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ABSTRACT 

In this paper, we propose a three-dimensional Set Partitioned Embedded ZeroBlock Coding (3D SPEZBC) 
lossy-to-lossless compression algorithm for hyperspectral image which is an improved three-dimensional Embedded 
ZeroBlock Coding (3D EZBC) algorithm. The algorithm adopts the 3D integer wavelet packet transform proposed by 
Xiong et al. to decorrelate, the set-based partitioning zeroblock coding to process bitplane coding and the con-
text-based adaptive arithmetic coding for further entropy coding. The theoretical analysis and experimental results 
demonstrate that 3D SPEZBC not only provides the same excellent compression performances as 3D EZBC, but also 
reduces the memory requirement compared with 3D EZBC. For achieving good coding performance, the diverse wave-
let filters and unitary scaling factors are compared and evaluated, and the best choices were given. In comparison with 
several state-of-the-art wavelet coding algorithms, the proposed algorithm provides better compression performance 
and unsupervised classification accuracy.  
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1. Introduction 

Hyperspectral images provide high resolution and valu-
able spectrum information about the Earth’s surface, so 
they are a useful tool and extensively applied in military 
and civilian fields. However, due to the huge amounts of 
data that bring about some problems in data transmission, 
storage and processing, more efficient compression tech-
nique becomes an indispensable task and a hot research 
topic. 

In recent years, some hyperspectral image compression 
algorithms based on three-dimensional wavelet transform 
[1,2,3,4,5] are particularly interested thanks to their ex-
cellent compression performances and many attractive 
properties, such as the three-dimensional Set Partitioning 
in Hierarchical Trees (3D SPIHT) [4,5], the three-dimen-
sional Set Partitioned Embedded bloCK (3D SPECK) [1], 
and the JPEG2000 multi-component (JPEG 2000-MC) 
[2,3]. The researches on hyperspectral image compres-
sion schemes can be generally classified into lossless and 
lossy techniques [1]. Lossless compression can exactly 
reconstruct the original images without losing any infor-
mation. The state-of-the-art lossless compression meth-
ods are able to achieve compression ratios of 2 ~ 3.4 : 1, 

which is not enough to meet the actual compression re-
quirements. Lossy compression can achieve higher com-
pression ratio by discarding some information. Never-
theless, thanks to the extraordinary expense to collect 
hyperspectral images, sometimes we would not like to 
lose important data information that may affect the later 
applications. The lossy-to-lossless compression scheme 
combines the characteristics of two above-mentioned 
compression techniques and gives the option of the re-
constructed image quality (lossy or lossless coding) ac-
cording to the practical demands. The lossy compression 
results are obtained when the decoder truncates the loss-
less encoded bit stream at a desired rate. If the hyper-
spectral image is decoded without losing any information, 
it can be perfectly reconstructed. Recently, the re-
searches in the lossy-to-lossless compression for hyper-
spectral images have been proposed. Tang and Pearlman 
[6] proposed a lossy-to-lossless compression solution to 
support random ROI access for hyperspectral image using 
the 3D SPECK algorithm. Wu et al. [7] present an asym-
metric transform 3D SPECK (AT-3D SPECK) algorithm 
for hyperspectral image lossy-to-lossless compression. In 
Reference [8], Penna et al. propose a unified embedded 
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lossy-to-lossless compression framework based on the 
JPEG 2000 standard. Zhang, Fowler and Liu [9] present 
a lossy-to-lossless hyperspectral image compression al-
gorithm by using three-dimensional tarp-based coding 
with classification for embedding (3D TCE) and integer 
Karhunen-Loève transform (KLT). 

The motion-compensated Embedded ZeroBlock Cod-
ing (MC-EZBC) [10] coder proposed by Hsiang and 
Woods is a successful scalable video compression algo-
rithm and provides higher compression efficiency, lower 
computational complexity and some attractive features 
such as quality, resolution and temporal scalability. Hy-
perspectral image has higher correlation and not motion 
along spectral direction [1]. Thus, the 3D EZBC algo-
rithm without motion compensation can achieve better 
coding performance for hyperspectral image compres-
sion. Whereas, because it needs to establish a quadtree 
representation structure for each individual 2D subband 
before starting the bitplane coding, the amount of mem-
ory required for quadtree structure is prominent and dis-
advantageous for the hyperspectral images compression. 
For a hyperspectral image with size 512 512 224, the 
memory space of quadtree representation structure needs 
about 299.52 Mbytes. So, Hou and Liu take into account 
the characteristics of hyperspectral image, the excellent 
performance of the 3D EZBC algorithm, as well as the 
attractive properties of low memory requirements and 
fast encoding/decoding of the 2D SPECK algorithm [11], 
and then propose a three-dimensional Set Partitioned 
Embedded ZeroBlock Coding (3D SPEZBC) algorithm 
which is more suitable for hyperspectral image compres-
sion [12]. Instead of the partitioning coding method 
based on the quadtree representation structure in 3D 
EZBC, this algorithm adopts the partitioning coding 
method based on the set representation structure in 2D 
SPECK to process each individual 2D subband, so it can 
save higher memory requirements against 3D EZBC 
because the quadtree structure can be eliminated. For 
512 512 224 hyperspectral image, 75.52 Mbytes me- 
mory space is economized against 3D EZBC.  

