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Abstract 
Let us call a ring R (without identity) to be right symmetric if for any triple   , ,a b c R∈  abc = 0 
then acb = 0. Such rings are neither symmetric nor reversible (in general) but are semicommuta-
tive. With an idempotent they take care of the sheaf representation as obtained by Lambek. Klein 
4-rings and their several generalizations and extensions are proved to be members of such class of 
rings. An extension obtained is a McCoy ring and its power series ring is also proved to be a McCoy 
ring. 
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1. Introduction 
A ring R  is symmetric if for any triple 1 2 3,  ,  a a a R∈ , 1 2 3 0a a a =  then for any permutation { }: 1, 2,3σ →  
{ }1,2,3  ( ) ( ) ( )1 2 3 0.a a aσ σ σ =  J. Lambek in [1] introduced symmetric rings, and got a characterization that a ring 
R  with one is symmetric if and only if R  contains a subring which is isomorphic to the rings of sections of a 
sheaf of prime torsion free symmetric rings. Lambek also noticed that the symmetric property is a weaker notion 
than that of primeness (see [1: p. 362]). The class of symmetric rings lie between the classes of reduced and re-
versible rings and they have been extensively studied and generalized in various directions, for instance, some 
references are [2]-[4], and [5]. Most of the studies on symmetric rings were carried over rings with identity. In 
this note we assume that rings, in general, are not equipped with the multiplicative identity. Let us say that a ring 
R  is right symmetric if for any triple 1 2 3,  ,  a a a R∈ , 1 2 3 0a a a = , then 1 3 2 0a a a = . Left symmetric rings are 
defined analogously. Some concrete examples are given here to show that right (as well as left) symmetric rings 
are different than symmetric rings. It is observed that, the Lambek criterion about symmetric rings with one, as 
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given in [1], can be extended to right (or left) symmetric rings with idempotents (Proposition 2.7). 
A weaker notion of symmetric is reversible which P.M. Cohn defined in [6] as: a ring R  is reversible if for 

any 1 2,  a a R∈ , 1 2 0a a =  implies 2 1 0.a a =  In [7], Anderson and Camillo defined that a ring R  (may not be  
with 1) satisfies nZC , if for any ia R∈ , where 1, ,i n=  , the product 1 0n

ii a
=

=∏  implies that the product 

( )1 0n
ii aσ=
=∏ , where { } { }: 1, , 1, ,n nσ →  , is a permutation. Thus, in their terminology, if a ring satisfies  

2ZC , it is reversible, and if it satisfies 3ZC , it is symmetric. They proved that 3ZC  implies nZC , 3,n∀ ≥  
but the converse need not be true in general ([7]; Example I-4). 

For a ring R  with 1R , clearly, every symmetric ring is reversible, but the converse may not be true, for in-
stance, see ([7]; Example 1-5). In ([8]: Example 7], Mark proved that the group ring ( ) { }2 8 8: :tQ x t Q= ∈Z  
where { }8 1, , ,Q i j k= ± ± ± ±  is the group of quaternions, is reversible but not symmetric. For a ring without one, 
a symmetric ring may not be reversible. For instance, for any ring A consider the ring of strictly upper triangular 
matrices [ ]3SUTM .A  Then [ ]3,  ,  SUTMx y z A∀ ∈ , 0xyz = , so [ ]3SUTM A  is symmetric. 

On the other hand one sees that if 1 A∈ , then 23 12 0e e = , but 12 23 13 0e e e= ≠ . Hence [ ]3SUTM A  is not 
reversible. Thus by above fairly simple examples we firmly state that, for rings, in general, 

symmetry reversibility⇔/  
In Section 2, after definition, we gave some examples of right symmetric rings which are not symmetric, and 

developed some interactions with other classes of rings such as von Neuman regular, semicommutative, and 
Armendariz. In Section 3 we did some extensions of Klein 4-rings and a McCoy ring is constructed in the last 
section. 

2. Right and Left Symmetric Rings 
One notices that, in a ring without 1, and with 0abc =  implies that 0acb = , the commutation only appears 
on the last two elements. There is no guaranty that 0cab = , for the support of this claim we provide below 
some examples. So, let us define that: 

Definitions 2.1. A ring R  is right (respt. left) symmetric if for any triple, ,  ,  a b c R∈ , 0abc =  implies 
that 0acb =  (respt. 0bac = ). R  is symmetric if R  is both, left and right symmetric. 

