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Abstract

A wave equation with mass term is studied for all fermionic particles and antiparticles of the first
generation: electron and its neutrino, positron and antineutrino, quarks u and d with three states

of color and antiquarks U and d. This wave equation is form invariant under the Cl; group
generalizing the relativistic invariance. It is gauge invariant under the U (1)x SuU (2)x SuU (3)

group of the standard model of quantum physics. The wave is a function of space and time with
value in the Clifford algebra CI, ;. Then many features of the standard model, charge conjugation,

color, left waves, and Lagrangian formalism, are obtained in the frame of the first quantization.
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1. Introduction

We use here all notations of “new insights in the standard model of quantum physics in Clifford algebra” [1].
The wave equation for all particles of the first generation is a generalization of the wave equation obtained in 6.7
for the electron and its neutrino. This wave equation has obtained a proper mass term compatible with the gauge
invariance in [2]. It is a generalization of the homogeneous nonlinear Dirac equation for the electron alone

[3]-[9].
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Vé+9Ado, +me P go, =0, q= %, m :% (1.1)
with
4, :ﬁ[é& "159]=ﬁ (& —iom) (12)
§2e 771e
é:ﬁ[me —{é‘e}ﬁ(m o). (1.3)
772e gle

Here &, and 7, are respectively the right and left Weyl spinors of the electron. The /S angle is the Yvon-
Takabayasi angle satisfying

det(¢) =Q, +iQ, = pe”. (1.4)

The link with the usual presentation of the standard model is made by the left and right Weyl spinors used for
waves of each particle. These right and left waves are parts of the wave with value in Cl, ;.

We used previously the same algebra Clg, =Cl, . It is the same algebra, and this explains very well why
sub-algebras Cl,; and Cl,; have been equally used to describe relativistic physics [10] [11]. But the sig-
nature of the scalar product cannot be free, this scalar product being linked to the gravitation in the general
relativity. It happens that vectors of Cl,; are pseudo-vectors of Cly, and more generally that n-vectors of
Cl,s are (6-—n)-vectors of Cly,. The generalization of the wave equation for electron-neutrino is simpler if
we use Cl, ;. This is the first indication that the signature +————— is the true one. We explain in Appendix
A how the reverse in Cl,; is linked to the reverse in Cl, ;, a necessary condition to get the wave equation of
all particles of the first generation.

We have noticed, for the electron alone firstly (see [8] 2.4), next for electron + neutrino [2] the double link
existing between the wave equation and the Lagrangian density: It is well known that the wave equation may be
obtained from the Lagrangian density by the variational calculus. The new link is that the real part of the
invariant wave equation is simply £ =0. The Lagrangian formalism is then necessary, being a consequence of
the wave equation. Next we have extended the double link to electro-weak interactions in the leptonic case
(electron + neutrino). Now we are extending the double link to the gauge group of the standard model. The
Lagrangian density must then be the real part of the invariant wave equation.

Moreover we generalized the non-linear homogeneous wave equation of the electron, and we got a wave
equation with mass term [2], form invariant under the CI; :GL(Z,(C) group and gauge invariant under the
U (1)xSU (2) gauge group of electro-weak interactions. Our aim is to explain how this may be extended to a
wave equation with mass term, both form invariant under Cl; and gauge invariant under the
U (1)xSU (2)xSU (3) gauge group of the standard model, including both electro-weak and strong interactions.

2. From the Lepton Case to the Full Wave

The standard model adds to the leptons (electron e and its neutrino n) in the “first generation” two quarks u
and d with three colour states each. Weak interactions acting only on left waves of quarks (and right waves of
antiquarks) we write the wave of all fermions of the first generation as follows:

=(\Ij| \PFJ, \PI =[¢ie ?\n}z(’\% A¢n J (2.1)
\PQ \Pb ¢n ¢e ¢ﬁ61 %O-l
\Pr _ (?\dr ¢iur J _ ( A¢dr A¢ur ], ng _ [?dg ¢iug ] _ ( A¢dg A¢ug J’
¢ur ¢dr ¢U r O-l ¢J r O-l ¢ug ¢dg ¢Ug (71 ¢Jg Gl
\Pb (¢db ¢iub j ( ¢db ,\¢Ub ]
P Puo IO 9301

The electro-weak theory [12] needs three spinorial waves in the electron-neutrino case: the right &, and the
left 7, of the electron and the left spinor 7, of the electronic neutrino. The form invariance of the Dirac
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theory imposes to use ¢, for the electronand ¢, for its neutrino satisfying

¢e=ﬁ[§“ "l“j:ﬁ(fe ~ioyn;), ¢n=ﬁ(° "?“j (23)
525 nle 0 nln
G L B R M ) 24

Waves ¢, and ¢, are functions of space and time with value into the Clifford algebra ClI, of the physical
space. The standard model uses only a left 7, wave for the neutrino. We always use the matrix representation
(A.1) which allows to see the Clifford algebra Cl,, as a sub-algebra of M, (C). Under the dilation R with
ratio r induced byany M in GL(2,C) we have (for more details, see [6])

X'=MxM", det(M)=re’, x=x"c,, X =x"‘c (2.5)

H

&=M¢& n'=Mn, n,=Mn,, ¢ =Mg¢, ¢ =Mg, (2.6)

\P;:({‘é qf"'H“" j[‘” “‘J N, @)
i &) Lo g g

The form (2.3) of the wave is compatible both with the form invariance of the Dirac theory and with the
charge conjugation used in the standard model: the wave . of the positron satisfies

v, =iy’ © 4 =40, (2.8)

We can then think the ¥, wave as containing the electron wave ¢, , the neutrino wave ¢, and also the
positron wave ¢ and the antineutrino wave ¢, :

¢e ¢n é:le _77;9] (éln OJ
Y, =] . A , , . 2.9
[%61 ¢§O-1J f = \/_{529 771*e* h = \/_ S O @9

And the antineutrino has only a right wave. The multivector ¥, (x) is usually an invertible element of the
space-time algebra because (see [1] (6.250)) with:

a, = det(d,) = g, = 2( &, + ot ) (2.10)

8, = 2(Eettm + Eltn ) = 213 — el 2.11)

& = Z(é:lenl*n +§29’7;n) (2.12)
we got

det(\¥,) = a,a) +a,a;. (2.13)