In this paper, we present a hyperspectral image lossy- 
to-lossless compression method based on the 3D SPEZ- 
BC algorithm, which adopts the Xiong’s 3D integer wa- 
velet packet transform (3D integer WPT) to decorrelate, 
the set-based quadtree partitioning zeroblock technique 
to process bitplane coding and the context-based adap-
tive arithmetic coding for further entropy coding. Accor- 
ding to the extensive experiments and theoretical analy-
ses, 3D SPEZBC provides the same excellent compressi- 
on performances compared with 3D EZBC, saves the 
considerable memory requirement against 3D EZBC and 
exhibits the speed performance that is slightly worse than 
3D EZBC. Furthermore, for achieving good coding per   
formance, we also evaluate different wavelet filters and uni-
tary scaling factors based on the 3D integer WPT structure, 

and make the best choices. Compared with several 
state-of-the-art wavelet-based coding algorithms, the 
experimental results demonstrate that our algorithm can 
provide excellent compression performance and unsu-
pervised classification accuracy. So the 3D SPEZBC al- 
gorithm is a good candidate for hyperspectral images 
lossy-to-lossless compression. 

The remainder of this paper is organized as follows: 
Section 2 presents an overview of wavelet transform and 
Xiong’s 3D integer wavelet packet decomposition struc-
tures with unitary scaling. In Section 3, the 3D SPEZBC 
algorithm for hyperspectral image lossy-to-lossless com-
pression is described in detail. Furthermore, the discus-
sions on the coding characteristics and the comparison 
between the 3D SPEZBC and 3D EZBC algorithm are 
given in Section 4. Section 5 provides the comprehensive 
experimental results for hyperspectral image compres-
sion. Finally conclusion is drawn in Section 6. 

2. Three-Dimensional Wavelet Transform 

The lifting scheme presented by Sweldens is the sec-
ond generation wavelet transform and provides many 
attractive advantages. To realize lossy-to-lossless im-
age compression based on wavelet transform, the in-
teger-based lifting scheme [13] is an indispensable 
tool. It performs the reversible integer-to-integer 
wavelet transform by rounding and truncating each 
filter output. Many integer-based lifting wavelet 
transforms are proposed [14,15]. In this paper, we 
evaluate and compare the lossy-to- lossless compres-
sion performances by using some integer wavelet 
transforms, such as S+P(B), (2+2, 2), 5/3, etc. 

Hyperspectral images can be viewed as 3D data and 
the image coding performance using 3D wavelet trans-
form (WT) obviously outperforms those using 2D WT 
in most cases. However, there are diverse 3D WT 
structures [1,2,3] according to different decomposition 
order in the spatial-horizontal, spatial-vertical, and 
spectral-slice directions, namely 3D dyadic wavelet 
transform (DWT), 3D wavelet packet transform (WPT) 
and Xiong’s 3D integer WPT. In recent years, re-
searches have proven that the statistics of hyperspectral 
image are not symmetric along three dimensions and 
that higher correlation is exhibited in the spectral direc-
tion [1]. 3D WPT allows different decomposition levels 
in the spatial and spectral dimensions, and further per-
forms spatial decomposition even in the higher-fre-
quency spectral subbands. So it can achieve more flexi-
ble decomposition structure and preferable energy con-
vergence in the space-frequency domain. Moreover, 3D 
integer WPT proposed by Xiong et al. [15] is capable of 
efficiently utilizing the statistical properties to decorre-
late and gaining better compression performance for 
lossy-to-lossless coding. In our lossy-to-lossless com-
pression coder, Xiong’s 3D integer WPT is used to 
decorrelate hyperspectral images. 
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2.1 Xiong’s 3D Integer WPT Structure 

As shown in Figure 1, Xiong’s 3D integer WPT first 
carries out an spectralL  levels 1D WPT in the spec-

tral-slice direction, which needs to further decompose the 
high-frequency component at even decomposition level, 
and then applies an spectralL   levels 2D DWT to each 

resulting spatial image. If we adopt Xiong’s 3D integer 
WPT of spectralL  spatial levels and spectralL  spectral lev-

els for the hyperspectral image with F spectral bands, 
( 3patial 1)sK L  F   individual 2D subbands can be 

generated. For example, Figure 1 shows the Xiong’s 3D 
integer WPT structure with 56 2D subbands, as per-
forming two spatial levels and two spectral levels for a 
volumetric image with 8 spectral bands. 