Examples 2.2. (1) Klein 4-rings. ([8]: Example 1] Consider the so called Klein-4 ring: { }0, , ,V a b c= , which 
has two generators a and b, and is a Klein 4-group with respect to addition. Its characteristic is 2 and the rela-
tions among its elements are: 

2 2,     ,     c a b a ab a b ba b= + = = = =  
Let us consider all possible products of the three non-zero elements of V. There are total 33  products, among 

them 15 are zero and 12 are non zero. Consider a typical product xyz  of three nonzero elements ,  ,  x y z V∈ . 
Then 0xyz = , if either y c=  or z c= . This means that 0xzy = . So V  is right symmetric. If y c≠  and 
z c≠ , then clearly 0xyz ≠ . For instance 0abc acb= =  but 0cab c= ≠ . This implies that V  is not sym-
metric. (Erroneously it is mentioned in ([8], Example 1]) that V  is symmetric). Obviously, there is no question 
of reversibility as well, as 0ac =  but 0ca ≠ . 

Similarly, the opposite ring, opV  is left symmetric and is neither symmetric nor reversible. Both rings are not 
reduced also, because c V∈  is a non-zero nilpotent element. 

(2) For any ring R  define the n n× - kth -column (respt. row) matrix ring, denoted by ( )Coln kM R  (respt. 
( )RownM R , to be a subring, without identity, of the full matrix ring ( )nM R  such that it has non-zero ele-

ments only in the kth -column (respt. kth -row). In fact ( )Coln kM R  (respt. ( )RownM R ) is a left (respt. 
right) ideal of ( )nM R . Note that, R  is right symmetric if and only if ( )Coln kM R  is right symmetric. In-
deed, if we let R  to be right symmetric and [ ] [ ] [ ] ( ),  ,  Colik ik ik n ka b c M R∈ , then  

[ ][ ][ ] [ ] [ ] [ ][ ][ ]0 0ik ik ik ik kk kk ik kk kk ik ik ika b c a b c a c b a c b= = ⇒ = =  
The converse is obvious. Analogously, ( )RownM R  is left symmetric. Note that, if R  is symmetric or 

even a commutative domain or a field, ( )Coln kM R  may not be symmetric. For instance, in ( )3 2 2ColM Z  if  

we let 
0 1 0
0 1 0
0 1 0

A
 
 =  
  

, 
0 1 0
0 0 0
0 1 0

B
 
 =  
  

, 
0 1 0
0 1 0
0 0 0

C
 
 =  
  

, then one can easily observe that 0ABC ACB= =   
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but 0BAC ≠ . 
Similarly, ( )RownM R  is left symmetric and is not symmetric. 
(3) Let D  be any domain. Then the direct sum V D⊕  and opV D⊕  are right and left symmetric rings, 

respectively, under component wise addition and multiplication. Similarly, V V⊕ ⊕  and op opV V⊕ ⊕  
are right and left symmetric rings, respectively. 

(4) In [5] Kwak defined left and right α -symmetric rings as follows: Let α  be an endomorphism on a ring 
R . Then R  is right (respt. left) α -symmetric, if for any triple, ,  ,  a b c R∈ , ( )0 0abc ac bα= ⇒ =  (respt. 

( )0 0abc b acα= ⇒ = ). Thus right and left symmetric rings are special cases of right and left α -symmetric 
rings, with Identity mapα = . It follows immediately from ([5], Proposition 2.3(2)) that if a reversible ring is 
left (or right) symmetric, then it is symmetric. Note that in [5] rings are with identity. 

There is a symmetry between right and left symmetric rings, because a ring R  is right symmetric if and only 
if its opposite ring is left symmetric. So in the following we will only deal with right symmetric rings, left sym-
metric rings will appear when needed. 

A ring R is said to be semicommutative as defined by Bell in [9], if for any pair ,  a b R∈ , 0ab =  then for 
all r R∈ , 0arb = . There are several names of a semicommutative ring in literature. For historical remarks and 
other details we refer the reader to [10]. All reduced rings are symmetric and symmetric rings are semicommuta-
tive. The ring V  in Example 2.2. is semicommutative (can be checked easily). A ring R is abelian if every 
idempotent e R∈  is central, duo if every right and left ideals are ideals, and reflexive if for any pair ,  a b R∈ , 

0aRb = , then 0bRa = . A ring R is von Neumann regular if a R∀ ∈ , there exists an x R∈ , such that 
a axa= . 

