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Abstract

In this paper, we prove a result on the uniqueness of meromorphic functions sharing three values counting
multiplicity and improve a result obtained by Xiaomin Li and Hongxun Yi.
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1. Introduction and Main Results

Let f and g be two non-constant meromorphic func-
tions in the complex plane. It is assumed that the reader
is familiar with the standard notations of Nevanlinna’s
theory such as T(r,f), m(r,f), N(r,f) N(r, f)
and so on, which can be found in [1]. We use E to
denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence.
The notation S(r, f) denotes any quantity satisfying
S (r, f )= O(T (r, f))(r —>oo,r ¢ E) . A meromorphic
function b(i oo) is called a small function with respect
to f provided that T(r,b)=S(r, ). A meromorphic
function b(#o0) is called a exceptional function of f

provided that N [r’f;bj =S(r,f).

Let a be acomplex number, we say that f and ¢
share the value a CM provided f-a and g-a
have the same zeros counting multiplicities (see [2]). We
say that f and g share oo CM provided that 1/f
and 1/g share 0 CM.

Xiaomin Li and Hongxun Yi prove the following
theorem:

Theorem A ([3]). Let f and g be two distinct
nonconstant meromorphic functions sharing three values
0,1 and oo CM, if there exists a finite complex
number a = 0,1 such that a is not a Picard value of
f ,and

1
Nl)(r, : _a];&T(r, f)+S(r, f),

then
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—ia)  s*(k-s)*
A #0,1 and ( )k: ( k) .
(1-2) K
where » is a nonconstant entire function, S and

k(>2) are positive integers such that s and k+1
are mutually prime and 1<s<k in 1), 2), 3), S and
k are mutually prime and 1<s<k-1 in4),5),6).

Xinhou Hua and Mingliang Fang proved the following
theorem:

Theorem B ([4]). Let f and g be two non-
constant meromorphic functions sharing three values
0,1 and «© CM, if

T(r,f)=N(r.b(z),f)+S(r.f)

b(z)(#0,1,0) is a small function of f , then one of
the following holds:

1) f= g,

2) f=bhg,
f

3) (f-1)=(1-b)(g-1
functions of f ;

4) (f-b)(g—1+b)=b(1-b), and b, o are ex-
ceptional functions of f .

As we all know, many results on constants are also
valid for small functions, although some times they are
more difficult. In this paper, we improve the above
theorems and obtain the following result.

Theorem 1.1. Let f and g be two distinct
nonconstant meromorphic functions sharing three values
0,1 and oo CM, if there exists a small function
b(z)(#0,1,0) of f such that b(z) is a exceptional
function of f , and

Nl)(r,b(z), f)=T(r, f)+S(r,f)

and b, 1 are exceptional functions of

), and b, 0 are exceptional

(1.1)

then

N (rb(2). 1) =5 2T (. 1)+S(r 1) (12)

and one of the following cases will hold:

(k+1)y _ —(k+1)y _
n f=2 1 g=8 ! with
e” -1 e -1
(b_l)kﬂ—s - Ss(k+1_s)k+1—s d b ?-é k+1
bk+1 (k +1)k+1 S
e’ -1 e -1 .
2) f= T g= o , with
e SS(k+1-s)"
pr(1-py =SS pe S
(k+1) k+1
e -1 e — .
3) f= g+ 1’ 9= ekei=s)y 1 with

Copyright © 2011 SciRes.

ET AL. 719
(1(__?;;;1 ESS(EI:I)iZTH - nd s
ky Ky
Hot= ﬂ(lfcb)_elsy 97 (1/1(1e+ cb)_)}e” -
with 4“#0,1 and
(k(b=1)7'+b")’
(2sb(1+cb)(b=1)7"+ 2(2cb—cb® +1)b’)’
=(A(1+2cb)b’+ A (k —s)b(1+cb) ")
Sr Sy _
R ﬂ(lfcb)elk’—l’ o (1//1(1icb))le-k7—1’
with A° 20,1 and
(s(b-1)y'+b')
(4Kb(1+cb)(b~1)y"+ 4 (2cb—cb? +1)b)’
=(A(1+2cb)b’+ A(s—k)b(1+cb) )"
e’ -1 ¢V -1 .
R T z(l//l(1+cb))e(k's) i
A*#0,1 and

(s(b-1)y"+b')
(/1(5 —k)b(1+cb)(b —l)y'+/1(2cb —cb® + 1)b')(s'k)

= (A(1+2cb))b +(Akb(1+cb)y')".

where y is a nonconstant entire function, S and
k(>2) are positive integers such that s and k+1
are mutually prime and 1<s<k in 1), 2), 3), s and
k are mutually prime and 1<s<k-1 in4),5),6), ¢
and A are constants.