2.2 Unitary Scaling Factor for 3D Integer Wave-
let Transform 

Because the integer-based lifting wavelet transform is not 
unitary, it badly compromises integer-based lossy coding 
performance [15]. To obtain better lossy coding perform-
ance, some researchers have presented a simple approach 
via bit shifting of wavelet coefficients to make the integer 
WT approximately unitary. In Reference 1, Tang et al. 
adopt Xiong’s 3D integer WPT with unitary scaling [15] 
for hyperspectral image lossy-to-lossless compression. 
Nevertheless, thanks to fractional scaling factors, bits will 
be lost for right shift on the highest-frequency subbands, 
so all factors must be multiplied by the correctional times 
in order to make them be the nonnegative powers of 2. 
The correctional times used by Tang equal to four [1]. 
Through our experimental evaluations and analysis on the 
 

 
Figure 1. Xiong’s 3D integer wavelet packet transform struc-
tures of two spectral levels and two spatial levels. The num-
bers on the front upper left corner of all subbands indicate 
the list initialization order of the 3D SPEZBC algorithm 

compression performances of several 3D integer WT 
structures with unitary scaling factor, we found that the 
Tang’s unitary scaling structure with the correctional 
times can achieve effective integer-based lossy coding 
performances, but its lossless compression performance 
is degraded. Furthermore, unitary scaling structure 
adopted by Wu et al. [7] can obtain slightly better loss-
less performance than Tang’s unitary scaling structure, 
but its integer-based lossy coding performance is worse 
than that of Tang’s method. So we adopt a unitary scal-
ing structure as in Figure 2’s for hyperspectral image 
compression, which can obtain not only better lossless 
performance, but also excellent integer-based lossy per-
formance. 

3. The 3D SPEZBC Algorithm for Hypersp- 
ectral Image Coding 

The 3D EZBC algorithm needs to establish a quadtree 
representation structure with the hierarchical pyramidal 
model for each individual 2D subband before starting the 
bitplane coding. This structure provides a fast quadtree 
splitting scheme, but its price paid needs much memory 
[10]. Especially, the memory cost is prominent and dis-
advantageous in the huge volumetric images compres-
sion, such as hyperspectral images, 3D medical images, 
etc. 3D SPEZBC is an embedded zeroblock bitplane cod- 
ing algorithm by efficiently utilizing the energy clustering 
nature within subbands and the strong dependency across 
subbands. It adopts the set-based quardtree partitioning 
zeroblock coding and the context-based adaptive arithmetic 
 

 
(a) 

 

 
(b) 

Figure 2. The unitary scaling factors after Xiong’s 3D 
integer WPT of four spatial levels and four spectral lev-
els. (a) The spatial scaling factors. (b) The spectral scal-
ing factors 
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Figure 3. Block diagram of the hyperspectral image lossy-to-lossless coding system based on 3D SPEZBC 
 
coding techniques. The block diagram of the hyperspectral 
image lossy-to-lossless compression coder based on 3D 
SPEZBC is illustrated in Figure 3 and the complete coding 
procedure is summarized as the following three steps. 

1) Firstly, for the hyperspectral image, a hierarchical 
pyramidal structure is obtained by Xiong’s 3D integer 
WPT with Figure 2’s unitary scaling factor. In this struc-
ture, many rectangular 2D subbands with different sizes 
are generated, and each individual 2D subband is treated 
as a code block and defined as an initialization set. 
Whereafter, the code blocks are split and the significant 
coefficients are located via the set-based quadtree parti-
tioning zeroblock coding technique.  

2) Before starting the coding process, we define a set 
 to represent the code block of size l  at the 

spectral band b, subband k and set partitioning level l, as 
shown in Table 1. Where the set partitioning level l de-
notes the splitting depth from current code set to pixel- 
level sets (namely single pixel). For a set of size 

, [ ]k bS l 2 2l 

M M , 
it is defined by 

2logl M  

Substantively, l plays the same role as the quadtree level 
in 3D EZBC. Moreover, Lk denotes the set partitioning 
level of initialization set (namely kth 2D subband), where k 
is the subband index ordeir (k = 0, 1, …, K-1) and K is the 
total number of the 2D subbands in wavelet decomposi-
tion image. At the same time, we define Lmax to be the 
maximum set partitioning level among all initialization 
subbands. Table 1 lists the relationship among the code 
block, set and set partitioning level. 