A right symmetric ring in general is non abelian, non duo, non reflexive, and not a von Neumann regular ring. 
We pose quick counter examples for these claims. The Klein 4-ring { }0, , ,V a b c=  is right symmetric in which 
a  is an idempotent. Because 0ac =  and ca c= , so a  is not central, so V is non abelian. In V, { },o a  is a 
right ideal but ca c=  means that { }0, a  is not an ideal, so V is not right duo. Because 0aVc =  but  

{ }0, 0cVa c= ≠ , hence V is not reflexive. Finally, 0 0ccc cac cbc c c= = = = , so V is not von Neumann regular. 
It is defined in [11] that a ring R  with an involution ∗  is ∗ -reversible, in case for every pair of elements 

,  a b R∈ , such that 0ab = , then 0ba∗ = . 
There are several right symmetric rings without one which are symmetric. For instance, the ring of strictly 

upper triangular matrices over any ring is without one and is symmetric. Few more cases are given in the fol-
lowing: 

Proposition 2.3. (1) Every symmetric ring is right symmetric and every right symmetric ring with one is sym- 
metric. 

(2) Every reduced ring is right symmetric ([1]: (G); [7]: Theorem I-3). Conversely, a right symmetric ring 
which is not symmetric cannot be reduced. 

(3) Every right symmetric ring is semicommutative. 
(4) Every von Neumann regular ring which is right symmetric is symmetric. 
(5) Every reversible ring which is right symmetric is symmetric. 
(6) Every ring with involution which is right symmetric is symmetric. 
(7) Every ring with a reversible involution is right symmetric and hence symmetric. 
(8) (1) - (7) all hold if we replace right by left. 
Proof: (1) and (5) are obvious. 
(2) Let a ring R  be reduced. Assume that for some ,  ,  a b c R∈ , 0abc =  then 0abcb cbab cbacba= = =  
cba=  this means that 0acb = . Hence R  is right symmetric. 
Conversely, let R  be right symmetric but not symmetric. Assume that ,  ,  a b c R∈  such that 0abc =  and 

0acb =  but at least one of cab, cba, bac and bca is not equal to zero. Thus if 0cab ≠  then 0cabcab = . 
Hence R  is not reduced. If 0,cab =  then 0cba = , so 0bac ≠  But then 0bacbac = . 

(3) Let R  be a right symmetric ring. Assume that for any pair ,  a b R∈ , 0ab = . Then for all r R∈ , abr = 
0. Hence 0arb = , and so R  is semicommutative. 

(4) Assume that R  is von Neumann regular and is right symmetric. Let a R∈  be such that 2 0a = . Then 
for some x R∈ , a axa= . Then axa axaxa=  or ( ) ( )0 0ax a axa a a axa x− = = − = . Thus 2 2a xax a x= =  
0 ,axa a= =  we conclude that R  is reduced. Then by (2) R  is left symmetric, hence symmetric. 

(6) Let R  be a ring with an involution ∗ . This means that ∗  is an anti-automorphism on R  of order two. 
In addition, let R  be right symmetric. If 0abc =  for some ,  ,  a b c R∈  then, because R  is right symmetric, 
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0acb = . Then ( ) 0acb b c a∗ ∗ ∗ ∗= =  or that because R  is right symmetric, 0b a c∗ ∗ ∗ = . By doubling the in-
volution we get 0cab =  which implies that 0cba = . Again, 0abc =  gives 0c b a c a b∗ ∗ ∗ ∗ ∗ ∗= = , and by the 
doubling of involution we get 0bac =  and so the right symmetry gives 0bca = . 

(7) Let R be a ring with an involution ∗  and let R  be ∗ -reversible. Now assume that 0abc =  for some 
,  ,  .a b c R∈  Then ( ) 0bc a a c b∗ ∗ ∗ ∗= =  which gives 0bca =  or that ( ) ( ) 0a bc bc a c b a acb∗ ∗ ∗ ∗ ∗ ∗= = = = . 