Most of the preceding presentation is easily extended to quarks. For each color c=r, g, b the electro-
weak theory needs only left waves:

c uc n c 0 ~ ue 0
v, :[qf“ ; ] i =ﬁ("“‘ j i :ﬁ[”l j (2.14)
¢uc ¢dc 240 0 2uc 0
The ¥ wave is now a function of space and time with value into Cl,; =Cl;, which is a sub-algebra (on
the real field) of Cl;, =M, (C):
kP| \Pf 1 \Pb \ijr
= N e 2.15
(‘Pg ‘PJ [\Pg \P,] 219

The link between the reverse in Cl,; and the reverse in Cl,; is not trivial and is detailed in Appendix A.
The wave equation for all objects of the first generation reads

OZ(D\P) Lo + M. (2.16)
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The mass term reads
M = [mzpzlb mzpzlg]
T o\Mpr, Mpg
where we use the scalar densities s; and y terms of Appendix B, with

j=15

2 * * * 2 *
pL=aa) +aa; +3,a;, P, = XSS,
i

The covariant derivative D uses the matrix representation (A.1) and reads

D=0+2BR, + WP +2 6",

3

3 3
-0, o-Fro,. B3,
M= H=

u=0

i 3

wli=>rw!, j=123
0

=
I

We use two projectors satisfying
1 . .
P.(¥)= E(‘P +i¥Ll,), i=Lyy
Three operators act on quarks like on leptons:
R(¥)=P (¥)Ls
_Pz (lP) = E+ (T) L0125

P(¥) =B (¥)(-1).

The fourth operator acts differently on the leptonic and on the quark sector. Using projectors:
00

:

1

. I, O 1
P :E(I8+L012345):[0 0)' P :§(|8_L012345):

we can separate the lepton part ' and the quark part ¢ of the wave:
| + + lPI 0 c | O
Y= PPt = , Y=y -v =
0 O Y,
and we get (see [1] (B.4) with a=b=1)
1. 3
R (\Pl ) = EL\PI Ly +§l{1l Ly

_PO(‘P°):—%‘PCL21.

This last relation comes from the non-existence of the right part of the ¥° waves.

3. Chromodynamics

We start from generators 4, of the SU (3) gauge group of chromodynamics

()

lIIr
le

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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010 0 -i 0 1 0 0 001
A4=|1 0 0|, A4=|i 0 0|, A4=|0 -1 0|, A4=|0 0 O},
000 0 0O 0 0 O 100
: 31)
0 0 —i 000 0 0O 10 0
16:000,16=001,A7=00—i,28=%01O.
i 00 010 0 i O 3 0 0 -2
|
To simplify here notations we use now I, r, g, b instead ¥,, ¥ , ¥, , ‘¥,.So we have ‘Pz( ;j
Then (2.1) gives
r g r —ig r r r b
Al 9l=|T] A|9l=|ir |, A4|g|=|-0| A4|9|=|0]
b 0 b 0 b 0 b r
. (3.2
r —ib r 0 r 0 r 1 r
ﬁsg=0,%9=b,ﬂ79=—ib,ﬂgg=ﬁg
b ir b g b ig b -2b
Wename I', operators corresponding to 4, actingon ¥ .We get with projectors P* and P~ in (2.27):
1 0 g
I ()= E(LA\PLA + Losoas Plosss ) = (r OJ (3.3
1 0 -ig
I, (\P):E(LS\PI-4_I-(J1234\PL01235):(ir 0 j (3.4)
o 0 r
[(Y)=P"¥YP -P ‘PP*={ g Oj (3.5
_ (0 b _ (0 -ib
1—‘4(‘1"):|-012531PP :[O J’ FS(‘I’)=L01234‘I’P :( . j (3.6)
r 0 ir
_ 0 0 . 0 0
[ (\P)z P Wloiass =[b g]’ I, (\P)z_lp YL, =(—ib igJ 3.7)
1 1(0 r
I (¥Y)=—4(PY¥ + YP™ |=— . 3.8
8( ) \/g( L012345 L012345 ) \/g(g _2b] ( )
Everywhere the left up termis 0, so all T, project the wave W on its quark sector.
We can extend the covariant derivative of electro-weak interactions in the electron-neutrino case:
DY, = aY, +% BR, (¥, )+g—22Wij (¥,) (3.9)
to get the covariant derivative of the standard model
Q(W):Q(w)+%gg(w)+g—;wig (‘I’)+%C_5kil“k (%) (3.10)

where g, is another constant and G* are eight terms called “gluons”. Since |, commute with any element
of Cl, and since P, (i¥;,)=iP,(¥,,) for #=0123 and ind=1Irg,b each operator il com-
mutes with all operators P, . '

Now we use 12 real numbers a°, a', j=1,2,3, b*, k=12,---,8, we let

j=3 k=8
S, =a’R, S,=)a'P, S,=2b"il, S=S,+S+5, (3.12)
j=1 k=1
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and we get, using exponentiation
exp(S)=exp(S,)exp(S,)exp(S,)=exp(S,)exp(S,)exp(S,)=exp(S,)exp(S,)exp(S,)="-- (3.12)

in any order. The set of these operators exp(S) isa U (1)xSU (2)xSU(3) Lie group. Only difference with
the standard model: the structure of this group is not postulated but calculated. With

¥'=[exp(S)](¥), D=LD,, D'=LD, (3.13)
the gauge transformation reads
D, ¥ =[exp(S)](D,¥) (3.14)
B, =B, —ia#a‘) (3.15)
9
, , 2
WP, = {exp[Sl]Wﬂ’Ej —g—aﬂ [exp(Sl)ﬂexp(—Sl) (3.16)
2
- . 2
Gfil, = {exp(Sz )GEil, —g—ay [exp(s, )]}exp(—sz). (3.17)
3

The SU (3) group generated by operators T, acts only on the quark sector of the wave:
P*[exp(btir, ) |(¥)P* =P WP =", (3.18)

The physical translation is: Leptons do not act by strong interactions. This comes from the structure of the
wave itself. It is fully satisfied in experiments. We get then a U (1)xSU (2)xSU (3) gauge group for a wave
including all fermions of the first generation. This group acts on the lepton sector only by its U (1)xSU (2)
part. Consequently the wave equation is composed of a lepton wave equation and a quark wave equation:

