
Open Journal of Composite Materials, 2015, 5, 22-29 
Published Online January 2015 in SciRes. http://www.scirp.org/journal/ojcm 
http://dx.doi.org/10.4236/ojcm.2015.51005   

How to cite this paper: Parida, C., Pradhan, C., Dash, S.K. and Das, S.C. (2015) Dynamic Mechanical Behavior of Luffa cylin-
drica Fiber-Resorcinol Composites. Open Journal of Composite Materials, 5, 22-29.  
http://dx.doi.org/10.4236/ojcm.2015.51005  

 
 

Dynamic Mechanical Behavior of Luffa 
cylindrica Fiber-Resorcinol Composites 
Chhatrapati Parida1*, Chinmay Pradhan2, Sarat Kumar Dash3, Sarat Chandra Das4 
1Depatment of Physics, Orissa University of Agriculture and Technology, Bhubaneswar, India 
2Post Graduate Department of Botany, Vani Vihar, Utkal University, Bhubaneswar, India 
3Department of Education in Science and Mathematics, National Council of Educational Research and Training, 
Bhubaneswar, India 
4Department of Chemistry, Salipur College, Salipur, India 
Email: *sivaji_1976@yahoo.co.in, chinmay-pr@yahoo.com, skdash59@yahoo.com, ctkscd@gmail.com  
 
Received 21 October 2014; revised 18 November 2014; accepted 10 December 2014 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Dynamic mechanical behaviour of resorcinol-formaldehyde matrix and its composites reinforced 
with natural fibers of Luffa cylindrica (LC) has been studied. The effects of fiber loading, alkali 
treatment on fiber, temperature and frequency on storage modulus and mechanical-loss factor of 
the composites were studied. The dynamic mechanical behaviour of the composites and pure ma-
trix has been investigated in the frequency range from 0.1 Hz to 10 Hz and temperature range 
from 26˚C to 100˚C. The experimental results show that the values of storage modulus of the com-
posites increase with increase in fiber loading. The storage modulus of treated LC fiber composites 
were found to be enhanced when compared with the untreated fiber composites. It was also found 
that mechanical-loss factor was more when untreated LC fibers were incorporated in the compo-
sites and decreased with the incorporation of treated LC fiber. The storage modulus of all the 
composites increased with frequency but decreased with rise of temperature. The glass transition 
temperature of the composites was evaluated from the peaks of tan delta variations. 
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1. Introduction 
Most of the materials are subjected to cyclic loading or cyclic deformation during their service performance. For 
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example automobile tires, springs, and dampers are always exposed to cyclic loading. Resorcinol and resorcinol- 
formaldehyde (RF) resins have been extensively used to promote the bonding between rubber compounds and 
various reinforcing material [1]. The tire industry is the biggest user of these products where rayon, nylon, fiber-
glass, polyester, steel and aramid have all been successfully bonded to natural/synthetic rubber compositions. 
Resorcinol and resorcinol-formaldehyde (RF) resins are also used in conveyor belts, v-belts, power transmission 
belts and pneumatic and hydraulic hoses. The polymer composites to be used in above mentioned applications 
require stiffness along with flexibility. The stiffness of the composites can be enhanced by reinforcing natural 
fibers like LC fibers. These polymer composites are in fact viscoelastic materials. They exhibit a combination of 
elastic behaviour as well as viscous behaviour. Thus a complete description of viscoelastic properties of these 
composites can be provided by dynamic mechanical experiments with variation in temperature, frequency and 
fiber loading. Therefore, dynamic mechanical analysis is an important tool in studying the viscoelastic nature of 
the composites. 