By similar techniques we get the remaining permutations equal to zero. So ∗ -reversible rings are right and left 
symmetric, hence symmetric. 

(8) holds by left and right symmetry.                                                         □ 
A quick consequence of Proposition 2.3 (6) is the following. 
Corollary 2.4. Every right symmetric ring which is not symmetric cannot adhere to an involution. 
Examples 2.5. Hence, V  and 

opV , and their generalizations as discussed in Sections 3 & 4 cannot adhere to 
any involution. 

2.6. Some minimalities: (1) V  and opV  are smallest noncommutative rings (up to isomorphism). These 
are right and left symmetric, respectively. So the minimal noncommutative right (or left) symmetric rings are V 
and opV . 

(2) Next higher order noncommutative rings are of order eight. So two minimal noncommutative symmetric 
rings are strictly upper and lower triangular matrix rings [ ]3 2SUTM Z  and [ ]3 2SLTM Z , respectively. Both 
are without identity and are not reversible (can be checked easily). 

(3) ([3]; Example 2.6) A minimal non-commutative symmetric ring with identity is the ring ( ) ( )4 4GF GF⊕ , 
in which addition and multiplication are defined by the rules: 

( ) ( ) ( ) ( )( ) ( )2, , , ;     , , ,a b c d a c b d a b c d ac ad bc+ = + + = +  

(see details in [3]; Example 2.6). This ring has sixteen elements and is also reversible. 
Reappearance of the Lambek Criterion: Lambek proved in [1] that a ring with one is symmetric if and only if 

it is isomorphic to the rings of sections of a sheaf of prime - torsion free symmetric rings. Following is an exten-
sion of it. 

Proposition 2.7. A ring R  with an idempotent is right symmetric if and only if R  contains a subring which 
is isomorphic to the rings of sections of a sheaf of prime - torsion free symmetric rings. 

Proof: “Only if”, is obvious, because a symmetric ring with 1 is a right symmetric ring with an idempotent. 
For “if”, consider that R  is right symmetric. Let e R∈  be an idempotent. Then the corner ring eRe  being a 
subring of R  is right symmetric and because e  is the multiplicative identity, so eRe  becomes a symmetric 
ring. Rest follows from ([1]: Corollary 1].                                                       □ 

A ring R is called Armendariz as introduced by Rege, S. Chhawchharia in [12] if for any pair of polynomials  

( )
0

i
i

i
f x a x

α

=

= ∑  and ( )
0

i
j

j
j

g x b x
β

=

= ∑  in [ ]R x  such that ( ) ( ) 0f x g x = , then 0i ja b =  0,1, , ,i α∀ =  ,  

0,1, ,j β∀ =  . In this section we construct an Armendariz Boolean ring and a polynomial semicommutative 
ring. 

The first part of the following lemma is proved by Nielsen in ([13]; Lemma 1]. The remaining relations are 
just tautologies. 

Lemma 2.8. Let R be a right symmetric ring. Let ( )
0

i
i

i
f x a x

α

=

= ∑  and ( )
0

j
j

j
g x b x

β

=

= ∑  be two polynomials in  

[ ]R x  such that ( ) ( ) 0f x g x = . Then the following relations hold: 
(1) 1

0 0,     0,1, ,i
ia b i α+ = ∀ =   

(2) 1
0 0,     0,1, ,j

ja b j β+ = ∀ =   
(3) 1 0,     0,1, ,i

ia b iα β α+
− = ∀ =   

(4) 1 0,     0,1, ,j
ja b jα β β+

− = ∀ =   

Theorem 2.9. Let R be a right symmetric ring. Let ( )
0

i
i

i
f x a x

α

=

= ∑  and ( )
0

j
j

j
g x b x

β

=

= ∑  be two polynomials  

in [ ]R x  such that ( ) ( ) 0f x g x =  If the coefficients of ( )f x  (or ( )g x ) are idempotents, then  
( ) ( ) 0f x Rg x =  
Proof: Assume that the coefficients of ( )f x  are idempotents. If 0a  is idempotent, then by (2) of above 
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lemma 
0 0 00,     0,1, , ,     0 0,     0,1, ,j j ja b j r R a b r a rb jβ β= ∀ = ⇒∀ ∈ = ⇒ = ∀ =   