0 O
0=(t_>w')Lm+nypl(0 l] (3.19)
|

c ¢ c Xo X
0=(D¥") Loy + My 25 =| P F0). (3.20)
x 0

The wave equation (3.19) is equivalent to the wave equation
DY Yoo + Mo =0, Voo = 702172 (3.21)
studied in [2] [13], where

1 al*¢e + a;¢no-1 + a;¢n _a;¢eLO-1 + a;¢eR
e - R . (3.22)
A 8,0, 0, +ayfp ag, —a,0,0, + a4,

1+o l-o

¢eR :¢e_31 ¢eL :¢e_3' (323)
2 2

This wave equation is equivalent to the invariant equation:
i V-0, W -[% # 3.24
¥, (D‘P| )7’012 +mp ¥, =0, ¥, = 7 o . (3.24)

This wave equation is form invariant under the Lorentz dilation R induced by any invertible matrix M
satisfying (2.5), (2.6), (2.7) [1]. It is gauge invariant under the U (1)xSU (2) group [2] generated by operators
P, Which are projections on the lepton sector of the operators defined in (2.23) to (2.29). Therefore we need to
study only the quark sector and its wave equation (3.20).

We begin by the double link between wave equation and Lagrangian density that we have remarked firstly in
the Dirac equation [8], next in the lepton case electron + neutrino [1].
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4. Double Link between Wave Equation and Lagrangian Density

The existence of a Lagrangian mechanism in optics and mechanics is known since Fermat and Maupertuis. This
principle of minimum is everywhere in quantum mechanics from its beginning, it is the main reason of the
hypothesis of a wave linked to the move of any material particle made by L. de Broglie [14]. By the calculus of
variations it is always possible to get the wave equation from the Lagrangian density. But another link exists: the
Lagrangian density is the real scalar part of the invariant wave equation. This was obtained firstly for the
electron alone [8], next for the pair electron-neutrino [2] where the Lagrangian density reads

L =L+ 0.4 +0,0+mp (4.1)
£, =R[-i(nlo o n,+£16"0,5 +nlc o, )] (4.2)
1 t_u tAu 1 t u
L=B,| 570" + & 008+ Mo, (4.3)
W3
L,=-R [(Wj + iW;)ngo“nnJ+T”<f7ga“ne —77:0“77”) (4.4)

We shall establish the double link now for the wave equation (2.16). It is sufficient to add the property for
(3.20). This equation is equivalent to the invariant equation:

0= (D¥°) Ly, +M,p, ¥ 7° (4.5)

(P, ¥
\Pcz(~b rJ, lcz(lb Zgj. (46)
v, 0 % 0
We get from the covariant derivative (2.19) with the operators P, in (2.24), (2.25), (2.26) and (2.30) and

[, in(3.3)t0(3.8) and with ¥° in (2.28)

D =[Ag “J @)
0 A

g g . .
A, =¥, B 7 +72(W1\ng3| + WAy — WO i)

(4.8)
+%(Gli‘11r ~G’Y, -G, +G v, + GV, +%Gsi‘lfg),

A =0, —%B‘Pbym +g—22<Wl‘I’b7/3i WA, 7, - WO

. . @9)
+_3(G4i\1’r -G, +G%iY, -G'Y, ——Gsi‘ij,
2 e

A =0V, —%B‘Pryn +%(W1‘Pr;/3i WAy, - WO i)

(4.10)

V3

+%{Gli‘l’g +G*Y, +GiY, +G'iY, +G°Y, +iG8i\P,j.

Next we get

\ilb (A)?’mz +m2p2)(b)+‘i’r (Ar7/012 +m2,02)(r) q”b (Ag7/o1z +mzpz)(g)

Ve (DY) Loy, +my 0, C:[ J (4.12)

‘ilg (Ah?’on"'mzpzlb) ‘Pg(Ag}/OlZ-’-mZleg)
The calculation of the Lagrangian density in the general case is similar to the lepton case. We get
L=L+L, (4.12)

()
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Ec = z £Oc+g1 Z ‘Clc+gz z £2c+934+m2p2' (413)

c=r,g,b c=r,g,b c=r,g,b

The calculation of £;., j=0,1,2 replaces the pair e-n by the pair dc-uc and suppress the & terms, then
(4.2) (4.3) (4.4) become

E[)c = m[_i(n;co_ﬂayndc +77JCO—”6;177UC ):| (414)
B
’clc = _?ﬂ(nt;rco-ﬂndc + nJCO-”nuc) (415)
W3
Lo == (W +iW] o, | = (10 e = 105 ) (4.16)

Since three SU(2) group are included in SU(3) the calculation of £, has similarities with the
calculation of £, and we get

£, == (G}, +IG2)(nho"ngg + 101 ) |- R[ (G +1G] ) (mhr 0" ngy + mlr " mis ) |
3

H '3 '3 G
- m[(Gi + IG; )(’7590'! Mgp + UJQOJ Ty )j| +7ﬂ<_’7£ro-”’7dr - nJrG#ﬂur + ’7ch O-”ndg + nJgU#nug ) (417)

Glgl t t t __u t __u t __u L]
+m(_ndr6 Mar =T O My +2’7db0 Map + 277uba o _ﬂdga 77dg _nga ﬂug )

This new link between the wave equation and the Lagrangian density is much stronger than the old one,
because it comes from a simple separation of the different parts of a multivector in Clifford algebra. The old link,
going from the Lagrangian density to the wave equation, supposes a condition of cancellation at infinity which
is dubious in the case of a propagating wave. On the physical point of view, there are no difficulties in the case
of a stationary wave. Difficulties begin when propagating waves are studied. Our wave equations, since they are
compatible with an oriented time and an oriented space, appear as more general, more physical, than Lagran-
gians. These are only particular consequences of the wave equations.

On the mathematical point of view the old link is always available. It is from the Lagrangian density (4.12)
and using Lagrange equations that we have obtained the wave equation (2.16).