The 3D SPEZBC algorithm adopts the same list strat-
egy used in 3D EZBC, and maintains two arrays of lists: 
◆ LIS: List of Insignificant Sets. 
◆ LSP: List of Significant Pixels. 
In order to effectively use the statistical characteristics 

within individual subbands and set partitioning levels, 
some lists are separately established, namely LISk[l] (LIS  
of the subband k and set partitioning level l ) and LSPk 

(LSP of the subband k), where k = 0, 1, …, K-1 and l = 0, 
1, …, Lmax. Initially, kth 2D subband at spectral band b is 
treated as a Sk,b[Lk] set and added into LISk[Lk] list acc- 
ording to the subband index order k of the marked num-
bers in Figure 1. In the coding procedure, the sets are suc-

cessively added into corresponding LISk[l] or LSPk list in 
terms of their significance status. 

3D SPEZBC adopts the set-based partitioning bitplane 
coding to progressively encode the wavelet coefficients of 
each subband from the Most Significant Bit (MSB) plane 
toward the Least Significant Bit (LSB) plane. In every bit-
plane pass, all sets in LISk (LIS of the subband k) list are 
tested and coded from the bottom set partitioning level (l = 0 
level) to the maximum set partitioning level (l = Lmax 
level). Therefore, the sets of size 1 1 (single pixels) are 
coded first, and the sets of size  2 are coded next, and 
so on. If the set Sk,b[l] contains the significant coefficients, 
it is tested significant against the current threshold. So set 
Sk,b[l] of size 

2

2 2l l  at the set partitioning level l is parti-
tioned into four approximately equal subsets ,k b = ( [ ]O S l )
 0

, [ 1],k bS l  1
, [ 1S l ],k b  2

, [ 1S l  ],k b k b of size [ 1]3
,S l 

1 12 2l l   at the set partitioning level l-1. Subsequently, 
each subset is treated as a new set, and in turn these new 
sets ,k b  are further tested and processed in the 
same way above, as shown in Figure 4(b). Whole parti-
tioning process is recursively executed until the pixel-level 
sets are reached, so that all significant pixels in subband 
are located and then added into LSPk list for further re-
finement coding. The 3D SPEZBC coding algorithm is 
described later in detail.  

(O S [ ])l

3) Finally, in order to further improve the coding per-
formance, 3D SPEZBC makes use of the context-based 
adaptive arithmetic coding approach in 3D EZBC to en-
code the significance map, signs and refinement bit-
streams. Although our algorithm gets rid of the quadtree 
structure, it can also make use of the set-based partitioning 
process to build upon the similar context models with hi-
erarchical pyramidal structure as 3D EZBC. Nevertheless, 
unlike the 3D EZBC context models which are built for the 
quadtree nodes from different subbands and quadtree levels 
[10], 3D SPEZBC build the independent context models 
for all sets within individual subbands and set partitioning 
levels. And it effectively employs two statistical dependen-
cies — the intra-band correlation among sets at the same 
set partitioning level within subband and the inter-band 
correlation among set across subbands. For entropy coding 
of significance testing bitstreams, the 3D SPEZBC context  
models registers the significance testing status of each set, 
and the context of every set Sk,b[l] is located as node of the 
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pyramidal context models at the spectral band b, subband 
k and set partitioning level l, as illustrated in Figure 4(c). 
Moreover, the sign coding employs the similar scheme of 
JPEG 2000, namely the output sign bitstream of the sig-
nificant coefficient is coded according to its sign and sig-
nificance status of its eight neighboring pixels. Finally, the 
entropy coding of refinement bitstreams utilizes the same 
context models of the significance map coding. The details 
about the context models and look-up tables can refer to 
Reference 10. 