2. Some Lemmas

Lemma 2.1 ([4]). Let f and g be two nonconstant
meromorphic functions sharing three values 0,1 and
o CM. If f#g , then for any small function
b(z)(#0,1,) we have

N (r.b(z),f)+ N(3(r,b(z),g)= S(r, f).

Lemma 2.2 ([3]). Let f be a nonconstant mero-
rphic function, a, a, and a, be three distinct small
functions of f , if

Nir, ! +N|r,
f-aq

j=S(r,f),

f-aq
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then

1
Nl)[r, . _as]—T(r,f)+S(r,f).

Using the same method of [3] in Lemma 2.2, we get
the following result:

Lemma 2.3. Let f and g be two nonconstant
meromorphic functions sharing three values 0,1 and
oo CM. If f is a fractional linear transformation of
g, for any small function b(z)(#0,1,%), then either
b(z) is a exceptional function of f , or

Nl)(r,f;_bj=T(r, £)45(r.f).

Lemma 2.4. Let s and t are two integers, and @
be a nonconstant meromorphic function and b(z) is a
small function of @, if b® #1, then

No(r,a)s -1, —b)= S(r,m),

where N0<r,a)5 -1, —b) denotes the reduced coun-
ting function of the common zero of @°—1 and @' -b.

Proof. If z, isazeroof @°—1 and @' -b,then we
have

®*(2,)=1, 2.1)
and
o' (z,)=b(z,). (2.2)

From (2.1) and (2.2) we get b°(z,)=1, thus
No(r,a)s—l,a)t—b)=8(r,a)), since b® #1.
Lemma 2.5. Let

P(w)=0"+a0" +b, 2.3)

where w=¢”, y is a nonconstant entire function,
a(#£x) and b(#x) are two small functions of @,
n and m are positive integers such that n>m.

1)

N (r, P(lw)] ~s(r.w). (2.4)

j , (2.5)

2)If

b’ +abao'/@ —mabao'/w
ES
a'+(m-n)aw' /o a'+(m-n)ao' /o

then

1

(o

3)If n and m are mutually prime, and
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b’ +abo'/w _ —mabo'/w
a+(m-njaeo' /o) |a'+(m-n)aw' /e

] ,(2.7)

then
1

Proof. 1) Differentiating P (@) two times and eli-
minating " and " from the three equations we
obtain

P(w)+hP'(0)+hP"(0)=1, (2.9)
with T(r,h)=S(r,@) (i=1,2). Thus (2.4) holds.

1
2) Suppose N, |r,——|#S(r,m), and let z, be
) Supp (2( P(a))] ( ) 0

a zero of P(a)) with multiplicity > 2, then from (2.3)
we have

o"(z,)+a(zy)o" (z,)+b(z,)=0, (2.10)
and
B ()@ (a)
a(z )a)'(z ) (2.11)
+[ o(z) ]a) (zy)+b'(z,)=0
From (2.10) and (2.11) we get
(1) -b'(z,)+nb(z,)@'(z,)/(2,)
)3+ mma(z)a () o)
and
o (2,)=— -ma(z,)b(z,) @' (z,)/(z,) @13

a'(z,)+(m-n)a(z,)'(z,)/@(z,)

Since w=¢€”, y 1isanonconstant entire function, we
have

T(r,0'/o)=5(r,0).

From (2.7) (2.12) (2.13) and (2.14), we get (2.6) holds.

3) Let z, beazero of P(w) with multiplicity >2,
using proceeding as in 2) we can get (2.12) and (2.13).
On the other hands, since n and m are mutually
prime, there exist one and only one pair of integers S
and t such that

(2.14)

ns—mt=1(0<s<m,0<t<n) (2.15)

From (2.12) (2.13) and (2.15) we can get z, is a root
of

o= a)ns—mt

_[ —-b"+nbo'/w

roiele (e
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which implies (2.5) holds since @ has two distinct
exceptional functions.

Lemma 2.6 ([S]) Let f, and f,
constant meromorphic functions satisfying

N(r, fi)+ﬁ(r,%]—8(r), i=1,2.

be two non-

Then either
N, (r,1; f,, f,)=S(r)
or there exist two integers S, t (|s| + |t| > O) such that
fofl =1
where N, (r,1;f,f,) denotes the reduced counting

function of f, and f, related to the common 1-point
and

T(r)=T(r,f)+T(r,f,),
S(r)=o(T(r)) (r—>o,r¢E)

only dependingon f, and f,.
Lemma 2.7 ([6]) Let f be a nonconstant mero-

P(f)
Q(f)

P(f)= Y8, f* and Q(f)=3b,f
k=1 =1

are two mutually prime polynomials in f . If the co-
efficients a, (z), b;(z) are small functions of f and
a, #0, bc| # 0, then

T(r,R(f))=max(p,q)T(r,f)+S(r,f).