Laly A. Pothan et al. in 2003 [2] studied the dynamic mechanical analysis of banana fiber reinforced polyester 
composites with special reference to the effect of fiber loading, frequency and temperature. The loss modulus 
and damping peaks were found to be lowered by the incorporation of the banana fiber into the matrix. Smita 
Mohanty et al. in 2004 [3] studied the dynamic mechanical behaviour of sisal fiber reinforced polypropylene 
composites. The damping properties of the composites were found to decrease with the addition of sisal fibers 
and the storage modulus of the composites was enhanced by giving chemical treatments to the sisal fibers. V. G 
Geethamma et al. in 2005 [4] studied the dynamic mechanical behavior of natural rubber and its composites 
reinforced with short coir fibers. They reported that the value of mechanical loss factor decreased with increase 
in frequency whereas the value of storage modulus increased with increase in frequency. Maya Jacob et al. in 
2006 [5] studied dynamic mechanical behaviour of natural rubber reinforced with sisal and oil palm fibers. The 
storage modulus of the composites was found to increase with increase in wt fraction of fiber due to the in-
creased stiffness imparted by the sisal and palm fiber. Loss modulus increased with loading of fiber in the com-
posites while the damping property was found to decrease. Mehdi Tajvidi et al. in 2006 [6] studied the polypro-
pylene composites reinforced by kenaf fibers and bamboo fibers. They reported that storage modulus and loss 
modulus increased for all composites compared to the pure matrix which indicated increase in stiffness and elas-
ticity of composites. A decrease in loss factor was observed for all the composites with incorporation of fiber. 
Zhaogian Li et al. in 2011 [7] reported the dynamic mechanical properties of PLA composites reinforced with 
sisal fiber. The loss modulus of the composites was found to decrease with addition of sisal fiber. They also re-
ported increase in storage modulus of composites when treated sisal fibers were incorporated. As such the 
present studies include the analysis of resorcinol-formaldehyde resin and LC fiber composites as a function of 
frequency, fiber treatment, fiber loading and temperature.  

When a sinusoidal oscillating load is applied on a sample, the sample will also deform sinusoidally. This will 
be reproducible if the material is deformed within its linear viscoelastic region.  

The sinusoidal stress applied to any material is given by  

0 sin tσ σ ω=                                       (1) 

where σ is the stress at any time, σ0 is the maximum stress, and ω is the angular frequency of the applied stress. 
The resultant wave shape of the strain due to sinusoidal stress is dependent on viscoelastic nature of the material. 
The two extremes of the material’s behavior, elastic nature and viscous nature, provide the limiting extremes 
that will add to give the strain wave. The behavior can be understood by evaluating each of the two extremes. 
The material at the spring-like, or Hookean limit, will respond elastically with the oscillating stress. The strain at 
any time can be written as:  

( ) 0 sine t E tσ ω=                                     (2) 

( )e t  is the strain at any instant of time (t), E is the modulus.  
The above equation can be precisely expressed as 

( ) 0 sine t e tω=                                      (3) 

e0 represents maximum strain. 
The difference between the applied stress and the resultant strain is an angle δ; the elastic response at anytime 

can be written as:  
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( ) ( )0 sine t e tω δ= +                                    (4) 

It can be separated into the in-phase and out-of-phase strains.  
The in phase strain can be expressed as 

0 sine e δ′ =                                        (5) 

The corresponding in phase moduli or storage moduli is expressed as E'. 
The out of phase strain can be expressed as 

0 cose e δ′′ =                                        (6) 

The corresponding out of phase moduli or loss moduli is expressed as E''. 
The vector sum of these two components gives the overall or complex strain on the sample:  

e e je∗ ′ ′′= +                                        (7) 

The ratio of the loss modulus to the storage modulus is also the tan of the phase angle and is called damping:  

So the damping, tan E  
E

δ
′′

=
′

                                (8) 

2. Experimental 
The chemicals such as calcium chloride (CaCl2 2H2O, 97%), sodium carbonate (Na2CO3, 95%), di sodium hy-
drogen phosphate (Na2HPO4 2H2O, 99.5%), resorcinol (C6H4O2), formaldehyde (HCHO), maleic anhydride 
[C2H2(CO)2O], ethylenediamine [C2H4(NH2)], sodium hydroxide (NaOH), sodium hypochlorite (NaClO), di- 
vinyl benzene and methane sulphonic acid all of AR grade were procured from E. Merck, India.  

