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Abstract

In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector
optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, p)-
convex functions are introduced and sufficient optimality results are proved involving these
classes. Also, a unified dual is associated with the considered primal problem, and weak and
strong duality results are established.
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1. Introduction

It is well known that the notion of convexity plays a key role in optimization theory [1] [2]. In the literature,
various generalizations of convexity have been considered. One such generalization is that of a p -convex
function introduced by Vial [3]. Hanson and Mond [4] defined the notion of an F-convex function. As an ex-
tended unification of the two concepts, Preda [5] introduced the concept of a (F, p)-convex function. Antczak
gave the notion of a locally Lipschitz (F, p)-convex scalar function of order k [6] and a differentiable (F, p)-
convex vector function of order 2 [7].

L. Cromme [8] defined the concept of a strict local minimizer of order k for a scalar optimization problem.
This concept plays a fundamental role in convergence analysis of iterative numerical methods [8] and in stability
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results [9]. The definition of a strict local minimizer of order 2 is generalized to the vectorial case by Antczak
[7].

Recently, Bhatia and Sahay [10] introduced the concept of a higher-order strict minimizer with respect to a
nonlinear function for a differentiable multiobjective optimization problem. They proved various sufficient
optimality and mixed duality results involving generalized higher-order strongly invex functions.

The main purpose of this paper is to extend the concept of a higher-order minimizer to a nonsmooth vector
optimization problem over cones. The paper is organized as follows. We begin in Section 2 by recalling some
known concepts in the literature. We then define the notion of a (weak) minimizer of order k for a nonsmooth
vector optimization problem over cones. Thereafter, we introduce various new generalized classes of cone-
nonsmooth (F, p)-convex functions of higher-order. In Section 3, we study several optimality conditions for
higher-order minimizers via the introduced classes of functions. In Section 4, we associate a unified dual to the
considered problem and establish weak and strong duality results.

2. Preliminaries and Definitions

Let S<R" be a nonempty open subset of R". Let K < R™ be a closed convex cone with nonempty inte-
riorand let intk denote the interior of K. The dual cone K* of K is defined as

K* ={y* eR" :(y,y*)zo forall ye K}.
The strict positive dual cone K* ofKis given by
K* :{y* eR" :<y, y*>>0 forall ye K \{O}}.
A function y:S — R issaid to be locally Lipschitz at a point ueS if forsome 1>0,

b (x)=w (X)| <1x-X| w¥x, x within a neighbourhood of u.

A function y s said to be locally Lipschitz on S if it is locally Lipschitz at each point of S.
Definition 2.1. [11] Let y:S — R be a locally Lipschitz function, then ° (u;v) denotes the Clarke’s ge-
neralized directional derivative of y at ueS inthe direction v and is defined as

l//o (u;v) = |imsupw .
you
t—0"

The Clarke’s generalized gradient of i at u is denoted by oy (u) and is defined as
oy (u)= {cf eR" 1y (upv) 2 (&,v) forall ve R”} .

Let f:S—R™ be a vector valued function given by f =(f,, f,---, f, )t , f,:S—>R. Then fis said to
be locally Lipschitz on S if each f; is locally Lipschitz on S. The generalized directional derivative of a locally
Lipschitz function f:S —R™ at ueS inthedirection v isgiven by

fo(u;v)z(flo(u;v), £, (u;v), -, fn?(u;v))t.
The generalized gradient of f at u is the set
of (u)=of, (u)x---xof, (u),
where of; (u) Is the generalized gradient of f, atufor i=12,---,m.
Every element A=(A,---,A,) €of (u) isa continuous linear operator from R" to R" and
Au =(A1tu A;u)t eR" forall ues.
A functional F:SxSxR" — R is sublinear with respect to the third variable if, for all (x,u)eSxS,

() F(x,u;A+A)<F(xu;A)+F(xu;A,) forall A, A eR", and
(i) F(x,u;aA)=aF(xu;A) forall aeR, .
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(i) and (ii) together imply F (x,u;0)=0. @
We consider the following nonsmooth vector optimization problem

(NVOP)  K-minimize f(x)
subjectto —g(x)eQ,

where f :(fl,---, fm)t :S—>R", ¢ =(gl,~-,gp)t :S — RP, Kand Q are closed convex cones with nonempty
interiors in R™ and R” respectively. We assume that f, foreach ie{l---,m} and g, foreach je{l---,p}
are locally Lipschitz on S.