Now the coefficients in 0fg =  are of the form 
0

0
j

i j i
i

a b −
=

=∑ , 0,1, ,j β∀ =  . The induction step suggests 

that: 0 0 0
0 0

0
j j

j
i j i i j i j

i i
a a b a a b a b− −

= =

   
= = =   

   
∑ ∑ , 0,1, ,j β∀ =   then remove the term 0 ja b  from this sum and  

multiply the remaining sum by ka , where 1, 2, ,k α=   consecutively, and removing the zero terms until we 
get the last term 0ja bα = , 0,1, , .j β∀ =   In this process the relation (4) of Lemma 2.8 is also involved to de-
lete the unwanted terms. Hence we conclude that 0 0i j i ja b a rb= ⇒ = , 0,1, ,i α∀ =  , 0,1, ,j β∀ =   and 

r R∀ ∈ . If the coefficients of ( )g x  are idempotents, then (1) and (3) of Lemma 2.8 are involved to prove the 
desired result.                                                                             □ 

Corollary 2.10. Let R  be a right symmetric Boolean ring. Then: 
(1) R  is Armendariz. 
(2) For every pair of polynomials [ ],  ,  0 0f g R x fg fRg∈ = ⇒ =  
(3) For every pair of polynomials [ ] [ ],  ,  0 0f g R x fg fR x g∈ = ⇒ =  In other words, [ ]R x  is semicom-

mutative. 
Proof: (1) and (2) are followed from Theorem 2.9. 

(3) Let ( )
0

i
i

i
f x a x

α

=

= ∑  and ( )
0

j
j

j
g x b x

β

=

= ∑ . Then 0 0i jfg a b= ⇒ = , 0,1, ,i α∀ =   0,1, , .j β∀ =   Let 

( ) [ ]
0

.k
k

k
h x c x R x

γ

=

= ∈∑
 

Then 0i j ka b c = , 0,1, , ,i α∀ =   0,1, , ,j β∀ =    

0,1, , 0 0l
i k j i k jk a c b a c b xγ= ⇒ = ⇒ = . Because all terms in the product of polynomials ( )f x , ( )h x  and 

( )g x  are of the form l
i k ja c b x ,we conclude that: ( ) ( ) ( ) 0f x h x g x = .                              □ 

3. Some Extensions of Klein 4-Rings 
Now we pose few more examples of one sided symmetric rings. These rings are extensions of V  and opV   
First result gives a criterion of all rings of order 2p  as symmetric and non symmetric.  

Theorem 3.1. For any prime p , a ring R  of order 2p  is symmetric if and only if it is reversible. The 
non-symmetric ring is either left or right symmetric. 

Proof: It is known that up to isomorphism there are eleven rings of order 2p . These can be classified as 
commutative and non-commutative rings. The first statement trivially holds for commutative rings. There are 
nine commutative rings and the only non-commutative rings are: 

{ }2 2: , 0,  ,  S a b pa pb a ab a b ba b= = = = = = =  

and its opposite ring 

{ }2 2: , 0,  ,  opS a b pa pb a ba a b ab b= = = = = = =  

Both rings are of characteristic p  and can be verified that these are neither symmetric nor reversible. Note 
that the non-commutative rings S and opS  of order 2p , for all primes p , are right symmetric and left sym-
metric, respectively. For instance, in case of S, the non-zero elements of S are of the form ma , nb  and 
ra sb+ , where 1 , , , m n r s p≤ < , so as in the case of V , 

( )( )( ) ( )
( )( )( ) ( )
( )( )( ) ( )
( )( )( ) ( )

0,      provided ,

0,      provided ,

0,      provided ,

0,      provided .

ma nb ra sb mn r s a r s p

ma ra sb nb mn r s a r s p

mb na ra sb mn r s b r s p

mb ra sb na mn r s b r s p

+ = + = + =

+ = + = + =

+ = + = + =

+ = + = + =

 

Hence S  is right symmetric. But S  is not symmetric, because  
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( )( )( ) ( ) 0,     1 , , , ra sb ma nb mn ra sb m n r s p+ = + ≠ ∀ ≤ <  