The significance testing function of the set Sk,b[l] 
against a certain threshold 2n is defined as follows:  

,

1

( , , ) [ ]
,

1, if 2 max | ( , , ) | 2
( [ ])

0, else
k b

n n

i j b S l
n k b

c i j b
S l




      
 

<
 

 

where c(i, j, b) denotes the transformed wavelet coeffi-
cient at the coordinate (i, j, b)

 
Table 1. The relationship of code block, set and set partitioning level 

 

 

 
Figure 4. Illustration of the set-based quadtree partitioning procedure and the context models of the 3D SPEZBC algorithm.  
(a) The original kth subband of bth spectral band. Initially, two arrays of lists (LISk and LSPk）is maintained for subband k. (b) 
The set-based partitioning procedure. (c) The context models for subband k. (d) The Partitioning result for subband k of 
spectral band b 

Code block Set size
Set partitionin

level  lSet 

]0[,bkS 1 x 1 0  

]1[,bkS  2 x 2 1   

]2[,bkS  4 x 4 2 
 

 

]3[,bkS  8 x 8 3 
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therwise

 
3.1 Initialization 

 Output b  2
( , , )

log {max | ( , , ) |}
i j b

n c i j    
 for 0 : 1  k K 
 Set 

 , [ ], namely subband ,
[ ]

, o

th

k b k
k

S l k l L
LIS l



  


 

 Set .kLSP    

3.2 Sorting Pass  

for l = 0 : Lmax 
for  0 : 1k K 

            CodeLIS (k, l); 
 
CodeLIS (k, l) 
{ 
   For each set ,  , [ ] [ ]k b kS l LIS l

 Output ,( [ ])n k bS l ; 

 if  ,( [ ])n k bS l 1

 if l = 0 ( namely the set Sk,b[l] is a pixel) 
Output sign of Sk,b[l], and remove Sk,b[l] to 
LSPk; 
else 
CodeSubSets( Sk,b[l] ), and remove Sk,b[l] 
from LISk[l]. 

} 
 
CodeSubSets ( Sk,b[l] )  
{ 
 Partition Sk,b[l] into four approximately equal 

sizes of subsets O ( Sk,b[l] ) ={ 0
, [ 1]k bS l  , 

1
, [ 1]k bS l  , 2

, [ 1]k bS l  , 3
, [ 1]k bS l  }, where 

( [ ])k bO S l . , ,
' [ 1]k bS l  

 For each ,
'  [ 1]k bS l 

 Output ,
' ) ; ( [ 1]n k bS l 

 if   ,
'( [ 1])n k bS l  1

 if l = 1 ( namely the set ,
' [ 1]k bS l   is a 

pixel) 

Output sign of , and add 

 to LSPk; 

,
' [ 1]k bS l 

,
' [ 1]k bS l 

else 

CodeSubSets ( ). ,
' [ 1]k bS l 

else 

add  to . ,
' [ 1]k bS l  [ 1]kLIS l 

} 

3.3 Refinement Pass 

for 0 : 1k K   
CodeLSP ( k ); 

 
CodeLSP ( k ) 

{ 
 For each pixel set  which 

correspond to pixel c(i, j, b), output the nth 
MSB of | c(i, j, b)|except those included in 
the last sorting pass. 

, [ ]k b kS l LSP

} 

3.4 Quantization Step 
Decrement n by 1 and go to step 2. 

4. Discussion 

The difference between two partitioning mechanism, the 
partitioning zeroblock coding based on set representation 
structure in 3D SPEZBC and the partitioning zeroblock 
coding based on quadtree representation structure in 3D 
EZBC, are only the different representation structures 
and testing mode for splitting the code block, but their 
splitting and coding results are same to each other. 
Moreover, our experimental results also show that the 
compression performances of 3D SPEZBC and 3D 
EZBC are totally the same. However, 3D SPEZBC saves 
considerable memory requirement in comparison with 
3D EZBC due to the fact that the quadtree representation 
structure can be eliminated. For the kth subband of size M
×M, the quadtree depth Dk of 3D EZBC is equal to 

2log M . If the transformed wavelet coefficients are stored 

as the binary floating-point numbers (4 bytes), its quad-
tree representation structure needs to be allotted 

2

0 0

1 1
( ) ( ) ( ) 4
4 4

k kD D

i i

i i

M M sizeof float M
 

       (bytes) 

memory usage. The quadtree nodes at the bottom quad-
tree level 0 (namely i = 0) consist of the magnitudes of 
the wavelet coefficients in subband, so it can’t be deleted. 
Therefore, when using the 3D SPEZBC algorithm,  

2

1

1
( ) 4

4

kL

i

i

M


   (bytes)  memory can be saved for 

this subband. 
If four spatial levels and four spectral levels 3D WPT 

is employed for the hyperspectral image of size 512× 
512×224, the pyramidal wavelet structure has 224 bands, 
and each band has 4 subbands of size 32×32, 3 subbands 
of size 64×64, 3 subbands of size 128×128, and 3 sub-
bands of size 256×256. So the saved memory space in 
our algorithm against 3D EZBC is computed as 

5 6
2 2

1 1

1 1
224 [4 ( ) 32 4 3 ( ) 64 4

4 4
i i

i i 

          
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7 8
2 2

1 1

1 1
3 ( ) 128 4 3 ( ) 256 4] ( )