Let S, = {x eS:—-g(x)e Q} denote the set of all feasible solutions of (NVOP).

The following solution concepts are well known in the literature of vector optimization theory.

Definition 2.2. A point X € S, is said to be

(i) a weak minimizer (weakly efficient solution) of (NVOP) if for every xe S,

f(x)— f(X)¢e—intK;
(if) a minimizer (efficient solution) of (NVOP) if for every x e S,

f(x)- f (X) e —K \{0}.

With the idea of analyzing the convergence and stability of iterative numerical methods, L. Cromme [8] in-
troduced the notion of a “strict local minimizer of order k”. As a recent advancement on this platform, Bhatia
and Sahay [10] defined the concept of a higher-order strict minimizer with respect to a nonlinear function for a
differentiable multiobjective optimization problem. We now generalize this concept and give the definition of a
higher-order (weak) minimizer with respect to a function @ for a nonsmooth vector optimization problem over
cones.

Definition 2.3. A point X € S; is said to be

(i) a weak minimizer of order k =1 for (NVOP) with respect to , if there exists a vector g eintK such
that, for every xe S,

£(x)= £ (%)= Bo(x )| &-intK ;

(i) a minimizer of order k =1 for (NVOP) with respect to @, if there exists a vector g eintK such that,
forevery xe§,

£(x)~ £ (%)~ Blo(x %) &-K\{0}.

Remark 2.1. (1) If f is a scalar valued function, K=R, and o(x,X)=x-%, the definition of a weak mi-
nimizer of order k reduces to the definition of a strict minimizer of order k (see [8] [9] [12] [13]).

@ If K=R", k=2 and a)(x,Y): X—X , the definition of a (weak) minimizer of order k becomes the
definition of a vector strict global (weak) minimizer of order 2 given by Antczak [7].

(3) If K=RT the definition of a weak minimizer of order k reduces to the definition of a strict minimizer of
order k given by Bhatia and Sahay [10].

Remark 2.2. (1) Clearly a minimizer of order k for (NVOP) with respect to @ is also a weak minimizer of
order k for (NVOP) with respect to the same @ .

(2) A direct implication of the fact that S e intK is that, a (weak) minimizer of order k for (NVOP) with re-
spectto @ isa (weak) minimizer for (NVOP).

(3) Note that if X is a (weak) minimizer of order k for (NVOP) with respect to @, then for all ¢>k, itis
also a (weak) minimizer of order ¢ for (NVOP) with respect to the same .

In the sequel, for a vector function f:s —>R" and A=(A,--, A,) €df (u), F(xU;A) denotes the vec-
tor (F(XU;A), - F(xuA,)).

We now define various classes of nonsmooth (F , p) -convex functions of higher-order over cones.

Definition 2.4. A locally Lipschitz function f:S — R™ is said to be K-nonsmooth (F,p) -convex of order
k with respect to @ at ueS on S if there exist a sublinear (with respect to the third variable) functional

O,
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F:SxSxR"—>R andavector p=(p,p,,,p,)€R" suchthat, foreach Aeof(u) andall xeS
f(x)-f (u)—F(x,u;A)—p"a)(x,u)"k eK.

If the above relation holds for every ueS then fis said to be K-nonsmooth (F,p) -convex of order k with
respectto @ onsS.

Remark 2.3. (1) If f is a scalar valued function and K =R, , the above definition reduces to the definition of
a (locally Lipschitz) (F, p)-convex function of order k with respectto @ given by Antczak [6].

(2) If f is a differentiable function, K =R™, k=2 and o(x,X)=x-X the definition of a K-nonsmooth
(F, p)-convex function of order k with respectto @ becomes the definition of a vector (F, p)-convex func-
tion of order 2 given in [7].

() If K=R™, F(xu;A)=Ag(xu) for some function :SxS — R"and k=2, K-nonsmooth (F,p)-
convexity of order k with respect to @ reduces to p—(7,6)-invexity, where @(x,X)=6(x,X), introduced
by Nahak and Mohapatra [14].

(4) If f is a differentiable function, K =R and F(xu;a)=a's(x,u), aeR", for some function
17:SxS — R", the above definition becomes the definition of a higher-order strongly invex function given by
Bhatia and Sahay [10].