Clearly S  is not reversible as well.                                                         □ 
Let { }1, ,iX x i n= =   be a set of symbols and consider the additive group 2 XZ  generated by these 

symbols. This group has 2n  elements. Define the multiplication on 2 XZ  by the rule: xy x=  ,  x y X∀ ∈  
Then clearly,  

( ) ( ) ( ) ( ),      and    ,     , ,x yz xy z x y z xz yz x y z xy xz x y z X= + = + + = + ∀ ∈  

These rules clearly imply that 2 XZ  is an associative ring without 1 and is of characteristic 2. Let us de-
note this ring by 

2nV  as its order is 2n . The Klein-4 ring V  as discussed in Example 2.2 above is 22
V  and is 

smallest in the series. 
Theorem 3.2. The ring 

2nV  is right symmetric but not left symmetric. Likewise, 
2
op
nV  is left symmetric but 

not right symmetric. 
Proof: Assume that 

2
, , na b c V∈ , such that 0abc = . If any one of , a b , or c  is zero, then we are done. So 

consider only non-zero elements. 

Assume that 
1

i
i

a x
α

=

= ∑ , 
1

j
j

b y
β

=

= ∑  and 
1

k
k

c z
γ

=

= ∑ , where , , i j kx y z X∈  and , , α β γ ∈Z  such that  

1 , , nα β γ≤ ≤ . 
Note that for any x X∈  and b  as above, 

1

0 when  is even
.

when  is oddj
j

xb x y x
x

β β
β

β=

 
= = =  

 
∑  

Same will be the consequences if we replace x  by a , i.e. 

1 1 1

0 when  is even
,

when  is oddi j i
i j i

ab x y x
a

βα α β
β

β= = =

 
= = =  

 
∑ ∑ ∑  

and 

1 1 1

0 when  is even
.

when  is oddj k j
j k j

bc y z y
b

β γ β γ
γ

γ= = =

 
= = =  

 
∑ ∑ ∑  

So 0abc =  if and only if either β  is even or γ  is even. This means that 0 0abc acb= ⇔ = . Hence 

2nV  is right symmetric. 
On the other hand, assume that β  is even. Because α  and γ  are odd, then 0abc = , but 0bac b= ≠ . 

This completes the proof. 
The second part can be obtained by symmetry.                                                 □ 
Trivial extension of a ring: Let R  be any ring, a trivial extension ( ),T R R  of R , is a subring of the upper 

triangular matrix ring over R  and is defined as: 

( ), : , .
0
r s

T R R r s R
r

   = ∈  
   

 

Theorem 3.3. The trivial extension ring ( ),T V V  is a right symmetric ring where V  is the Klein 4-ring. 
Proof: In short we write ( ),r s  as an element of ( ),T V V  but we will follow the rule of matrix multiplica-

tion on such ordered pairs. So let ( )1 1,r s , ( ) ( ) ( )2 2 3 3, , , ,r s r s T V V∈  with ( )( )( )1 1 2 2 3 3, , , 0r s r s r s = , where ir , 
is V∈ . Then 
(a) 1 2 3 0r r r =  and 
(b) 1 2 3 1 2 3 1 2 3 0r r s r s r s r r+ + =  
We want to prove that ( )( )( )1 1 3 3 2 2, , , 0r s r s r s = . For this we need to establish that  
(c) 1 3 2 0r r r =  and that 
(d) 1 3 2 1 3 2 1 3 2 0r r s r s r s r r+ + =  
As in Example 2.2, (a) holds if either 2r c=  or 3r c= . Assume that 3r c=  and 2r c≠ , Then (b) holds if 

3s c= . We substitute 3 3r s c= =  in (c) and (d). We see that these are also satisfied. 
If 2r c=  and 3r c≠ , then (b) holds if 2s c= . Again we substitute 2 2r s c= =  in (c) and (d), we see that 
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these are satisfied. If 2 3r r c= = , then all ( ), , ,a b c d  are satisfied. Hence we conclude that ( ),T V V  is right 
symmetric.                                                                                □ 

Remarks 3.4. (1) ( ),T V V  is not symmetric, as one can easily work out that  

( )( )( ) ( ) ( ), , , , 0,0a a a b c c aac aac abc aac= + + = , 

but 

( )( )( ) ( ) ( ) ( ), , , , , 0,0c c a a a b caa cab caa caa c c= + + = ≠  

(2) It is known that if R  is reduced then ( ),T R R  is symmetric ([8]; Corollary 2.4). Note that V  is not a 
reduced ring. 