5. Invariances
5.1. Form Invariance of the Wave Equation

Under the Lorentz dilation R induced by an invertible M matrix satisfying

X'=MxM", det(M)=re”, x=x‘c,, x=x"o, (5.1)
77ch = Mnuc’ néc = Mndc’ ¢(;c = M(/)dc’ ¢L:C = M(puc (52)
,C L: M 0 C u
\Pg:(é ?,J:( AJ(@ (/f ]:N‘Pc, c=r,qg, b (5.3)
¢uc ¢dc 0 M ¢uc ¢dc
We then let
N O 0 0
N = , 0=Ll"0, = 5.4
oo{3 ) el s
which implies
n©c c Jsrc TCNI x4 N 0 el
YT =NY", Y5 =Y'N, N=[ ~], D=ND'N. (5.5)
0 N
Then we get
\PC(DWC)LOH :\PCND'NL}ICLOH :W’C(D’\P,C)Lou (5.6)
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and we shall now study the form invariance of the mass term. All s; are determinants of a ¢ matrix, this
implies

s} =det(¢') = det(Mg¢) = det(M )det(¢) = re”s; (5.7)
i =re’s], p;=rp, (5.8)
This gives
- :[xé Zéj (5.9)
z 0
2 2, .1C 12, 1C re_igM O 2,¢C
o xt = = o |P2X (5.10)
0 re“M
. [re™™m 0 .
1= o K =NTY (5.11)
0 re’mM
Py = PENN Ty =Pyt (5.12)
Then the form invariance of the wave equation is equivalent to the condition on the mass term
myp; =M, 0 (5.13)
myr =m, (5.14)

linked to the existence of the Planck factor [13].

5.2. Gauge Invariance of the Wave Equation
Since we have previously proved the gauge invariance of the lepton part of the wave equation, it is reason
enough to prove the gauge invariance of the quark part of the wave equation.

5.2.1. Gauge Group Generated by P,
We have here

R ()= (—%Lnj (5.15)
¥ =[exp(0R,)](¥°) = ‘P°exp[—§Lﬂj (5.16)
B'=B 2 B
= "_g_ » (5.17)
1
To get the gauge invariance of the wave equation we must get
, 0 . 0
7' =;(°exp(—§ '-21) Ze :Zcexp(—gyﬂj, c=r,g,h. (5.18)
This is satisfied because
, —igo@ , —iga:;
¢dc = ¢dce ' ¢uc = ¢uce (519)
i€ if
,*:e3*, ;*:e?’*,
nldc gnldc 771uc Zluc (520)
’7;1c =€ sn;dc’ UZJC =€ 377;uc'
2if A
s;=e %s;, j=12,---,15, (5.21)

)
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All up terms in the matrix y, contain sj¢,.0, and s@,.o; terms. We get

, 4%0’3 ig
¢dc = ¢dce =€ ¢dc
0 0
—3012

. 4
-7 2012
S}*¢écal =€ 3¢dco-1 = ¢dce3 01 = ¢dco-le s

, o
Xe = Zcexp _5721

1c c 6
X =X EXp _§L21 :

And we finally get

The wave equation with mass term is gauge invariant under the group generated by P, .

([_)'\P,c ) Low + msz’;{,C = [(D\PC ) Loso + mZ'OZZC}eXp[_g Lﬂj =0

5.2.2. Gauge Group Generated by P,

We have here

R (¥°)=¥rLy
W =[exp(0R)](¥°) = Wexp (L)

1 1 2
Weh=w!-20 6.

9,

Since B (‘P° ) =W¥°L,, we get

We let

W =[exp(0R)](¥°) = Wexp (L)

v =¥e”, c=r,g,b

C=cos(#), S=sin(0).

Then (5.31) is equivalent to the system

or to the system

We then get

&éc = C¢?dc - isé\uco}
&uc = C&uc - iS&dCO%

771’dc = Cnldc - isnluc’ nlrgc = Cnl*dc + isnl*uc
nédc = C772dc - iSUZuc’ 77;10 = Cn;dc + isn;uc
771'uc = Cnluc - isnldc' 771,Jc = Cnl*uc + isnl*dc

néuc = C’]Zuc - isnzdc' UZJC = C’];uc + Isn;dc

s, =C?s, —S%s, +iCS (5, —Sy4)
s, =C?%s, —S%s, +iCS (5,0 —Sy)

Sjp =C?sy +S%s,, +iCS (s, +5,)

(5.22)
(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
(5.34)

(5.35)
(5.36)
(5.37)
(5.38)

(5.39)
(5.40)

(5.41)
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' 2 2 H
s, =C%s;, +5%s,, —iCS (s, +5,).
This implies
Tal* [N ’ 1% ’ r* * * * *
581 +5484 + 510810 514514 = 58y + 545, + S50 + 514514
Similarly, permuting colors, we get
s, =C?s, —S?s; +iCS (s, — S5
s¢ =C?s; —S%s, +iCS (s, —Sy5)
s;; =C?sy; +S%s,5 +iCS (s, +5)

sj; =C?s5+S%s,, —iCS (s, +54).

This implies
Sésé + Sésé + 5{1511 + 51[5815 = SZSZ + S555 + S11|.Sll + S15815
and also
sy =C?s; —S%s; +iCS (s, —S3)
S =C?s; —S?s, +iCS (s}, —5;5)
s;, =C?sy, +S%s,, +iCS (s, +5;)
Sj; =C?s3+ 5%, —iCS (s, +5 ).
This implies

ral*® I al*®

AL AN * * * *
S353 + S636 + SlZSlZ + S13313 = SSSS + SGSG + SlZSlZ + Sl3s.l.3'

Moreover we get
S;=8S,, S3=S5, Sg=5,.
We then get
p=p.

A B , A B’
g A) Tl A

A= (_S4¢dg + S6¢db + S7¢ur + s12¢ub + S14¢ug )61

Next we have

B= (_51¢ug + 8304 — S7%4 — S10Pug — Si3Pa )O'l

and we get
A’ =CA-iSBo,
B'=CB-iSAc,
C -iSo, o
_— = e ;/SI.

Since we get the same relation for g and b colors we finally get
X = xexp(6Ly),
(D’\P,C ) Lo + Mooy 2 = (Dq}c )exp(m—ss) Lo +Mop3 "

- [(Q‘PC ) Low + mzpzf}exp(al_gs) =0.

(5.42)

(5.43)

(5.44)
(5.45)
(5.46)

(5.47)

(5.48)

(5.49)
(5.50)
(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)
(5.60)

(5.61)

(5.62)
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The wave equation with mass term is then gauge invariant under the group generated by B, .