Definition 2.5. A locally Lipschitz function f:S — R™ is said to be K-nonsmooth (F,p)-pseudoconvex
type | of order k with respectto @ at ueS on S if there exist a sublinear (with respect to the third variable)
functional F:SxSxR"—>R andavector peR"™ such that, foreach Aedf (u) andall xeS,

—F(x,u;A) g intK :>—[f (x)-f (u)—p||a)(x,u)||k} ¢intK .
Equivalently,
£ (%)~ (U)=pllo(xu)[ e-intk = F (x,u; A) e -intK .

If f is K-nonsmooth (F,p) -pseudoconvex type | of order k with respectto @ atevery ueS thenfis said
to be K-nonsmooth (F,p) -pseudoconvex type | of order k with respectto @ onS.

Clearly, if f is K-nonsmooth (F, p)-convex of order k with respect to @, then f is K-nonsmooth (F, p)-
pseudoconvex type | of order k with respect to the same @ , however the converse may not be true as shown by
the following example.

Example 2.1. Consider the following nonsmooth function f:S —R? S =(-2,2)c R, f(x)=(f(x), f,(x))
and K ={(x,y):x>0,y<x}

fl(x):{—ZX, x<0 fz(x):{x3—x/2, x<0

—x* =%, x>0 —X/3, x>0

Here of, (0)=[-2,-1] and afz(o)z[—%,—ﬂ.

Define F:SxSxR —>R as
F(x,u;a):a(«/;—«/a).

Let @:SxS —>R begivenby o(xu)=x*-u’* k=3 and p=(-10).
Then, at u=0.

f(x)-f

forevery xeS and Aedf (0).
Hence, f is K-nonsmooth (F,p)-pseudoconvex type | of order 3 with respectto @ atuonsS.
However, for x=1 and A=(-1,-1/2).

u)—p"a)(x,u)"k e—intk = x> 0= F(x,u;A) e -intK ,

(
)
f(x)-f(u)- F(x,u;A)—p"a)(x,u)"k g K,
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so that f is not K-nonsmooth (F,p) -convex of order 3atuonS.

Definition 2.6. A locally Lipschitz function f:S — R™ is said to be K-nonsmooth (F, p) -pseudoconvex
type Il of order k with respectto @ at ueS on S if there exist a sublinear (with respect to the third variable)
functional F:SxSxR" >R andavector peR™ such that, foreach Aeof (u) andall xeS§S,

_[F (x,u; A)+p||a)(x,u)||k] g intk = —[f (x)-f (u)} g intk
Equivalently,
f(x)—f(u)e-intK = [F (x,u; A)+p||a)(X,u)||k] e —intK .
If the above relation holds for every u eSS, then f is said to be K-nonsmooth (F, p)-pseudoconvex type |1
of order k with respectto @ onS.
We now give an example to show that a K -nonsmooth (F, p) -pseudoconvex type Il function of order k with
respectto @ may fail to be a K -nonsmooth (F, p) -convex function of order k with respectto @ .

Example 2.2. Consider the following nonsmooth function f:S —»R2 S=(0,2)cR, f(x)= ( f.(x), f, (x))
and K ={(x,y):x<0,y>x}

fl(x):{_x; x=1 f(x):{z()/(iyl/z)z, iii

X%, x>1’

Here of, (1)=[-2,-1] and of, (1):[%,1]
Let F:SxSxR—>R begivenby F(xu;a)=a(e-e").
a)(x,u):xz—uz—i and p=(L-1).
16
Then,at u=1,
f(x)-f(u)e-intK = x<1= F(x,u;A)+p||a)(x,u)||k e —intK ,

forevery k=1, xeS and Aeof(1).
Therefore, f is K-nonsmooth (F,p) -pseudoconvex type Il of order k >1 with respectto @ atuonsS.
However, for x=5/4 and A=(-2,a,), a, €[1/4,1],

f(x)- f (u)-F (xu;A) - plo(xu)[ eK .

Thus, f is not K-nonsmooth (F,p) -convex of any order k with respectto @ atuonsS.