4 4

79185344 ( ) 75.52 ( )

i i

i i

bytes

bytes Mbytes
 

       

 

   

The quadtree structure of 3D EZBC provides a fast 
quadtree splitting scheme by reducing the number of 
significance test. Nevertheless, the set-based partitioning 
zeroblock coding method of 3D SPEZBC is very simple, 
and its 2D code sets are smaller and are processed ac-
cording to the increasing order of set size using the 
multi-list structure at the particular set partitioning level, 
as well as the 3D SPEZBC algorithm does not need time 
to establish quadtree structure, so it also exhibits excel-
lent speed performance that is slightly worse than 3D 
EZBC. When our coder compresses four 512×512×224 
AVIRIS hyperspectral images (such as Cuprite, Jasper 
Ridge, Low Altitude and Lunar Lake) on a AMD Athlon 
3800+ CPU 2GHz machine, there are averagely 87.36 s 
for encoding and 125.23 s for decoding at 1.0 bpppb, 
105.88 s for encoding and 170.74 s for decoding at 2.0 
bpppb, as well as 135.10 s for encoding and 209.42 s for 
decoding at 3.0 bpppb, respectively. 

5. Experimental Results 

We performed coding experiments on four signed 16-bit 
radiance AVIRIS hyperspectral images [16], namely 
Cuprite scene 1, Jasper Ridge scene 1, Low Altitude 
scene 1 and Lunar Lake scene 1. In our experiments, we 
extracted the 256×256 lower left corner, so that the di-
mensions of the test image were 256×256×224 pixels. 
For lossy compression the rate distortion performance 
was compared by means of the signal-to-noise (SNR) 
values for a variety of bit rates in bits per pixel per band 
(bpppb), and for lossless compression performance we 
used those rates to evaluate the size of the compressed 

data streams. SNR is defined as
2

1010log x

MSE


, where 

2
x  is the average squared value (power) of the original 

AVIRIS image and MSE is the mean squared error over 
the entire sequence.  

5.1 Lossless Compression Performance 

Table 2 presents the lossless compression results for the 
3D SPEZBC algorithm using various integer wavelet 
filters, which adopts the four spatial levels and four 
spectral levels Xiong’s 3D integer WPT with Figure 2’s 
unitary scaling factor. We can see that no certain wavelet 
filter is optimal for all test images. The 5/11-A, 13/7-C 
and 5/3 integer filters all provide good compression per-
formances. Furthermore, Adams et al. [14] have found 
that the 5/3 filter evidently required the least computa-
tion, and experimental results in Subsection 5.2 further 
show that the integer-based lossy compression perform-

ance  using the 5/3 integer filter clearly outperform that 
using the 5/11-A and 13/7-C integer filters at the me-
dium and high bit rates. Therefore, Figure 5 displays the 
lossless compression ratios using the 5/3 integer filter in 
comparison with several state-of-the-art wavelet-based 
algorithms. In our experiments, JPEG2000-MC used the 
four spatial levels and four spectral levels 3D integer 
WPT and other algorithms used the four spatial levels 
and four spectral levels Xiong’s 3D integer WPT with 
the unitary scaling factor in Figure 2. For all test images, 
the results show that 3D SPEZBC outperforms 3D 
SPECK, 3D SPIHT and AT-3D SPIHT, and it is worse 
than JPEG2000-MC. The average compression ratio of 
3D SPEZBC is 5.70 % lower than 3D SPECK, 7.14 % 
lower than 3D SPIHT, 4.96 % lower than AT-3D SPIHT, 
and 1.07 % higher than JPEG2000-MC. 

5.2 Integer-Based Lossy Compression Performance 

The integer-based lossy compression results can be ob-
tained when the decoder truncates the lossless encoded 
bitstreams in Subsection 5.1 at a desired bit rate. If we 
decode the hyperspectral image without losing any in-
formation, it is perfectly reconstructed. Table 3 shows 
the rate distortion results of the 3D SPEZBC algorithm 
using various integer wavelet filters for “Cuprite” image. 
We can see that these wavelet filters exhibit different 
coding performance at various bit rates. The 5/3 integer 
filter requires the least computation proved by Adams et 
al. [14] and provides excellent compression performance 
at medium and high bit rates. Moreover, when we apply 
the ISODATA and K-means unsupervised classification 
methods in comparison further (in Subsection 5.3), at 
more than 1.0 bpppb (16:1 compression ratio) the classi-
fication accuracy is higher than 99%. The experimental 
results on “Jasper Ridge”, “Low Altitude” and “Lunar 
Lake” 