5.2.3. Gauge Group Generated by P,
We have here

P, () = W° Loy (5.63)
W =[exp(6R,) ](¥°) = W exp(OLoys ) (5.64)
W2 =w? —g—zzaﬂe. (5.65)
Since P, (‘P° ) =Wly,s We get
W = [exp(OR, ) ](¥°) =¥ exp(OLyys ) (5.66)
Y. =¥e”, c=r,g, b (5.67)
We let
C=cos(d), S=sin(6). (5.68)
Then (5.67) is equivalent to the system
i = Cdyo + S (5.69)
de =Cd S (5.70)
or to the system
Mge = Clhge +SMuer Mg = Clige + Sy (5.71)
Myae = Clloge + SMauer Myge = Cllzge + Szye (5.72)
Mue =Ce =Sthger  Tue = Clliye = Stiige (5.73)
My =Cllae =SThaer  Mawe = Cloue = Silyge- (5.74)
We then get
s, =C?s, +S%s, —CSs,, +CSs,, (5.75)
s, =C?s, +S%s, +CSs,, —CSs,, (5.76)
s;, =C’s,, +S?s,, +CSs, —CSs, (5.77)
s;, =C%s,, +S?s,, —CSs, +CSs,. (5.78)
This implies
/S, +5,S," +5/5Sy + 514515 = $S1 + 5,5, + S10S10 + S14514- (5.79)
Similarly, permuting colors, we get
s; =C?%s, +S°%s, —CSs,, +CSs,; (5.80)
s, =C’s, +S%s, +CSs,, —CSs,; (5.81)
s, =C?s;, +S%s, +CSs, — CSs, (5.82)
s;s =C?s;; +S%s,, —CSs, +CSs,. (5.83)

This implies
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S;S; + SéSé* + S{lsﬂ + S:{SS]{; = SZS; + SSS; + Sllsfl + SlSSIS (584)
and also
s, = C?s, +S%s, —CSs,, + CSs,, (5.85)
s, = C?%s; +S%s, +CSs,, —CSs,, (5.86)
s, = C?s,, +S?s,, +CSs, —CSs, (5.87)
sl = C?s; +S%s,, —CSs, + CSs;. (5.88)
This implies
SéS:;* + SéSé* + S:{ZS:{; + 52{331{; = 535; + SGS; + SlZSIZ + S1351*3' (589)
Moreover we get
S;=8,, S3=S5, Sg=5. (5.90)
We then get
p =p. (5.91)
Next we get with (5.56)
A’ =CA-SBo, (5.92)
B'=CB+SAc, (5.93)

, C -So,
A=A {Saa c
Since we get the same relation for g and b colors we finally get

X = 27 exp(=OLyys),
(D7) Loy, + My 052" = (DW° )exp(OLoyys ) Lo, + My 05 (5.95)
= [(Q‘PC ) Lo, + mz,oz;f]exp(—@L0125 )=0.

The wave equation with mass term is then gauge invariant under the group generated by P, .

jz e (5.94)

5.2.4. Gauge Group Generated by P,
We have here

P (7)) =¥ Ly (5.96)
W =[exp(0R,) |(¥°) = ¥oexp(Olyy, ) (5.97)
, 2
W7 =W, —g—zﬁ;ﬁ- (5.98)
Since Py(W°) =W Ly, We get

W =[exp(0R,) ](¥°) = ¥eexp(Olyy, ) (5.99)
lp(’: — \pce973012 , c=r,g, b. (5.100)

Then (5.97) is equivalent to the system
Bie =€y, (5.101)
o =€, (5.102)

or to the system
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ﬂlldc = emnldc’ U{;c = eiignl*dc (5103)
nédc = em’]zuc: ngjc = eiign;dc (5104)
nlfuc = eiigﬂluc ' nlf:c = eignl*uc (5105)
Moo =€ Mhoues e = € Mhoue (5.106)
We then get
s, =e’’s,, s, =e""s,, sj=e"s, (5.107)
s, =e?’,, si=e?s, s,=e"s, (5.108)
S;=S,, Sg=S, S;=S5 (5.109)
Sio =Sy S =Su, S =% (5.110)
S1'3 =53, S1’4 = Sig» S1'5 = Sy5- (5-111)
This implies
p'=p. (5.112)
Next we get with (5.56)
A=e A A=e’A (5.113)
B'=¢“B, B =¢"B (5.114)
i0
, e 0 i
S [ 0 e-iej = e (5.115)

Since we get the same relation for g and b colors we finally get
2= rfexp(—0lyy,),
(D9 Lo + Myt = (D¥*)exP(Olag ) Lo + Mo (5.116)
= [( DW¥° ) Ly, + mz,oz;(c]exp(—el_3012 )=0.

The wave equation with mass term is then gauge invariant under the group generated by P, .

5.2.5. Gauge Group Generated by I';
We use now the gauge transformation

¥, =CY¥, +Si¥,, C=cos(#), S-=sin(9) (5.117)
¥, =CV¥, +SiY, (5.118)
Y=, (5.119)

We can then forget here ¥, . The gauge invariance signifies that the system

U5 ~1.
v, = —?Gll‘yg M0, X Y12
: (5.120)
v, = —?3Gli‘1’r + M0 %47 012
must be equivalent to the system
, g vyt ot
oY, = —?36 lI\I’g TM 00 % Y012+
: (5.121)
oY) = —?G'li‘I’; + My 05 X g Vo2
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Using relations (5.117) and (5.118) the system (5.121) is equivalent to (5.120) if and only if

G" =Gl—iaa. (5.122)
93
We name f; the gauge transformation
£y HlFl(‘I’c)z(i\gr ”;g] (5.123)
which implies with C =cos(¢) and S =sin(6)
[exp(ml)](\yc):[cqlg Ssryr C‘Pr;bSI‘ng:[q?; i;) (124
¥, =CY¥, +Si¥, (5.125)
¥, =C¥, +SiY, (5.126)
Y=, (5.127)
The equality (5.117) is equivalent to the system
Mar = Clhge +18M4g, Ty = Copyye +1S7, (5.128)
Maar = Clage +18M54 Ty = Cilyy +1S775.- (5.129)
The equality (5.118) is equivalent to the system
Mg = Clhag +1STar:  Myg = Criyyg +iS77y, (5.130)
Masg = Cllagg +18M541 Mg = Cllyyy +1775,,- (5.131)
This gives for the invariant scalars s,
S =S, S,=S,, Sg=S5 (5.132)
s, =Cs, —iSs;, s, =Cs, —iSs, (5.133)
s, =Cs; —iSsg, Sg =Csy —iSs, (5.134)
s, =Cs;, +iSs;;, 3 =Csj3 +iSs; (5.135)
s, =Cs;, +iSs;5,  Sis =Cs5 +1SS;, (5.136)
s, =C?s, —S?%s, +iCSs, +iCSs,, (5.137)
sy = C’sy —S?%s, +iCSs,, +iCSs,, (5.138)
s;, =C%s, —S?%s,, +iCSs, +iCSs, (5.139)
s, =C?s,, —S?s,, +iCSs, +iCSs,. (5.140)
We then get
S5S, + 5355 =$,S, + 5,5, (5.141)
SeSs” +S¢Ss = SsSs + S¢Ss (5.142)
S/,S11 + 13513 = $11511 + S13S13 (5.143)
S2S15 + $isSi5 = 1550, + SisSis (5.144)
S7S," + 5555 + 510510 + S14S1s = ;57 + SS5 + S10S70 + S14S14 (5.145)
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Next we let
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PN