Definition 2.7. A locally Lipschitz function f:S — R™ is said to be K-nonsmooth (F, p)-quasiconvex
type | of order k with respectto @ at ueS on S if there exist a sublinear (with respect to the third variable)
functional F:SxSxR" — R andavector peR™ suchthat, foreach Aeof (u) andall xeS,

[f (x)-f (u)] g intk = —[F(x,u;A)er"a)(x,u)"k} eK.
If the above relation holds at every u e S, then f is said to be K-nonsmooth (F, p)-quasiconvex type I of
order k with respectto @ onS.
Definition 2.8. A locally Lipschitz function f:S —R™ is said to be K-nonsmooth (F, p)-quasiconvex

type Il of order k with respectto @ at ueS on S if there exist a sublinear (with respect to the third variable)
functional F:SxSxR" >R andavector peR™ such that, foreach Aeof (u) andall xeS§S,

[f (x)—f (u)—p"a)(x,u)"k} gintk = -F(x,u;A)e K.

If f is K-nonsmooth (F,p)-quasiconvex type Il of order k with respectto @ atevery ueS, then fis said

O,
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to be K-nonsmooth (F, p)—quasiconvex type Il of order k with respectto @ onS.

Remark 2.4. When f is a differentiable function, K =RT and F(x,u;a)=a'n(x,u), aeR" for some
function 7:SxS — R", Definition 2.4 - 2.7 take the form of the corresponding definitions given by Bhatia and
Sahay [10].

3. Optimality

In this section, we obtain various nonsmooth Fritz John type and Karush-Kuhn-Tucker (KKT) type necessary
and sufficient optimality conditions for a feasible solution to be a (weak) minimizer of order k for (NVOP).

On the lines of Craven [15] we define Slater-type cone constraint qualification as follows:

Definition 3.1. The problem (NVOP) is said to satisfy Slater-type cone constraint qualification at X if, for
all Bedg(X), there exists avector £eR" suchthat BE e—intQ .

Remark 3.1. The foIIowmg inclusion relation is Worth noticing.

For /lz(ﬂl,---,lm) eR™ and u= (ﬂu ,,up) eRP?

o(2f +¢g)(7):a(§m; , +Zp:,ujg]J(Y)

Thus,
o(2'f +p'g)(X) < (of (X)' 2+0g(X) 1) @

Since a weak minimizer of order k>1 for (NVOP) is a weak minimizer for (NVOP), the following non-
smooth Fritz John type necessary optimality conditions can be easily obtained from Craven [15].

Theorem 3.1. If a vector X e S, is a weak minimizer of order k with respect to @ for (NVOP) with
S =R", then there exist Lagrange multipliers 1 € K* and zeQ* not both zero, such that

0eo(2'f +i'g)(X)

mg(x)=0

The necessary nonsmooth KKT type optimality conditions for (NVVOP) can be given in the following form.

Theorem 3.2. If a vector X €S, is a weak minimizer of order k with respect to @ for (NVOP) with
S=R" and if Slater-type cone constraint qualification holds at X, then there exist Lagrange multipliers
2 eK"\{0} and zeQ",such that

0eo(2'f+1'g)(X) 3)

7'g(%)=0. )

Proof. Assume that X e S; is a weak minimizer of order k with respect to @ for (NVOP), then by Theo-
rem 3.1 there exist 4 € K* and z<Q", not both zero, such that (3) and (4) hold.

If possible, suppose A =0.Then, z=0 and (3) reduces to

Oea(y g)( )< og(X )
So there exists B eag(X) such that
B'Z=0. ©)

()
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Now, since Slater-type cone constraint qualification holds at X, we have for all B e dg (Y) , there exists a
vector £eR" suchthat BEe—intQ. Since zeQ’ \{O} ,we get z'B&<0. Inparticular, z'B&<0.On the
contrary (5) implies £'B'z = 0. This contradiction justifies 1 =0.

Now, we give sufficient optimality conditions for a feasible solution to be a higher-order (weak) minimizer
for (NVOP).

Theorem 3.3. Let X be a feasible solution for (NVOP) and suppose there exist vectors A e K*, 1 >0
and zZeQ*, z=0 such that

0e(af (%) Z+og(x) 7) (6)

1'g(x)=0. @

Further, assume that f is K-nonsmooth (F,p)-convex of order k with respectto @ at X on S, and g is
Q-nonsmooth (F,o’)-convex of order k with respect to the same @ at X on S;. If peintk and ceQ,
then X is a weak minimizer of order k with respectto @ for (NVOP).