The LC fibers were cut into small pieces of length around 2 cm, washed thoroughly with deionized water and 
then dried at 70˚C in vacuum oven for 20 minutes. The dried LC fibers were treated with alkali followed by 
bleaching and acid hydrolysis. For giving alkali treatment, the LC fibers were soaked in a 5% NaOH solution at 
80˚C for 1h. The soaked LC fibers were then washed with fresh water for 30 minutes to remove any excess 
NaOH sticking to the surface of LC fiber. The fibers were then dried at room temperature for 48 h followed by 
drying in oven at 60˚C for 6h. During alkali treatment given to the LC fibers the hemicelluloses and lignin 
present in the fibers are extracted. In this way the number of −OH groups present in the fiber is reduced. The 
decrease in −OH groups increases hydrophobicity of fibers which strengthen the bonding between fiber and ma-
trix. There is disruption of hydrogen bonds in the network structure of cellulose due to the alkali treatment. Thus 
it increases the surface roughness and the adhesion between fiber and matrix. This treatment depolymerizes cel-
lulose and exposes the short length crystallites of cellulose. The alkali treated LC fibers were then bleached with 
2% sodium hypochlorite solution. The mixture was continuously stirred for 2 h at 80˚C and was poured through 
a filter paper in a funnel. The solid fibers were trapped by the filter paper and were washed with distilled water 
till neutral pH was obtained. The pulp obtained after bleaching is termed usually as micro crystalline cellulose 
(MCC). The colour of the bleached LC fibers appear yellowish from black. The bleached LC fiber/water sus-
pension was prepared and kept on an ice bath. H2SO4 was added slowly under continuous stirring to the suspen-
sion placed in an ice water bath, until the final concentration of 60% H2SO4 was reached. The obtained suspen-
sion was then heated at 45˚C under continuous stirring for 2 h. In order to remove excess acid the mixture was 
washed and centrifuged using an ultracentrifuge at 30˚C for 20 minutes with 7000 rpm. 

Composites were synthesized by taking RF resin and both chemically treated and untreated LC fibers. The 
prepared grounded RF resin and LC were mixed in different wt proportion. In sample B1 and B2, the matrix and 
untreated LC fiber are in wt ratio 1:1 and 1:2 respectively. In sample B4 and B5, the matrix and treated LC fiber 
are in wt ratio 10:1 and 5:1 respectively. B3 sample contains only powdered RF matrix. Maleic anhydride (1 g) 
and ethylene di-amine (4.6 ml) were added as cross linkers to 1 g of RF resin. The mixture was heated at con-
stant temperature of around 70˚C for 9 h to get composites. After cooling the composite was washed with dis-
tilled water, followed by washing in ethyl alcohol to remove monomers present in it. The grounded composite 
was then exposed to ultrasonic vibration at 30 kHz for 1 h at room temperature using a sonicator (1.5 L50 
H/Deluxe, India). Sonication was responsible to enhance dissolution of particles by breaking intermolecular in-
teractions. The particles of the samples are agitated when exposed to ultrasonic wave and hence particle size de-
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creases. 10 g of powdered composites was then mixed with 10 g of commercial divinyl benzene and kept for 12 
h at room temperature of 28˚C. The material was made acidic by addition of 0.25 ml of methane sulphonic acid. 
The sample was swollen as it absorbed sufficient divinyl benzene in to it. This facilitates the sample to be sof-
tened and a paste like material was obtained. This material can easily be shaped and moulded by using mould of 
different dimensions. The paste was kept in a small mould (10 cm × 2 cm). The mould was heated for 4 h at 
60˚C and was cured to get cross linked composite. The dynamic mechanical thermal analysis was conducted us-
ing rectangular test specimens having a dimension of 35 mm × 5 mm × 2 mm under 3 point flexural mode using 
a TA Instruments, USA. The ends of the specimens are freely supported and a load is applied at the middle point. 
A motor was attached to apply an oscillatory deformation to the specimen. Maximum strain amplitude was set at 
0.2%. The specimen was heated at the rate of 3˚C/min under nitrogen atmosphere. The experiment was con-
ducted at three different frequencies 0.1 Hz, 1 Hz, 10 Hz in the temperature range of 30˚C to 100˚C. The varia-
tion of storage modulus and loss factor were recorded with variation in temperature and frequency.  