|
I/
P
> @
2 e =
N——

and we get with (B.17) and (B.18)
A =CA —iSA,, B[ =CB, -iSB,
A, =CA, -iSA, B, =CB,~iSB,.

This gives the awaited result

p'=p
X =Cx, —Siy,
Xy =Cxy —Siy,.

(5.146)

(5.147)

(5.148)

(5.149)
(5.150)

(5.151)
(5.152)
(5.153)

The change of sign of the phase between (5.117) and (5.152) comes from the anticommutation between i

and o.

5.2.6. Gauge Groups Generatedby I',, k>1
We use with k =2 the gauge transformation

¥, =CV¥, +S¥,, C=cos(d), S-=sin(0)
¥, =C¥, -SY¥,
Y=Y,

The gauge invariance signifies that the system

g
ov, = _73(32\Pg + M0, X Vor2:

Y
oY, = ?Gz\yr My 05X gV 012

must be equivalent to the system
o = —%G'Z\y; M, o
o, =%G’Z‘P’r M, 07 Vora-
Using relations (5.154) and (5.155) the system (5.158) is equivalent to (5.157) if and only if
G"? =G? —360

95
because we get

p=p
X =Cx. +Sx,
Xo =Cxy=Sx:-

(5.154)
(5.155)
(5.156)

(5.157)

(5.158)

(5.159)

(5.160)
(5.161)
(5.162)

The case k =3 is detailed in C.1 and the case k =8 is detailed in C.2. Cases k=4 and k=6 are



C. Daviau, J. Bertrand

similarto k=1 andcases k=5 and k=7 aresimilarto k=2 by permutation of indexes of color.

6. Concluding Remarks

From experimental results obtained in the accelerators physicists have built what is now known as the “standard
model”. This model is generally thought to be a part of quantum field theory, itself a part of axiomatic quantum
mechanics. One of these axioms is that each state describing a physical situation follows a Schrédinger wave
equation. Since this wave equation is not relativistic and does not account for the spin 1/2 which is necessary to
any fermion, the standard model has evidently not followed the axiom and has used instead a Dirac equation to
describe fermions. Our work also starts with the Dirac equation. This wave equation is the linear approximation
of our nonlinear homogeneous equation of the electron.

The wave equation presented here is a wave equation for a classical wave, a function of space and time with
value into a Clifford algebra. It is not a quantized wave with value into a Hilbertian space of operators. Never-
theless and consequently we get most of the aspects of the standard model, for instance the fact that leptons are
insensitive to strong interactions. The standard model is much stronger than generally thought. For instance we
firstly did not use the link between the wave of the particle and the wave of the antiparticle, but then we needed
a greater Clifford algebra and we could not get the necessary link between reversions that we used in our wave
equation. We also needed the existence of the inverse to build the wave of a system of particles from the waves
of its components. And we got two general identities which existed only if all parts of the general wave were left
waves, only the electron having also a right wave.

The most important property of the general wave is its form invariance under a group including the covering
group of the restricted Lorentz group. Our group does not explain why space and time are oriented, but it
respects these orientations. The physical time is then compatible with thermodynamics, and the physical space is
compatible with the violation of parity by weak interactions.

The wave accounts for all particles and anti-particles of the first generation. We have also given [2] [8] [9]
[13] the reason of the existence of three generations; it is simply the dimension of our physical space. Since the
SU (3) gauge group of chromodynamics acts independently from the index of generations, the physical quarks
may be combinations of waves of different generations. Quarks composing protons and neutrons are such
combinations. Our wave equation allows only two masses at each generation, one for the lepton part of the wave,
the other one for the two quarks. The mixing can give a different mass for the two quarks of each generation.

Since the wave equation with mass term is gauge invariant, there is no necessity to use the mechanism of
spontaneous symmetry breaking. The scalar boson certainly exists, but it does not explain the masses.

A wave equation is only a beginning. It shall be necessary to study also the boson part of the standard model
and the systems of fermions, from this wave equation. A construction of the wave of a system of identical
particles is possible and compatible with the Pauli principle [1] [7].
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Appendix A. Calculation of the Reverse in Cl, 5

Here indexes x, v, p, ... havevalue0,1,2, 3and indexes a, b, ¢, d, e have value 0, 1, 2, 3, 4, 5. We use’
the following matrix representation of Cl, g :

C[O ) (0 S (o i, (i 0
“ Ay, 0 4‘(|4 o]’ Lf’"(i o]’ '"(o —ilzj'
(A1)

0 I . 0 o
— 0 _ 2 . Y . i=1.223.
}/0 }/ [ Oj! 7/1 }/ (—O'J 0]1 J 1 ,3

I,

where o, are Pauli matrices. This gives

0 vy 0 vy ¥ 0
L,=LL, = “ S (A2)
o = by [n Oj[n 0] (0 VWJ
4 03O0 » 0 7
L =L L =|"* = e A.3
weteto=(5 2N S ) A9
¥, 0 i 0
Lorzs = Losbos :[ 0823 J:[ j (A.4)
Vo123 0 i

We get also

L_L_O—I40i_—i0__ (AS5)

45_4L5_|40i0_0i_L54 '
i 0Y—i 0} (I, ©

%12345:(0 IJEO |j:[0 _|4j (AG)

B (i 0y0 i)y (0 -l A
L01235_L0123L5_(0 I][I 0)_[44 0 J ( )

Similarly we get®

SO ()
L*”“:Ujv _EJ L"Vsz[nii mgiJ A9
L,,%:[_fﬂi 76’ij, L”V45=(_7/(;'Vi yii] (A.11)
L,,V,,45=[_7ipi y’g”ij, me:[? ;ij- (A.12)

Scalar and pseudo-scalar terms read

21, 1 I, are unit matrices. The identification process allowing to include R in each real Clifford algebra allows to read a instead

of al, forany complex number a.
%i anti-commutes with any odd element in space-time algebra and commutes with any even element.