Proof. Assume on the contrary that X is not a weak minimizer of order k with respectto @ for (NVOP).
Then, forany S eintK , there exists a vector Xe'S, such that,

£ (%)~ f (%)~ Bllo(%%)[ e-intK .
As peintK , the above relation holds in particular for g = p, so that we have
£(R)- (%)= plo(%%) -intk . ®)
As (6) holds, there exist Aeof (X) and Beag(X) such that
A2 +B'z=0. 9)

Since f is K-nonsmooth (F,p) -convex of order k with respectto @ at X on S, we have
£(%)- f(X)-F(%X:A)-plo(xX)| K. (10)
Adding (8) and (10), we get
—F()‘(,Y; ﬂ) cintk
As A e K \{0}, we obtain
A'F(%,%A)<0. (11)

Also, since g is Q-nonsmooth (F,a) convex of order k with respectto @ at X on S, and zeQ", we

have
7| 9(%)-9(%)~F (1 %:B)-ofo(x %) |20.
However, XeS,, ZeQ" and (7) together give
ﬁ‘[F(R,Y;E)+a||w(>‘<,7)||k]go_ 12)

Adding (11) and (12), we get

which implies that

)
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Using sublinearity of F under the assumption 4 >0 and >0, we obtain
F(%%2'A+E'B)+ Ao |o(%%)| <0,
which on using (9) and (1), gives
oot <o.

This is impossible as zeQ*and o <Q, so that z'c >0, and norm is a non-negative function. Hence X
is a weak minimizer of order k with respectto @ for (NVOP).

Theorem 3.4. Suppose there exists a feasible solution X for (NVOP) and vectors 1 eK*, 1 >0 and
eQ*, >0 such that (6) and (7) hold. Moreover, assume that f is K-nonsmooth (F,p) -pseudoconvex type
| of order k with respectto @ at X on S, and g is Q -nonsmooth (F,a)—quasiconvex type | of order k
with respect to the same @ at X on S;.If peintKk and oeQ,then X isaweak minimizer of order k
with respectto @ for (NVOP).

Proof: Let if possible, X be not a weak minimizer of order k with respect to w for (NVOP). Then, for any
B eintK , there exists X e S, such that,

£ ()~ (%)~ Blo(%X)| e-intK .
Since p eintK taking, in particular, B = p inthe above relation, we obtain
£ ()~ f (%)~ plo(%%)| e-intK . (13)

As (6) holds, there exist Aedf (X) and Bedg(X) such that (9) holds.
Since f is K-nonsmooth (F, p)-pseudoconvex type I of order k with respect to o at

X on §,, (13) implies
F(%%A)e—intK .
As A e K \{0}, we have
A'F (%% A)<0. (14)
Now, XeS, means —g(X)eQ,sothat z'g(X)<0.Thisalong with (7) gives
i {g(%)-g(x)}<0. (15)

If 20, then (15) implies g(X)-g(X)¢intQ.
Since g is Q-nonsmooth (F,a) -quasiconvex type | of order k with respectto @ at

- F(%%:B)+olo(x.7) |eQ,

X on S, therefore

5o that
7| F(%.%:B)+ofo(x 7 | <0, (16)

If =0, then also (16) holds.

Now, proceeding as in Theorem 3.3, we get a contradiction. Hence, X is a weak minimizer of order k with
respectto @ for (NVOP). .

Theorem 3.5. Assume that all the conditions of Theorem 3.3 (Theorem 3.4) hold with 2 € K*, 2 >0. Then
X is a minimizer of order k with respectto @ for (NVOP).

Proof: Let if possible, X be not a minimizer of order k with respect to @ for (NVOP), then for any
P eintK thereexists Xe'S, such that

[ 1(0)= 1 (%)= Blo(x T | K \{o}. (17)
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Proceeding on similar lines as in proof of Theorem 3.3 (Theorem3.4) and using (17) we have
~F (%% A) e K\{0} .
As 1eK® , weget
A'F(%,%;A)<0.

This leads to a contradiction as in Theorem 3.3 (Theorem 3.4). Hence, X is a minimizer of order k with re-
spectto @ for (NVOP).