3. Results and Discussion 
3.1. Variation of Storage Modulus with Frequency, Fiber Loading and Fiber Treatment 
The values of storage modulus of all the composites and matrix at three measured frequency are given in Table 
1. The storage modulus of RF matrix (sample B3) is found to be 0.252 MPa, 0.307 MPa and 0.35 MPa at 0.1 Hz, 
1 Hz and 10 Hz respectively. It can be seen that with increase in frequency, the magnitude of storage modulus 
increases. This trend is observed for all the composites and also for the matrix. Under cyclic loading when the 
frequency of the applied stress is increased the time interval is very less and the molecules may not get time to 
undergo permanent deformation. Therefore the materials probably exhibit more elastic behaviour at higher fre-
quency. The more the elastic nature the more will be the storage modulus of the materials. They behave more 
like a solid at high frequencies. 

Figure 1 shows the variation of storage modulus of all the composites and matrix with frequency at different 
fiber loadings. 

As observed from Table 1 and Figure 1 the values of storage modulus for RF matrix (sample B3) was found 
to be 0.307 MPa at 1 Hz. When the matrix was incorporated with untreated LC fiber in the wt ratio 1:1 the sto-
rage modulus increases to 0.423 MPa in sample B1. With further increase in wt of untreated LC fiber in the ma-
trix storage modulus is increased to 0.48 MPa in sample B2. When the rigid LC fibers are incorporated with the 
matrix, it increases the stiffness of the composites. With fiber loading the stiffness increases leading to increase 
in modulus. The storage modulus of all the composites are enhanced compared to the pure matrix (sample B3). 
But the storage modulus of untreated LC fiber composites (sample B1 and sample B2) are less compared to the 
treated LC fiber composites (sample B4 and sample B5). The storage modulus is maximum for sample B5 at all 
frequencies where the composites are formed with treated fiber: matrix ratio 1:5. This suggests that when the 
treated LC fibers are incorporated in composites, the composites exhibit more elastic nature. The variation of 
storage modulus with fiber loading can be understood from Figure 2. 

When the LC fibers are treated with alkali, globular protrusions present on the surface of fiber are removed 
which leads to the formation of large number of voids. These voids promote better mechanical anchorage be-
tween treated LC fiber and matrix. Due to improved interfacial adhesion between treated LC fiber and matrix  
 

Table 1. Values of storage modulus at different frequencies at 26˚C. 

Sample 
E' (MPa) 

At 0.1 Hz At 1 Hz At 10 Hz 

B1 0.374 0.423 0.48 

B2 0.42 0.48 0.55 

B3 0.252 0.307 0.35 

B4 0.702 0.765 0.82 

B5 0.809 0.858 0.91 
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Figure 1. Variation of storage modulus with frequency of all 
the samples. 

 

 
Figure 2. Variation of storage modulus of all the samples 
with fiber loading and fiber treatment. 

 
the storage modulus is enhanced for sample B4 and sample B5. However the interfacial adhesion is poor for 
sample B1 and sample B2 and thus the modulus is very low. 

3.2. Variation of Storage Modulus with Temperature 
The variation of storage modulus with temperature at different frequencies for the sample B2 is given in Figure 
3. 

As observed from Figure 3 the values of storage modulus at all the three frequencies decrease with increase 
in temperature. This trend is also observed for all other samples. With rise of temperature the mobility of mole-
cule increases and the elastic behaviour tends to decrease and there is a transition from glassy to rubbery stage. 
This transition is known as glass transition. The variation of storage modulus with frequency is observed at low 
temperatures only. But beyond glass transition variation of modulus is not observed with frequency. At a tem-
perature of around 45˚C storage modulus remains constant independent of temperature and frequency. 
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3.3. Variation of Loss Factor (tanδ) with Temperature, Frequency, Fiber Loading and  
Fiber Treatment 

The tanδ curves of matrix and other composites are shown in Figure 4. As observed from Figure 4 the value of 
tanδ for all the samples increase initially with temperature, attains a maxima between 30˚C and 40˚C beyond 
which it decreases. The peak of the tan δ curve is known as glass transition temperature, where there is transition 
from glassy state to rubbery state. Beyond this transition temperature the composite loses its elastic nature and 
behaves more like a viscous material. The glass transition temperatures are found to vary with fiber treatment 
and fiber loading.  