41 g
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0 (a—-w)l,

alg + oLy s :[(a+w)l4 ° j

| L (a-w)l, 0
ol —@ = .
8 12345 0 (a+w) |4
For the calculation of the 1-vector term
NL, = N“L, + N°L; + N“L,
we let
p=N*  &6=N°, a=N'y,
This gives

NeL, =

a

0 -pl,+di+a
Bl, +5i+a 0 '

For the calculation of the 2-vector term
N®L,y = N*®Ls +N“L,, + N“°L ¢ +N“L,,

114
we let
e=N® b=N*"y,, c=N“y, A=N"y,.
This gives
oL :(—ei+b—ic+A 0 J
® 0 ei—b—ic+A

For the calculation of the 3-vector term
N®L, = N“OL 6+ N“L

uvs uvp
W4+N LW5+N Lﬂvp

we let
d:Nﬂ45y/U BZN/N“}/”V, C:N#VSKUW ie:NMVP
This gives with (A.3) and (A.9)

abe 0 di-B+iC+ie
N Lahc= H H - '
id+B+iC+ie 0

For the calculation of the 4-vector term

N bed Labcd =N o L,uv45 +N e L;u/p4 +N es LﬂVpS +N o L0123
we let
D=N #v45}/w' if =N uvp47Wpl Ig =N #vaywp' C; =N 0123.
This gives with (A.4) and (A.10)
N T —iD+if+g+ i 0
abcd . . .-
0 iD—if+g+di

For the calculation of the pseudo-vector term
N abcde L

_ N H4vp45
abcde N L

"1vp45

01234 01235
+N Losozs + N Lon2as

we let

7/1\//)'

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
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|h =N uvp4ds n= N 01234, =N 01235. (A23)

7yvp !

This gives with (A.7) and (A.12)

(A.24)

0 h—ni-06l1
Nabcde Ladee :[ n AJ.

-h+ni-61,
We then get

Y V¥

v, )
((a+ o)l +(b+g)+(A=iD)+i(-c+f)+ (S —e)i —(ﬁ+9)l4+(a+h)+(—B+iC)+i(—d+e)+(§—n)i].
(B-0)1,+(a-h)+(B+iC)+i(d+e)+(5+n)i (a-w)l,+(-b+9)+(A+iD)+i(—c—f)+({ +e)i

(A.25)
This implies
¥, =(a+w)+(b+9)+(A-iD)+i(—c+f)+({ —e)i (A.26)
¥, =—(B+0)+(a+h)+(-B+iC)+i(-d+e)+(5—n)i (A.27)
Y, =(B-0)+(a—h)+(B+iC)+i(d+e)+(5+n)i (A.28)
¥, =(a-w)+(-b+9)+(A+iD)+i(—c—F)+({ +e)i. (A.29)

In Cl , the reverse of
A= () +(A), +(A), +(A); +(A),

A= (A)y +{A), (), = (A), +(A),

we must change the sign of bivectors A, B, iC, iD,and trivectors ic, id, ie, if andwe then get

P, =(a+w)+(b+g)+(-A+iD)+i(c—f)+(¢ —e)i (A.30)
¥, =—(B+0)+(a+h)+(B-iC)+i(d—e)+(5-7n)i (A31)
¥, =(p-0)+(a=h)—(B+iC)-i(d+e)+(5+n)i (A.32)
P, =(a-w)+(-b+g)—(A+iD)+i(c+f)+({ +e)i. (A.33)

The reverse, in Cl,; now, of
A= (A)y +(A) +{A), +{A); +(A), +(A)s +(A),

A= <A>o +<A>1 _<A>2 _<A>3 +<A>4 +<A>5 _<A>s'
Only terms which change sign, with (A.13), (A.18) and (A.20), are scalars ¢ and ®, vectors b, ¢, d, e
and bivectors A, B, C. These changes of sign are not the same in Cl,; as in Cl ,. Differences are

corrected by the fact that the reversion in Cl, ¢ also exchanges the place of ¥, and ¥, terms. We then get
from (A.25)

Y=

[(a o)l +(-b+g)+(-A-iD)+i(c+f)+ (S +e)i —(B+0)1,+(a+h)+(B —iC)+i(d—e)+(5—n)iJ

(B-6)1,+(a—h)-(B+iC)—i(d+e)+(5+n)i (a+w)l,+(b+g)+(-A+iD)+i(c—f)+(S—e)i |

(A.34)
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This link between the reversion in Cl, ; and the reversion in Cl,; is necessary to get an invariant wave
equation. It is not general, for instance the reversion in Cl, is not linked to the reversionin Cl, ;.

Appendix B. Scalar Densities and y Terms

There are 6x5/2=15 such complex scalar densities:

5, = 2(§mnfug + Enltnng ) = 2Ty —Thar g ) (B.1)
(glug nlub + §2ug 772ub ) 2 (772ug Ulub nlug 772ub ) (BZ)
s3 =-2 (glﬁr nfub + §2Ur77;ub ) =2 (n;ubnl*ur - nl*ubn;ur ) (Bs)
(fmr’hdg + fzdﬂ?zug ) 2(772dr771dg ﬂl*drn;dg ) (84)
2(§1ggﬁfdb + fzag n;db ) =2 (n;dg 771*db - 77;19 n;db ) (B.5)
_2(§1Jrnl*db + &3 ) =2 (n;dbnl*dr = ThapTzr ) (B.6)
2(§1ﬁr ﬂfdr + §2Ur77;dr ) = 2(77;ur77:dr - nl*urn;dr ) (B7)
2 (glﬁg n:dg + 5269 n;dg ) =2 (n;ug nfdg - nl*ug n;dg ) (88)
Sg = 2(‘51%771*db + Som Moo ) = 2(77;ub771*db = T T2an ) (B.9)
2(§1Hr’71*dg + gzurﬂ;dg ) = 2(77;ur771*dg _nfurn;dg ) (B].O)
2(§lﬁg771*db + §2Ugn;db ) = 2(’7;ug My — nl*ug 7 ) (B.11)
S = _2(§1Jr77:ub + Sy o ) = 2(77;ub771*dr _nl*ubn;dr) (B.12)
2(Eattion + Exathan ) = 2(Mou Ty — T oan ) (B.13)
S14 = _2(51& nl*ug + éz&rn;ug ) = Z(U;ug 771*dr - nl*ug 77;dr ) (814)
s15 =-2 (é:l&g Ufub + é’:zag n;ub ) = 2(’7;ub77:dg - nl*ubn;dg ) (BlS)
We used in [2]
4= a1*¢e _ta;¢no-l +Aa;¢n _Aa;¢eLO:\l + a;¢eRA ] (816)
P a2¢eLO-l + a3¢eR a1¢e - a2¢no-1 + a3¢n
with ¢, =4, (1+0,)/2 and ¢, =4¢.(1-0;)/2, and we need now

