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Abstract 
In this article we apply and discuss El-Desouky technique to derive a generalization of the prob-
lem of selecting k balls from an n-line with no two adjacent balls being s-separation. We solve the 
problem in which the separation of the adjacent elements is not having odd and even separation. 
Also we enumerate the number of ways of selecting k objects from n-line objects with no two ad-
jacent being of separations m, m + 1, ···, pm, where p is positive integer. Moreover we discuss some 
applications on these problems. 
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1. Introduction 
Kaplansky [1] (see also Riordan ([2] p. 198, lemma) and Moser [3]) studied the problem of selecting k objects 
from n objects arranged in a line (called n-line) or a circle (called n-circle) with no two selected objects being 
consecutive. Let ( ),f x y  and ( ),g x y  denote the number of ways of such selections for n-line and n-circle 
respectively. Kaplansky proved that 
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El-Desouky [4] studied another related problem with different techniques and proved that 
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where ( ),l n k  is the number of ways of selecting k balls from n balls arranged in a line with no two adjacent 
balls being unit separation. 

In the following we adopt some conventions: ( )nx f x    denotes the coefficient of nx  in the formal power 
series ( )f x ; ( ),n mx y f x y    denotes the coefficient of n mx y  in the series ( ),f x y ; [ ]x  is the largest in-
teger less than or equal to x, { }0,1,N =   and { }1, 2,3, .nN =   

Also, El-Desouky [5] derived a generalization of the problem given in [4] as follows: let ( ),sl n k  denote the 
number of ways of selecting k balls from n balls arranged in a line with no two adjacent balls from the k selected 
balls being s-separation; two balls have separation s if they are separated by exactly s balls. Let ( ),sd n k  
denote the number of ways of selecting k balls from n balls arranged in a circle with no two adjacent balls from 
the k selected balls being s-separation 

Let ( ),sl n k  be as defined before. Then ( ),sl n k  is equal to the number of k-subsets of nN  where the dif-
ference 1s +  is not allowed, so 
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Let ( ),sd n k  be as defined before. Then the difference 1s +  is not allowed, so 
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Let ( ), ,sl n k m  be the number of ways of selecting k balls from n balls arranged in a line with exactly m 
adjacent balls being of separation s or ( )-successionss , which gives a generalization of (4.1) in El-Desouky [4]. 

Thus, 
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For more details on such problems, see [3] [6] [7]. 

2. Main Results 
We use El-Desouky technique to solve two problems in the linear case, with new restrictions. That is if the se-
paration of any two adjacent elements from the k selected elements being of odd separation and of even separa-
tion. Moreover, we enumerate ( ), ; ,sM n k m pm  which denotes the number of ways of selecting k objects from 
n objects arrayed in a line where any two adjacent objects from the k selected objects are not being of m, m + 
1, ···, pm separations, where p is positive integer. 

2.1. No Two Adjacent Being Odd Separation 
Let ( ),oy n k  denote the number of ways of selecting k balls from n balls arranged in a line, where the separa-
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tion of any two adjacent balls from the k selected balls being of odd separation. say s, i.e. 1,3,5,s =  . This 
means that no two adjacent being of 2, 4, 6, ··· differences, see Table 1. 

So, following Decomposition (2.3.14) see [8] (p. 55), ( ),oy n k  is equal to the number of k-subsets of nN  
where the differences 1s + , 1,3,5,s =   are not allowed, hence ( ) ( ), n

oy n k x f x =   , where 
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Setting n i j k= + +  j n i k= − −  we have 
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Therefore, the coefficient of nx  gives 
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A calculated table for the values of ( ),oy n k  is given in Table 1, where 1 n≤ , 10k ≤ . 
Remark 1. It is easy to conclude that ( ),oy n k  satisfies the following recurrence relation 

( ) ( ) ( ) ( ), 1, 1 2, ,     ,  2    , 0    o o o oy n k y n k y n k n k and y n k for k n= − − + − ≥ = >          (2.1) 

with the convention ( ),1oy n n= , 1.n ≥  
 

Table 1. A calculated table for the values of ( ),oy n k . 

k 
n 1 2 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 0 0 0 0 0 0 

3 3 2 1 0 0 0 0 0 0 0 

4 4 4 2 1 0 0 0 0 0 0 

5 5 6 5 2 1 0 0 0 0 0 

6 6 9 8 6 2 1 0 0 0 0 

7 7 12 14 10 7 2 1 0 0 0 

8 8 16 20 20 12 8 2 1 0 0 

9 9 20 30 30 27 14 9 2 1 0 

10 10 25 40 50 42 35 16 10 2 1 
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2.2. No Two Adjacent Being Even Separation 
Let ( ),ey n k  denote the number of ways of selecting k balls from n balls arranged in a line, where the separa-
tion of any two adjacent balls from the k selected balls are not being of even separation, say s i.e. 0, 2, 4,s =  . 
This means that no two adjacent being of 1, 3, 5,··· differences. 

So, following Decomposition (2.3.14) see [8] (p. 55) then ( ),ey n k  is equal to the number of k-subsets of 
nN  where the differences 1,s +  0, 2, 4,s =   are not allowed, hence ( ) ( ), n

ey n k x f x =   , where 
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Moreover in the next subsection, we use our technique to enumerate ( ), ; ,sM n k m pm  the number of ways of 
selecting k objects from n objects arrayed in a line such that no two adjacent elements have the differences m + 1, 
m + 2, ···, pm + 1 i.e. no two adjacent element being of m, m + 1, ···, pm separations, where p is positive 
integer. 

2.3. Explicit Formula for ( ), ; ,sM n k m pm  
Let ( ), ; ,sM n k m pm  be the number of ways of selecting k objects from n objects arrayed in a line where any 
two adjacent objects from the k selected objects are not being of m, m + 1, ···, pm separations, where p is posi-
tive integer, hence ( ) ( ), ; , n

sM n k m pm x f x =   , where 
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Setting ( )1n j pm m mi l k= − + + + +  it is easy to find the coefficient of nx  hence 
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3. Some Applications 
Let n urns be set out along a line, that is, one-dimensional. 

Suppose we have m balls of which im  are of colour ic , 1, 2, ,i k=   and we assign these balls to urns so 
that, see Pease [9]: 

i) No urn contains more than one ball. 
ii) All im  balls of colour ic  are in consecutive urns, 1, 2, , .i k=   
El-Desouky proved that if the order of colours of the groups is specified, the number of arrangement is  
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lim e .t
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→∞
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Maosen [10] considered the following problem. Let t be any nonnegative integer. 
If we want to select k balls from an n-line or an n-circle under the restriction that any two adjacent selected 

balls are not t-separated, how many ways are there to do it? He solved these problems by means of a direct 
structural analysis. For the two kinds of problems, he used ( ),tF n k  to denote the number of ways of selecting 
k balls from n balls arranged in a line with no two adjacent selected balls being t-separation and ( ),tG n k  to 
denote the number of ways of selecting k balls from an n-circle with no two adjacent selected being t-separation. 
He proved that 
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               (3.3) 

Remark 2. In fact El-Desouky [5] has proved (3.2) in 1988. 
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