4. Unified Duality

On the lines of Cambini and Carosi [16], we associate with our primal problem (NVOP), the following unified
dual problem (NVUD).

(NVUD) K-maximize f (y)+%(1—5)u‘g (y)
subject to Oea(ﬂtf +/fg)(y), (18)
su'g(y)=0, (19)

where yeS, leintk, 1eK"\{0}, xeQ" and 5e{0,1} isaO0-1parameter.

Note that Wolfe dual and Mond-Weir dual can be obtained from (NVUD) on taking 6 =0 and &=1 re-
spectively.

Definition 4.1. Given the problem (NVOP) and given a vector | eintK, we define the following Lagrange
function:

L(% 4 )= f (x)+%

Theorem 4.1. (Weak Duality) Let x be feasible for (NVOP) and (y,/l,y) be feasible for (NVUD). If f is
K-nonsmooth (F, p)-convex of order k with respectto @ atyon S, and g is Q-nonsmooth (F,o)-convex
of order k with respect to the same @ atyon S;, with >0, x>0 and

,utg(x), vxeS, 1eK", ueQ’.

AMp+uc=0, (20)
then,

f(y)+%(l—5),u‘g(y)— £ (x) g intk .

Proof: Assume on the contrary that

f (y)+%(1—§)y‘g(y)— f(x) eintk . (21)
Since (y,4,u) is feasible for (NVUD), therefore by (2), there exist A< of (y) and Bedg(y) such that
A'A+B'u=0. (22)
Since f is K-nonsmooth (F,p) -convex of order k with respectto @ atyon S;, we have
f(x)=f(y)-F(xy:A)-plo(x y)||k eK. (23)
Adding (21) and (23), we obtain

A (1-8)g(y)~F (x y:A) = pl(x y)| cink.

)
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As 2eK"\{0}, we get

(1-8)'g(y)-A'F(x y;A)=A'p|e(x, y)||k >0. (24)

Also, since g is Q-nonsmooth (F,a)-convex of order k with respectto @ atyon S, and xeQ*, we
have

,u'[g(x)—g(y)—F(x, y;B)-c|e(x, y)||k:|20. (25)

Adding (24) and (25), we get
19 (x)-u'g(y)> AF(xy: A)+ 4 F(xy; §)+(/1tp+,uta)"a)(x, y)||k

or,

£ (0)-31'9(y)> D AF (X y: )+ Z#F(x v:B,)+(2p+ o) |o(x )"

i=1 j=1

Using sublinearity of F under the assumption that 2 >0 and x>0, together with (22), (1) and (20), we
obtain

su'g(y)<u'g(x).

As xeS;, —g(x)eQ and xeQ,sothat u'g(x)<0 andwehave du'g(y)<0.

This contradicts the feasibility of (y, 4, ), hence the result.

Theorem 4.2. (Weak Duality) Let x be feasible for (NVOP) and (y,/l,y) be feasible for (NVUD) with
A>0 and u>0. Suppose the following conditions hold:

() If 6=0, peK, L(,4,u) is K-nonsmooth (F,p)-pseudoconvex type Il of order k with respect to @
atyon §,, and

(i) If 5=1, A'p+u'c>0,fis K-nonsmooth (F,p)-pseudoconvex type Il of order k with respectto @ at
yon S, and g is Q-nonsmooth (F,a)—quasiconvex type | of order k with respectto @ atyon S.

Then, we have

f(y)+|—|(1 5) g (y)~ f (x) intk .

Proof: Case (i): Let & =0 and on the contrary assume that,

| .
f(y)+ T ‘g(y)-f(x)eintk . (26)
Since x is feasible for (NVOP) and e Q" therefore —x'g(x)>0. Further, | eintK so that

|
T ‘g(x)eK 27)

Adding (26) and (27), we get

Hf(y) Fag(y )} {f(x) e a g )HeintK.
That is,
~[L(%2,1)=L(y, A )| eintK .