) S4¢dg Sé¢db - S;¢ur - S1*2¢ub - Sl*4¢ug )01 (Sl*¢ug - S;¢ub + S;¢dr + Sl*o¢dg + 81*3¢db ) %
Py = “ n “ “ N (B.17)

( 51¢ug + 53¢ub 57¢dr 51o¢dg 513¢db )0'1 (_s4¢dg + S50y, + 10 + Sifip + Suafg )0'1

ss¢db Sis —Sotio — S —Sishio )01 (S50 — i + Sothig + Sien + Stafhur ) O
Pz Xy = “ R “ “ R (B.18)

Sz¢ub + Sl¢ur Ss¢dg S11¢db S14¢dr )O-l (_55¢db + S4¢dr + 58¢ug + S10¢ur + Sls¢ub )O-l

56¢dr - S;¢dg Sou, — 511¢ug S13%u )0'1 (S;¢ur - S;¢ug +Sqy, + Sl*2¢dr + Sl*5¢dg )61
Palty = (B.19)

(=Sodhu + Sathg = Sofhoo — S —Sishg )01 (S + Ssthy + Sodh + Suudh + Sl ) 0
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Appendix C. Gauge Invariance, Details
C.1. Gauge Group Generated by iI',

We name f; the gauge transformation

fy o We +—>1r3(‘1'°)=( N Wr}

-iv, 0
which implies
0 e’y
[exp(9f3):|(\l’c)=[e_9iqlg ‘Per
v =y,
v, =e Y,
Y, =Y,.

The equality (C.3) is equivalent to

[%r ¢l:rJ:(ei6 0 j(¢dr ¢urj
¢l:l‘ ¢(;r 0 eiig ¢ur ¢dr .

The equality (C.4) is equivalent to

[¢ég ¢ljg \J _ (e‘m 0 ][¢dg ¢ug \]
¢l:g ¢L;g 0 eiH ¢ug ¢dg .

We get
Mo =€ Mhaer  Mhor =€ Tl
nétjr = eiign;dr’ 775} = eiienzur
Mag =€ Mags Mg =€ Mg
nézg = eign;dg ' 7751:9 = emU;ug'
This gives

s=s, S=el’s, s=e’s,
s;=s,, si=e'%s;, s{=¢"s,
So =S, Sp=e7""s;, s, =6,

' i —i0 ' i0
Sio =510 Su=€ Sy, Sp =€y

[ ' —i6 ' i0
Si4 =S4y S5 =€ "S5, S;3=€7Sp3

from which we get
sisi =s;8;, j=12,---,15
p'=p

x=e"y

D

(C1)

(C.2)

(C3)
(C.4)

(C5)

(C.6)

(€7

(C.8)
(C.9)
(C.10)

(C.11)

(C.12)
(C.13)
(C.14)
(C.15)

(C.16)

(C.17)
(C.18)
(C.19)
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;(é = em;(g.
These relations are the awaited ones because
ov, =08(e" ¥, )=e (<00, +0¥,)
oy =o(e''w,)=¢"(i00¥, +o¥,)
G®=G? —369.
93
C.2. Gauge Group Generated by iI',

We name f, the gauge transformation

fy WO > il (¥°) = \/zgu
—¥Y, ——VY
NERRNC I
which implies
o
0 ey, 0o v
eoonv)-| o " |- o]
ey e Py, ’
o
b4 =exp[— v
&)
Yy = exp[%}‘l’g
4 =exp(—%)‘1’b
This gives
' i0 , i0
=€eXp| —= ) ur = EXP| —= |9y
¢dr p(\/g}¢dr ¢ p[\/gjqj
' i0 , i0
¢dg = eXp (ﬁj ¢dgv ¢ug = exp(ﬁj ¢ug
, 2i0 , 2i0
Po = eXP[—%J%! P = EXP[—EJ%-
We then get
” i0 ) . " i6 ) . " 20 .
Thar = €XP % Tharr  Thag = €XP ﬁ Thagr  Than = €XP _E Thag
1% ie * 1% ie * 123 2i6 *
Toar = exp(ﬁjnzdr' Taag = EXp(ﬁandg’ Madb :eXp(_Ej’bdg

1 |0 * 5 |9 ® I 2|9 *
Thy = €XP ﬁ Thyrr Mg = EXP ﬁ Thygr  Thuy = EXP _E Thug

()

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(€.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)
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i) . i6) . i 2i0
our = EXp (_3j Tour » 772ug =exp [_3j ’72ug ’ o = exp( \/§ )772ug . (C35)
This implies
2i4 i0 i0
=exp| —=1S,, S, =exp|——1S,, S;=€xp|———|s C.36
Sl p( 3) 1 2 p[ \/gj 2 3 p( \/g] 3 ( )
2i0 , i0 , i0
S, = exp(—sj Sy S = exp[—ﬁj S, S = exp(—ﬁj Se (C.37)
2i0 2i0 4i0
S, =exp| —1|S,, S;=exp| —= |S;, S; =exp| —— |s C.38
on(2)s, 5-o0(22)s, 5 -oa(-12)s o
, 2i0 , i0 : i
S/, =exp (—3) S Sy =€exp ——3] 110 Sip = exp(—Tj (C.39)
, i0 2i0
Si3 = eXp(_ﬁj S S14 =exp (_SJ Sias s15 = eXp( \/7}515 (C.40)
We then get the awaited results
sisi =s;8;, j=12--15, p'=p (C.41)
i io 20
T=expl ——= |z, xs=€Xp| ——= ¥, X =€X . C.42
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