 
Figure 5. Lossless compression results (bpppb) in com-
parison with the state-of-the-art wavelet-based algorithms 
using 5/3 integer filter 
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Table 2. Lossless compression results (bpppb) for 3D SPEZBC using the various wavelet filters 

 
 

Table 3. Integer-based lossy compression performance (SNR, in dB) in comparison with the various integer-based  
wavelet filters for the 3D SPEZBC algorithm 

 

Commpression Performance (bpppb) 

Wavelet Cuprite Jasper Ridge Low Altitude Lunar Lake Average 

5.44 5.66 6.17 5.39 5.67 

(2+2,2) 5.39 5.63 6.11 5.35 5.62 

(2,4) 5.38 5.67 6.14 5.32 5.63 

(6,2) 5.42 5.66 6.14 5.38 5.65 

5/3 5.37 5.65 6.12 5.31 5.61 

2/6 5.42 5.69 6.21 5.36 5.67 

2/10 5.46 5.70 6.21 5.40 5.69 

9/7-M 5.39 5.63 6.11 5.35 5.62 

9/7-F 5.40 5.67 6.12 5.34 5.63 

5/11-A 5.37 5.62 6.09 5.32 5.60 

13/7-C 5.36 5.63 6.10 5.31 5.60 

Bit Rates ( bpppb) 
hyperspectral 

Image 
Wavelet 

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

S+P (B) 39.33 47.95 51.95 55.05 56.69 59.01 60.38 62.27 63.17 

(2+2,2) 40.79 49.01 52.99 55.62 57.37 59.65 61.22 63.14 64.09 

(2,4) 40.50 48.90 53.13 55.99 57.94 60.21 61.75 63.60 64.49 

(6,2) 40.82 48.78 52.75 55.39 57.05 59.29 60.70 62.52 63.43 

5/3 40.71 49.19 53.28 56.00 57.95 60.21 61.81 63.68 64.64 

2/6 39.40 48.22 52.22 55.40 57.26 59.58 60.98 62.80 63.65 

2/10 39.28 47.95 51.82 55.03 56.84 59.09 60.57 62.43 63.36 

9/7-M 40.92 48.94 52.95 55.61 57.32 59.60 61.02 62.87 63.74 

9/7-F 40.55 48.96 52.90 55.55 57.26 58.73 59.72 60.84 61.37 

5/11-A 40.84 49.13 53.17 55.83 57.69 59.98 61.55 63.47 64.38 

Cuprite 

13/7-C 41.04 49.28 53.28 55.96 57.74 59.93 61.23 63.05 63.75 

 
hyperspectral images demonstrate the similar conclu-
sions. Taking into these causes consideration, we think 
that the 5/3 integer filter is a very good choice for hy-
perspectral image integer-based lossy compression by 
using the 3D SPEZBC algorithm. For four hyperspectral 
images, Table 4 shows that the rate-distortion perform-
ance of the proposed algorithm is better than several 
state-of-the-art wavelet-based coding algorithms by us-
ing the 5/3 integer filter. We can see that the 3D 
SPEZBC algorithm outperforms the 3D SPECK, 3D 
SPIHT, AT-3D SPIHT and JPEG2000-MC algorithms at 
various bit rates. For all of the four hyperspectral images 
at 2 bpppb (8:1 compression ratio), 3D SPEZBC aver-
agely overcomes 3D SPECK by 0.76 dB, 3D SPIHT by 
1.22 dB, AT-3D SPIHT by 0.40 dB and JPEG2000-MC 
by 0.18 dB, respectively. 

5.3 Classification Performance Comparison 

In order to measure the influence of the aforementioned 
compression algorithms on the application performance 

of the reconstructed hyperspectral images, we applied the 
ISODATA and K-means unsupervised classification 
methods for comparison further, where we set the maxi-
mal number as ten classes and the maximal iterations as 
three. For the hyperspectral images, Table 5 gives the 
results of ISODATA and k-means unsupervised classifi-
cation. The accuracy of the classification on 3D SPEZBC 
outperforms those of 3D SPECK, 3D SPIHT and AT-3D 
SPIHT, and is very close to those of JPEG2000-MC. For 
3D SPEZBC at 1.0 bpppb (16:1 compression ratio), the 
classification accuracy is higher than 99%. 