morphic function and R(f)= , where

3. Proof of Theorem 1.1

If f is a fractional transformation of ¢, by Lemma
2.3 we have that either b(z) is a exceptional function

! bJ_T(r’f)+S(r’ f), which

of f, or Nl){r,]c

contradicts with the assumption of Theorem 1.1. Thus
f is not a fractional transformation of g . By Theorem

B we have
N[r,flbj—T(r,f)JrS(r,f). (3.1)
From (1.1) and (3.1) we obtain
1
N(z[r,f—_bjis(r, f). (3.2)
By Lemma 2.1 we have
1
N(s(r, f_bj=8(r,f). (3.3)
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Combining (3.2) and (3.3) we get

1
N(z(r,m]:«ts(r, f).

Noting that f and g share 0,1 and o CM, we
have

(3.4)

i=e”, il BV (3.5)
g g-1
where o and g are two entire functions. From (3.5)
we get

e -1

e’ -1

f )
ef -1

(3.6)

and

e —be” +b—1
ef -1 '

Assume that T (r,eﬂ) =S(r,f), Noting 0 and oo

f-b= (3.7)

are Picard values of e”, from (3.6) we have and

e’

o are exceptional functions of f , by Lemma 2.2 we

get
1
Nl)(r, . _b]—T(r, f)+S(r,f),

which contradicts with the assumption of Theorem 1.1.
Thus T (r,eﬁ) £S(r, f).
Similarly, we have T (r,e“ ) #S(r,f) and
T (r,e“’”) #S(r, ).
Let z, be a multiple zero of f —b, but not a zero of
a',f', and B’ —a'. From (3.7) we obtain

e _b(z,)e" ) 1b(z,)-1=0.  (3.8)
and
o' (2,)-b' ()" =b(2,) B (2, )" +b'(2,) = 0.
(3.9)
From (3.8) and (3.9) we have
() _D'(2)+0(2)) B'(2,) -b*(2,) A'(2,)
b'(z,)+b(z,) ' (2,)-b(z,) ' (2,) (3.10)
o D@)ra(a)-bE)a @)
b'(z,)+b(z,) B (2,)-b(z,)a'(2,)
Set
_babfobal o Db b,
b’ +bj —b2f’ b+ o' —ba’
and
T(r)=T(r, f)+T(r,f
()=T(L1)+T(0 1) .
S(r):o(T(r)) (r >m,r¢E).
AM
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From (3.5) (3.11) and (3.12) we get

S(r,f):S(r). (3.13)
From (3.11) (3.12) and (3.13) we get
N(r, fi)+|\_l[r,%]=8(r), i=1,2. (3.14)

From (3.10) and (3.11) we have f, (ZO) =1,
f,(z,)=1. Thus

= 1
N, (r, P
N, (r,1; f,, f,) denotes the reduced counting function

of the common I1-points of f, and f,. From (3.4)
(3.13) and (3.15), we obtain

N, (r,1; f,, f,) = S(r).

From (3.16) and Lemma 2.5, we know there exist two
integers p and q(| p| +|q| > O) such that

JS N, (r,1; f, £,)+S(r, f). (3.15)

(3.16)

fPfo=1. (3.17)

Noting T(r,e“);tS(r,f), T(r,eﬂ);tS(r,f) and
T(r.e*”)#S(r.f), from (3.11) and (3.17), we have
p=0, q#0 and p#-(,and

' ' _h2p p ! r_ r\d

Pt b'+bpg b p b'+a'-ba . (3.18)
b'+bA'—ba’ | | b'+bA —ba’

Let Q(Z)—#'b_ﬂba,,thenfrom(3.18)weget

™ =(1+Q)" (1+bQ)".

Noting that b(z) is a small function of f , we
obtain that

(3.19)

Q(z)=c,

where € is a constant. From (3.19) and (3.20) we
obtain

(3.20)

oPe+as :(1+c)p(1+bc)q. (3.21)

Without loss of generality, From (3.21) we may
assume that p and g are mutually prime and q>0.

Let A= (1+C)§ and a=(qy,where y isan entire
function. Then from (3.6) and (3.21) we obtain

eV -1
A(l+cb)e™™ -1

eV -1

1/(A(1+cb))e” -1

(3.22)

g:

Noting that p=0, g#0 and p=#-g, We discuss

Copyright © 2011 SciRes.
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the following three cases.

Case 1. Suppose that q>—-p>0, we discuss the
following two subcases.