(3) The ring of 2 2×  upper triangular matrices over V , ( )2UTM V  is not right symmetric, because for 
, , a b c V∈ , 

0
0 0 0
a a c b c b

b b c
     

=     
     

 

and 

0
0

0 0 0 0 0
a a c b c b a

b c b
       

= ≠       
       

 

Thus, in general, [ ]2M V  or [ ]nM V  are not right symmetric. Hence, being right symmetric is not Morita 
invariant. 

Theorem 3.5. For a commutative indeterminate x , the polynomial ring [ ]V x  is right symmetric.  

Proof: Because V  is without 1, so [ ]V x  is also without 1 and so [ ]x V x∉ . Now let ( )
0

i
i

i
f x a x

α

=

= ∑ , 

( )
0

,j
j

j
g x b x

β

=

= ∑  ( ) [ ]
0

,k
k

k
h x c x V x

γ

=

= ∈∑  where ai, bj, kc V∈  0,1, ,i α∀ =  , 0,1, , ,j β=   0,1, ,k γ=  , 

and assume that 

( ) ( ) ( ) ( )
0

,t
t

t
f x g x h x d x d x

δ

=

= = ∑  

where 

;    0,1, ,t i j k
t i j k

d a b c t δ α β γ
= + +

= = = + +∑   

Also assume that 

( ) ( ) ( ) ( )
0

t
t

t
f x h x g x d x d x

δ

=

′ ′= = ∑  

where 

;    0,1, , .t i k j
t i j k

d a c b t δ α β γ
= + +

′ = = = + +∑   

We want to prove that if ( ) 0d x = , then so is ( )d x′ . So assume that ( ) 0d x = . Then 0td = ,  
0,1, ,t δ∀ =  , and these terms can be expressed as  

0 0 0 0

1 0 0 1 0 1 0 1 0 0

2 0 0 2 0 1 1 0 2 0 1 0 1 1 1 0 2 0 0

3 0 0 3 0 1 2 0 2 1 0 3 0 1 1 1 1 2 0 1 0 2 2 1 0 2 0 1 3 0 0

,
,

,
,

d a b c
d a b c a b c a b c
d a b c a b c a b c a b c a b c a b c
d a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

=

= + +

= + + + + +

= + + + + + + + + +



 

where , , i i ia b c V∈  For ( ) 0d x′ = , we want to establish that 0td ′ = , 0,1, ,t δ∀ =  , where 
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0 0 0 0

1 0 0 1 0 1 0 1 0 0

2 0 0 2 0 1 1 0 2 0 1 0 1 1 1 0 2 0 0

3 0 0 3 0 1 2 0 2 1 0 3 0 1 1 1 1 2 0 1 0 2 2 1 0 2 0 1 3 0 0

,
,

,

d a c b
d a c b a c b a c b
d a c b a c b a c b a c b a c b a c b
d a c b a c b a c b a c b a c b a c b a c b a c b a c b a c b

′ =
′ = + +
′ = + + + + +
′ = + + + + + + + + +



 

(I) We have five options for 0 0d = . These are 0 0a = , 0 0b = , 0 0c = , 0b c= , or 0c c=  Any one choice 
will give us 0 0d ′ = . 

(II) Let 1 0d = . From (I) if we choose 0 0a = , then 0 0 1 0 1 00a b c a b c= = , and so 1 1 0 0d a b c= . For 1 0d = , we 
again have five choices, 1 0 0 00, 0, 0, a b c b c= = = =  or 0c c= , and with the previously chosen 0 0a = , we 
see that 1 0d ′ =  

(III) Let us have 0 1 0a a= =  as in (I) & (II). Then 2 2 0 0 .d a b c=  Here again we have five choices for 2 0, a b  
and 0.c  For every choice we have 2 0d =  which implies 2 0d ′ =  and again we have five options here, each 
gives 1 0 0 0.a c b =  Thus we find that 1 0d ′ =  holds. The choices for 0 0b =  or 0 0c =  will yield same result. 

(IV) Now assume that 0 1 2 0a a a= = = . This is in continuation of (I), (II), & (III) and the same repetition will 
give us 3 0d =  and 3 0d ′ =  simultaneously. 