As L(.,/l,y; is K-nonsmooth (F,p)—pseudoconvex type Il of order k with respect to @, we have for all

C=(C,-,Cy,) €dL(y, 2, 1)

m
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F(xY:C)+plo(x y)||k e—intK .
Since, A€ K"\{0}, we get
AF (X, y;C)+}L‘p||a)(x, y)||k <0,
or

y AF (% y;C; )+/1‘p||a)(x, y)||k <0,
=1

so that
F(xy:2'C)+ A pllo(x y)| <0. (28)

Now, since (y,4,u) is feasible for (NVUD),

Therefore, there exists Ce 6L(y,/1,/¢) suchthat A'C=0. Substituting in (28) and then using (1), we get

Atp"a)(x, y)"k <0,

which is a contradiction, as 1 e K" \{0}, p €K andnorm is a non-negative function.
Case (ii): Let & =1, then we have to prove that

f(y)-f(x)eintK .
Let if possible,

f(y)-f(x)eintk .
Since f is K-nonsmooth (F, p)-pseudoconvex type 11 of order k with respectto @ atyon S;, we have

—{F(x,y;ﬁ)+p”a)(x, y)||k} cintK .
As 2eK"\{0}, we get
AF(%y:A)+ 2 pl|o(x, y)||k <0. (29)

Since x is feasible for (NVOP) and (y, 4, ) is feasible for (NVUD), we have

#1g(x)-g(y)}<0. (30)

If x=0,(30)implies g(x)—g(y)eintQ.

()
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As g is Q-nonsmooth (F,o—)—quasiconvex type | of order k with respectto @ atyon S;, we get
{F(x.3:8)+ofolxy)f | <0

Since u€Q", we have
H'F(xy;B)+ ,u‘o-"a)(x, y)||k <0. (31)

If x=0,then also (31) holds. _ _

Since (y,4,u) is feasible for (NVUD), by Remark 3.1, there exist Aedf (y) and Bedg(y) such that
(22) holds.

Adding (29) and (31), we get

AF (X y;A)+ 4 F (% y:B)+(2 o+ t'o)|o(x, y)||k <0,

or

i/ﬁF(x,y;R%iij(x, V.8, )+(2p+ o )o(x y) <O0.

i=1

Using sublinearity of F with the factthat 2 >0 and x>0 and then using (22) and (1), we obtain
k
(/Itp+,ut0')||a)(x, y)|| <0.

This contradicts the assumption that A'p+ u'c >0, hence the result.

Theorem 4.3. (Strong Duality) Let X be a weak minimizer of order k with respectto @ for (NVOP) with
S =R", at which Slater-type cone constraint qualification holds. Then there exist 1 K* \{0}, Ze€Q” such
that (Y,/l,ﬁ) is feasible for (NVUD). Further, if the conditions of Weak Duality Theorem 4.1 (Theorem 4.2)
hold for all feasible x for (NVOP) and all feasible (y,i,y) for (NVUD), then X is a weak maximizer of or-
der k with respectto @ for (NVUD).

_Proof: As X is a weak minimizer of order k with respect to @ for (NVOP), by Theorem 3.2 there exist
2 eK"\{0}, Q" such that

0ed(2'f+1'g)(X), (32)
12'g(x)=0. (33)
Since & €{0,1}, Equations (32) and (33) can be written as
0ed(2'f+1'g)(X),
su'g(x)=0.

Thus, (X,2,7) is a feasible solution for (NVUD). Further, if (K Z,ﬁ) is not a weak maximizer of order k
with respectto @ for (NVUD), then for any p eintK , there exists a feasible solution (y,4, ) of (NVUD)
such that

{f (y)+|—(1—5)utg(y)}—{f (7)+'_(1_§)ﬁtg(7)}_ﬁ||w(y,x)||k cintk

A

or,

f(y)+%(l—§)y‘g(y)— £ (%)= Blo(y X <intk.
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Since, BeintK, /5’||a)(y7)||k intK , so that we have

f (y)+%(1—5)ytg(y)— f (%) eintk,

which contradicts Theorem 4.1 (Theorem 4.2). Hence (K /T,ﬁ) is a weak maximizer of order k with respect to
w for (NVUD).

5. Conclusion

In this paper, we introduced the concept of a higher-order (weak) minimizer for a nonsmooth vector optimiza-
tion problem over cones. Furthermore, to study the new solution concept, we defined new generalized classes of
cone-nonsmooth (F, p)-convex functions and established several sufficient optimality and duality results using
these classes. The results obtained in this paper will be helpful in studying the stability and convergence analysis
of iterative procedures for various optimization problems.
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