The variation of tanδ peak with fiber loading is given in Figure 5. 
As observed from Figure 5 the peak of tanδ curve for untreated LC fiber composites (in sample B1 and B2) 

are more compared to the matrix (sample B3). Incorporation of untreated LC fibers in the matrix increases the  
 

 
Temperature (˚C) 

Figure 3. Variation of storage modulus of sample B2 with 
temperature at different frequencies. 

 

 
Temperature (˚C) 

Figure 4. Variation of tanδ with temperature for at various 
fiber loading. 
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heat build up in the composites. That gives higher damping and more heat dissipation when untreated LC fiber is 
incorporated. However, the tanδ peak values are less for the treated LC fiber composites in sample B4 and sam-
ple B5 compared to the matrix. The results indicate that the poorer the interfacial bonding between the LC fiber 
and matrix the higher will be the damping at the interfaces. There is weak interfacial adhesion in untreated LC 
fiber composites (samples B1 and sample B2). But when the treated LC fibers are used in the composites there 
is considerable enhancement of bonding between fiber and matrix. Due to strong hydrogen bonding between LC 
fiber and matrix damping becomes less at the interface. Therefore, the fiber treatment is responsible for de-
creasing the damping at the interface as well as increasing the mechanical properties of the composites. 

The values of glass transition temperatures of all the samples are given in Table 2. 
The glass transition temperature is found to be minimum for matrix (sample B3) at 31.7˚C. With the addition 

of untreated LC fiber in the matrix, the glass transition temperature increases to 34.2˚C in sample B2 and 36.1˚C 
in sample B1. When the treated LC fibers are reinforced into the matrix, the transition temperature further in-
creases to 38˚C in sample B4 and 40.1˚C in sample B5. The value of glass transition temperature is an indication 
of molecular interaction between LC fiber and matrix. When fiber is loaded into the matrix, molecules are im-
mobilized at the interface due to the presence of fiber which decreases the mobility of polymer molecules and 
glass transition temperature shifts towards higher value. More will be the fiber-matrix interaction less will be the 
mobility of polymer molecules and more will be the glass transition temperature. The results show that glass 
transition temperature is maximum for treated LC fiber composites (sample B5) due to strong adhesion between 
treated LC fiber and matrix. 

4. Conclusions 
Storage modulus and mechanical loss factor of treated LC fiber composites, untreated LC fiber composites and  
 

 
Figure 5. Variation of tanδ peak with fiber loading in all 
samples. 

 
Table 2. Glass transition temperature of all the samples. 

Sample Nature Tg (˚C) 

B3 Pure matrix 31.7 

B2 Matrix:untreated fiber = 1:2 34.2 

B1 Matrix:untreated fiber = 1:1 36.1 

B4 Matrix:treated fiber = 10:1 38 

B5 Matrix:treated fiber = 5:1 40.1 
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pure matrix are studied in all the samples. Storage modulus of all the samples increases with increase in fre-
quency but loss factor of all the samples decreases with frequency. Storage modulus of the composites increases 
with increase in fiber loading. Storage modulus of treated LC fiber composites are more compared to untreated 
LC fiber composites. 

The more the bonding between LC fiber and matrix, the less loss factor or damping at the interface of the 
composites will be. Composites having high mechanical properties are found to experience less damping at the 
interface. The sample B5 and sample B4 (treated LC fiber composites) show the highest mechanical strength as 
well as lowest damping. 

The glass transition temperature indicates molecular interaction between fiber and matrix. It shifts towards 
high temperature with increase in fiber loading. The shifting of glass transition temperature is maximum for 
treated fiber composites (sample B5) due to high interfacial bonding between fiber and matrix. Similar investi-
gations have been reported by Smita Mohanty et al. in 2004 [3] for sisal fiber reinforced polypropylene compo-
sites. The values of storage modulus of the composites increased with fiber loading and fiber treatment. The 
storage modulus of the sisal/polypropylene composites increased with temperature whereas the loss modulus 
decreased with temperature. These findings are in good agreement with our results. Further investigations are 
required for proper use of these composites in materials which are subjected to cyclic loading like tires, dampers 
and springs etc. [4]. 
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