

b) Check stopping conditions. 
c) Calculate the new search direction . k

d) Execute the line search process to find 
d

k . 
e) Set 1k k k kx kx h d d 

f) If the current frame is quasi-minimal, then set  
. 

1 4k kh h  ; else if 2 2k n   , then set  

1 5 2k kh h  ; else set . Increase k by one and  1k k

decrease  by one respectively. 
h h 

j

g) If j > 1 then return to step (a); else 
 set 1kx   equal to the lowest known point accord-

ing to (8); 
 set 1j n  , increase k by one. 
end. 
In the above algorithm, the variable counts the num-

ber of iterates until next restart. 
j

 
3. Convergence Analysis  
 
If we regard all the conjugate gradient steps as part of the 
finite process, then the general convergence result of the 
frame-based method will still hold [18]. In this section, 
we describe the convergence result specified for our al-
gorithm. 

Suppose the sequence of quasi-minimal points gener-
ated by the algorithm is denoted by . The following 
theorem shows that 

 mz
 mz  must be infinite and each 

limit points of  mz  is a stationary point of the objec-
tive function. 

Theorem 3.1. Assume thats 
1) the sequence of iterates  kx  generated by the al-

gorithm is bounded; 
2)  is continuously differentiable; and f

h3)  as . 0k  k  
Then  zm  is an infinite sequence whose cluster 

points are stationary points of . f
Proof. Firstly, we prove that the algorithm generates 

an infinite sequence of quasi-minimal points. Suppose on 
the contrary that the sequence of quasi-minimal points is 
finite. Let the final quasi-minimal point be m . After the 
final quasi-minimal iterate  is found, the parameter 

z

mz
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These two inequalities yield . □   0f z h  will never decrease, and (6) will hold for all . 
This implies the sequence of the function values is un-
bounded. It contradicts condition 1). Consequently, the 
sequence of quasi-minimal iterates 

k m

 mz  is infinite. 

 
4. Numerical Experiments 
 

Let  be an arbitrary cluster point of  and the 
subsequence 

z  mz
 m K

z  converges to . Then for any 
In this section, we report some numerical results. We 
compare the proposed direct search methods (denoted as 
TTPRP, TMPRP and PRP-DC respectively) with the 
preconditioned PRP+ direct search method (denoted as 
PRP+(pre)) proposed in [19]. 

z
 mm K

z  z , we have 

   ˆ ˆ( ) 1, ,m m i m ,    mf z h e f z h i     n


, 

where  is the frame size corresponding to the qua-
si-minimal point . So we get 

ˆ
mh

mz

      1

0,   


 
ˆ

ˆ 1,
ˆ

m m i m

m

m

f z h e f z
h i

h

 
 ,n

We adopt both the performance profile [26] and the 
data profile [27] to compare the performance among dif-
ferent methods.  

The performance profile seeks to capture how well 
one solver performs relative to the other selected solvers 
on the set of test problems. While the data profile display 
the raw data. In particular, the data profile seeks to tell 
the percentage of the problems that can be solved (for a 
given tolerance  ) with any given number of function 
evaluations. So the data profile is especially suit for the 
situation where the function evaluation is expensive [27]. 

 

Letting  with m   k K  we obtain  

  0,   
T

i 1, ,f z e i  n 

1, ,

 

and 

  0,   
T

if z e i   n .  We use the 53 smooth test problems proposed in [27].  

 

 

Figure 1. Data profiles show the percentage of problems solved as a function of a computational budget of simplex gradients.  
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The maximum dimension of these problems is 12. All 
methods halt when the following convergence test pro-
posed in [27] was satisfied 

    0 ,L Lf x f f x f              (9) 

where 0   is a tolerance, 0x  is the starting point for 
the test problem, and Lf  is computed for each solver as 
the smallest value of f  obtained by any solver within 
1300 function evaluations. Because we are interested in 
the short-term behavior of these methods as the accuracy 
level changes, we present the data profiles and the per-
formance profiles for  with {1, 3, 5, 7}.  k 10 k 

In our numerical experiments, if the current frame is 
quasi-minimal, then the frame size is reduced by the 
formula 1 minmax , 4k h h h k , where 10

min 10h  . 
The role of min  is to ensure that would not be too 
close to the machine precision. If  gets too close to 
the machine precision then the gradient estimates may 
become completely inaccurate. 

h h
h

The codes were written in Fortran 90, and the program 
was run on a PC with a Genuine Intel (R) CPU (T1350@  

1.86 GHz) and 504 M memory. 
Figure 1 shows the data profiles for tolerance   = 

10−1, 10−3, 10−5 and 10−7 respectively. It can be seen that 
TTPRP solves the largest percentage of problems for 
almost all size of computational budget and levels of 
accuracy  . TMPRP and PRP-DC are also comparable 
with PRP + (pre). It is noteworthy that the performance 
differences between TTPRP and other solvers tend to 
increase as the tolerance   decreases and the computa-
tional budget increases. On the other hand, Figure 1 
also shows that within about 50 simplex gradients the 
performance differences between four solvers are small. 

Figure 2 shows the performance profiles based on the 
number of function evaluations. The left side of each plot 
gives the percentage of the test problems which a solver 
can solve with the greatest efficiency; the right side gives 
the percentage of the test problems which a solver can 
solve successfully. Mainly, the right side measures the 
robustness of a solver.  

It can be seen from Figure 2 that TTPRP solves the 
largest percentage of problems for almost all size of per- 

 

 

Figure 2. Performance profiles (logarithmic scale).  
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formance ratio and levels of accuracy  . TMPRP and 
PRP-DC are also comparable with PRP + (pre). It is 
noteworthy that the performance differences between 
TTPRP and other solvers still tend to increase as the tol-
erance   decreases. 
 
5. Discussion 
 
Based on the Coope-Price direct search framework, we 
proposed three PRP-type direct search methods. All of 
them employ a kind of descent conjugate gradient direc-
tion. When exact gradients are available, descent conju-
gate gradient methods can generate sufficient descent 
directions for the objective function, and numerical re-
sults have shown that they are often computational more 
effective than PRP+ method. 

In this paper, the gradient information of the objective 
function is not available. We estimate the gradients based 
on the function values obtained at the maximal positive 
basis. These gradients estimated may be not accurate 
very much, but global convergence can be ensured under 
the Coope-Price direct search framework. In other words, 
convergence is guaranteed by the frame-based nature of 
the algorithms, not the fact that they mimic a conjugate 
gradients method.  

The accuracy of the gradients estimated may also af-
fect the descent property of the descent conjugate gradi-
ent directions. However, the numerical results show that 
the proposed PRP-type direct search methods are prom-
ising and competitive, especially the TTPRP method. 
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