The rest are similar. 
Definitely, we need to watch the situation for non-zero values, for instance, if we let 0 1 2 0 1 2, , , , , , ,a a a b b b   
{ },a b∈  and 0 1 2c c c c= = = =  then we see that 0t td d ′= = , 0,1, , .t δ∀ =   Same situation comes if we 

let { }0 1 2 0 1 2, , , , , , , ,a a a c c c a b∈   and 0 1 2b b b c= = = = . Hence the required result is obtained.       □ 

4. McCoy Rings without Identity 
In [13], Nielsen defined that a ring R  is a right McCoy, if ( ) ( ) 0f x g x = , then there exists an r R∈ , such 
that ( ) 0f x r = . Left McCoy and McCoy rings are defined similarly. It is proved in ([13], Theorem 2), that: 
every reversible ring is left and right McCoy, hence McCoy. 

In ([13]; Section 3), Nielsen, constructed an example of a right McCoy ring with identity. This example is 
neither symmetric nor reversible, and there is no question that it is right or left symmetric because it has identity.  

In next result we prove that the right symmetric ring 
2nV  is a right McCoy ring without identity.  

Theorem 4.1. The ring 
2nV  as constructed in Theorem 2.2. is a McCoy ring. 

Proof: Again, let { }1, ,iX x i n= =   be a set of symbols and consider the additive group 2 XZ  generated  

by these symbols and define the multiplication on 2 XZ  by the rule: xy x= , .x y X∀ ∈  
Then 

2nV  is a ring as constructed in Theorem 2.3. The characteristic of this ring is 2. Consider an element of  

the form 
1

k
k

z
γ

=
∑ , where kz X∈ , 1, ,k γ=  , and γ  is even and let all zk be distinct so that 

1
0k

k
z

γ

=

≠∑ . Then 

for any element 
2nt V∈ , 

1 1
0k k

k k
t z tz t

γ γ

γ
= =

= = =∑ ∑ . 

Assume that ( )
0

i
i

i
f x a x

α

=

= ∑  and ( )
0

j
j

j
g x b x

β

=

= ∑  be elements of [ ]2nV x , with ( ) ( ) 0.f x g x =  Then  

( )
1 0 1

0.i
k i k

k i k
f x z a z x

γ γα

= = =

 
= = 

 
∑ ∑ ∑  Hence 

2nV  is right McCoy. 

On the other hand, note that ( ) ( ) 0f x g x =  provided that the coefficients of ( )g x  are the elements of 
2nV   

of the form 
1

k
k

z
γ

=
∑ , where kz X∈  and γ  is even. Hence for any 

2nt V∈ , ( ) 0tg x =  which shows that 
2nV   

is left McCoy. Hence 
2nV  is McCoy.                                                          □ 

Remarks 4.2. It follows from above that 
(i) 

2nV  is McCoy, right symmetric, and semicommutative, but neither symmetric nor reversible. 
(ii) 

2
op
nV  is McCoy, left symmetric, and semicommutative, but neither symmetric nor reversible. 

Example 4.3. In Section 3 of [14] an example of a McCoy ring is constructed such that its power series ring is 
not McCoy. Here we prove that the power series ring of Klein 4-ring, which we already have proved that it is  



B. H. Shafee, S. K. Nauman 
 

 
673 

McCoy, is also McCoy. A typical element of [ ] [ ] [ ] [ ]22
V x t V x t   =     is of the form ( )

0 0

j k
x kj

k j
a t a x t

α ∞

= =

 
=  

 
∑ ∑ ,  

where kja  is a coefficient in the power series ring [ ]V x   . Clearly kja V∀ ∈ , 0kja c = , so ( ) 0xa t c = . On  
the other hand, let ( ) 0xa t ≠  and ( ) 0xb t ≠  but ( ) ( ) 0x xa t b t = . Then the coefficients hib  in ( )xb t  are in  
the set { }0,c  and as previously we got the outcome ( ) ( ) 0x xab t bb t= = . Hence we conclude that [ ]V x    is 
McCoy. 

We end up at a general statement. The following corollary can be proved by the methods used in Theorem 
4.1. 

Corollary 4.4. The power series ring [ ]2nV x    is McCoy. 
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