6. Conclusions 

In this paper, we propose the 3D SPEZBC algorithm for 
hyperspectral image lossy-to-lossless compression, whic- 
h is an improved 3D EZBC algorithm. It adopts the part- 
itioning coding technique based on the set representation 
structure so as to avoid the problem with higher memory 
requirements for establishing the quadtree representation 
structure. According to the theoretical and experimental 
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Table 4. Integer-based lossy compression performance (SNR, in dB) in comparison with the state-of-the-art  

wavelet-based coding algorithms using 5/3 integer filter 

 

Bit Rate ( bpppb) 
hyperspectral Image 

Coding 
Methods 0.1 0.5 1.0 1.5 2.0 2.5 3.0 

3D SPEZBC 40.71 49.19 53.27 56.00 57.95 60.21 61.81 

3D SPECK 39.92 48.62 52.61 55.49 57.57 59.71 61.45 

3D SPIHT 38.59 47.79 51.79 54.96 57.35 59.37 61.15 

AT-3D SPIHT 40.23 48.93 52.89 55.73 57.80 59.94 61.66 
Cuprite 

JPEG2000-MC 40.56 49.02 53.18 55.85 57.89 60.01 61.53 

3D SPEZBC 30.74 41.03 46.35 50.10 52.91 55.08 57.00 

3D SPECK 30.11 40.13 45.50 49.25 52.18 54.27 56.39 

3D SPIHT 29.07 39.42 45.14 48.91 51.60 53.86 56.03 

AT-3D SPIHT 30.26 40.65 46.05 49.49 52.52 54.51 56.64 

Jasper Ridge 

JPEG2000-MC 30.62 40.89 46.14 49.78 52.81 54.65 56.58 

3D SPEZBC 27.33 37.94 44.33 48.38 51.11 53.52 55.68 

3D SPECK 26.74 37.05 43.28 47.42 50.12 52.78 54.69 

3D SPIHT 25.84 36.56 42.57 46.82 49.82 52.37 54.40 

AT-3D SPIHT 26.76 37.59 43.81 47.82 50.68 53.21 55.10 

Low Altitude 

JPEG2000-MC 27.18 37.72 44.06 47.99 50.75 53.15 54.91 

3D SPEZBC 43.20 50.88 54.76 57.33 59.25 61.35 62.94 

3D SPECK 42.41 50.44 54.30 56.94 58.77 60.92 62.73 

3D SPIHT 41.11 49.70 53.49 56.31 58.58 60.55 62.39 

AT-3D SPIHT 42.59 50.64 54.51 57.14 58.94 61.08 62.81 

Lunar Lake 

JPEG2000-MC 43.02 50.76 54.68 57.20 59.07 60.98 62.69 

 
Table 5. Overall classification accuracy comparison (in ) based on ISODATA and K_mean at the various bit rates (bpppb) 

for lossy compression based on integer wavelet transform 

K_mean  ISODATA 
hyperspectral 

Image 
Coding Methods 

0.1 0.5 1.0 1.5 2.0 0.1 0.5 1.0 1.5 2.0 

3D SPEZBC 90.88 99.07 99.53 99.72 99.79  92.97 99.28 99.62 99.76 99.78

3D SPECK 90.58 99.03 99.49 99.70 99.78 92.72 99.20 99.58 99.75 99.77

3D SPIHT 87.63 98.83 99.45 99.69 99.75 90.30 99.13 99.56 99.74 99.76

AT-3D SPIHT 90.83 99.04 99.50 99.71 99.79 92.90 99.25 99.59 99.75 99.77
Cuprite 

JPEG2000-MC 90.86 99.06 99.52 99.71 99.79 92.93 99.27 99.61 99.76 99.77

3D SPEZBC 89.74 98.77 99.48 99.68 99.71 92.23 99.08 99.72 99.80 99.86

3D SPECK 89.63 98.70 99.43 99.53 99.66 92.07 98.97 99.65 99.75 99.84

3D SPIHT 87.53 98.58 99.27 99.51 99.65 90.38 98.91 99.54 99.76 99.83

AT-3D SPIHT 89.69 98.73 99.45 99.65 99.68 92.10 98.99 99.69 99.79 99.84

Jasper   Ridge 

JPEG2000-MC 89.72 98.74 99.46 99.66 99.71

 

92.20 99.04 99.70 99.80 99.85

 
analysis, our algorithm not only provides the same ex-
cellent compression performance as 3D EZBC, but also 
can save considerable memory requirements against 3D 
EZBC. For hyperspectral image lossy-to-lossless com-

pression based on 3D SPEZBC, Xiong’s 3D integer 
WPT with unitary scaling factor in Figure 2 and the 5/3 
integer filter are good options. Compared with several 
state-of-the-art wavelet-based coding algorithms, the 
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experimental results indicate that our coder provides 
better compression performance and unsupervised clas-
sification accuracy. 
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