Subcase 1.1. If (A(1+cb))' =1. Setting k+1=g
and s=-p, let o=A(1+cb) and e* =we”. From
(3.22) and (3.7) we get

(k+1)s —(k+1)3
e -1 e -1
f= _ , 0= 3.23
esa _1 g 6—55 ( )
And
(k+1)3 |y .88 _
f-p="2 be” +b=1 (3.24)

e® -1

Since in this subcase b is a constant, let 5=y,
(3.23) assume the form (1) in Theorem 1.1. From the
proof of Theorem A we know (1.2) holds with

(b _ 1)k+175 ~ SS (k 11— S)k+175
bk+l - (k +1)k+1
and
b iﬂ
S

Subcase 1.2. If (/1(1+Cb))q #1. Setting k=q and
s=-p. From (3.22) we get

e —1
fo
A(1+ch)e” -1 (325)
g= e —1 .
1/(A(1+cb))e™ -1
which assume the form (iv) in Theorem 1.1.
We have from (3.25) and (3.7)
¥ —b(1+cb)e” +b—1
fop=2 (1+cb)e (3.26)

/1(1+Cb)es7 -1

Since (/I(IJer))k #1, from (3.25) (3.26) Lemma 2.4
and Lemma 2.7 we get

T(r, f)=KkT(re”)+S(r.f). (3.27)

N, (r.0:¢" — Ab(1+ch)e” +b—1,A(1+cb)e” ~1)
=S(r, f)

(3.28)
where

N, (r.0;¢" — Ab(1+cb)e” +b—1,2(1+cb)e” ~1)

denotes the reduced counting function of common zeros
of € —Ab(1+cb)e” +b-1 and A(1+cb)e” -1.
If

AM
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(k(b-1)7"+b")"
(2sb(1+cb)(b=1)7"+2(2cb—cb® +1)b')

k—s

#(A(1+2cb)b’+(k—s)b(1+cb) ')

by Lemma 2.5 (2), we get a contradiction with (3.4).
Thus From (3.27) (3.28) and Lemma 2.5 (3) we obtain
(1.2) holds with

(k(b-1)7'+b")"
(2sb(1+cb)(b=1)7"+2(2cb—cb* +1)b')

=(A(1+2cb)b’+ A (k—s)b(1+cb)»") .

Case 2. Suppose that —p>q>0, we discuss the
following two subcases.
Subcase 2.1. If (/1(1+Cb))q =1. Setting
k+l=-p and s=q,let @=A(1+cb) and
e’ = we" . From (3.22) and (3.7) we get
(= ess_l g: e—ss_l

s

(3.29)

and

_ e® —be® +b—1

P
e’ —1

f-b (3.30)

Since in this subcase b is a constant, let y =39,
(3.29) assume the form of 2) in Theorem 1.1. By the

proof of Theorem A we know (1.2) holds with
1o S
(k+1)"

and
S
b#x——0:.
k+1

Subcase 2.2 If (A(1+cb))" #1. Setting k=—p and
s=(, from(3.22) we get
e -1
~ 2(1+cb)e” —1
e -1

" (2 (1+cb))e™ -1

>

(3.31)

Which assume the form 5) in Theorem 1.1. We have
from (3.31) and (3.7)
e” —ﬂb(l-ﬁ-cb)ek’ +b-1

f-b=
/1(1+Cb)ek’ -1

(3.32)

In the same manner as Subcase 1.2 we know (1.2)
holds with

Copyright © 2011 SciRes.
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(S(b—l);/'+ b’)s
(4sb(1+cb)(b-1)7'+ 4(2cb—cb? +1)b’)

=(A(1+2cb)b’+ A(s—k)b(1+cb)y") "

Case 3. Suppose that p>0, we discuss the follow-
ing two subcases.

Subcase 3.1. If (A(1+cb))" =1. Setting
k+1=p+q and s=q,let @=A(l+cb) and
e P = He 9 From (3.22) and (3.7) we get

ess -1 e—sé -1
f= e—(k+1—s)5 ~1 » 9= e(k+1—s)6 _ (333)
and
S5 pya(kt1-s)3 _
fop=S =be b=l (3.34)

e—(k+1—s)5 -1

Since in this subcase b is a constant, let y =39,
(3.33) assume the form (3) in Theorem 1.1. By the proof
of Theorem A we know (1.2) holds with

(-b) _s'(k+1-5)""
(l_b)k+1 (k+1)k+1

and

S
K+1-5s

Subcase 3.2. If (/1(1+Cb))q #1. Setting
k=p+qg and s=(q,we have from (3.22)
e” -1
A(1+cb)e o -1
e ~1

o Y(A(1+cb))e ™ -1

(3.35)

which assume the form (6) in Theorem 1.1. From (3.35)
and (3.7) we get
e’ —Ab(1+cb)e ™ +b-1

f-b=
A(1+cb)e ™ 1

(3.36)

In the same manner as Subcase 1.2 we get (1.2) holds
with

(s(b-1)y'+b')
(4sb(1+¢cb)(b-1)7"+ 4(2cb—cb? +1)b)

= (A(1+2cb)b’+ Akb(1+cb) ")

Theorem 1.1 is thus completely proved.
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