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Abstract 
The purpose of this paper is to show that the composite photon theory measures up well against 
the Standard Model’s elementary photon theory. This is done by comparing the two theories, area 
by area. Although the predictions of quantum electrodynamics are in excellent agreement with 
experiment (as in the anomalous magnetic moment of the electron), there are some problems, 
such as the difficulty in describing the electromagnetic field with the four-component vector po-
tential because the photon has only two polarization states. In most areas the two theories give 
similar results, so it is impossible to rule out the composite photon theory. Pryce’s arguments in 
1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has 
been realized that in the composite theory the antiphoton does not interact with matter because it 
is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental 
tests that can determine which theory is correct. 
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1. Introduction 
In the history of physics many particles, which were once believed to be elementary, later turned out to be com-
posites. The idea that the photon is a composite particle dates back to 1932, when Louis de Broglie [1] [2] sug-
gested that the photon is composed of a neutrino-antineutrino pair bound together. Pascual Jordan [3], who de-
veloped canonical anticommutation relations for fermions, thought that he could obtain Bose commutation rela-
tions for a composite photon from the fermion anticommutation relations of its constituents. In order to obtain 
Bose commutation relations, Jordan modified de Broglie’s theory, suggesting that a single neutrino could simu-
late a photon by a Raman effect and that no interaction between the neutrino and antineutrino was needed if they 
were emitted in exactly the same direction. Today, of course, we know that a single neutrino interacts much too 
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weakly to simulate a photon. Because of Jordan’s idea that the neutrino and antineutrino do not interact, the 
composite photon theory was referred to as the “Neutrino Theory of Light”. 

Jordan’s modifications made it easy for Pryce in 1938 to show that the theory was untenable. Pryce [4] 
showed that if the composite photon obeyed Bose commutations relations, its amplitude would be zero. Pryce 
gave several arguments against the composite theory, but as Case [5], and Berezinskii [6] discussed, the only va-
lid argument was that the composite photon could not satisfy Bose commutation relations. In 1938 the existence 
of many other subatomic composite bosons that are formed of fermion-antifermion pairs, was unknown. Perkins 
[7] has shown that there is no need for a composite photon to satisfy exact Bose commutation relations. He 
points out that many composite bosons, such as Cooper pairs, deuterons, pions, and kaons, are not perfect bo-
sons because of their internal fermion structure, although in the asymptotic limit they are essentially bosons. 

Neutrino oscillations in which one flavor of neutrino changes into another have been observed at the Super-
Kamiokande [8] and SNO [9]. Among the electron, muon, and tau neutrinos, at least two must have mass. Here 
we will assume that the composite photon is formed of an electron neutrino and an electron antineutrino and that 
the electron neutrinos are massless. 

There has been some continuing work on the composite photon theory (see [10]-[12]), but it still has not been 
accepted as an alternative to the elementary photon theory. A major problem for the composite photon theory is 
that no experiment has demonstrated the need for it. Recently, Perkins [13] showed that in the composite theory 
the antiphoton is different than the photon, and that antiphotons do not interact with electrons because their neu-
trinos have the wrong helicity. This leads to experimental predictions that can differentiate between the Standard 
Model elementary photon theory and the composite photon theory. In the antihydrogen experiments at CERN 
the ALPHA [14] [15] and ASACUSA [16] Groups will be looking for spectral emissions from the antihydrogen 
atoms and shinning light on the atoms to put them into excited states. According to the composite photon theory, 
neither of these experiments will produce the expected results. 

In the next section we will compare the elementary and composite theories, area by area. In Section 3 we 
re-examine Pryce’s arguments [4] that the “Neutrino Theory of Light” is untenable and confirm that his argu-
ments are no longer valid. 

2. Comparison of Photon Theories 
Intuitively, de Broglie’s idea makes reasonable the significant difference in characteristics exhibited by spin-1 
photon and a spin-1/2 neutrino. When a photon is emitted, a neutrino-antineutrino pair arises from the vacuum. 
Later the neutrino and antineutrino annihilate when the photon is absorbed. 

In the following sections we will examine the similarities and differences of the elementary and composite 
photon theories. Although the composite and elementary theories are similar, there are both subtle and major 
differences. 

2.1. Photon Field 
2.1.1. Elementary Photon Theory 
In noting the problem of quantizing the electromagnetic field, Bjorken and Drell [17] declared, “It is ironic that 
of the fields we shall consider it is the most difficult to quantize.” Srednicki [18] commented, “Since real spin-1 
particles transform in the ( )1 2,1 2  representation of the Lorentz group, they are more naturally described as 
bispinors Aαα  than as 4-vectors ( )A xµ .” Varlamov [19] also noted that, “the electromagnetic four-potential is 
transformed within ( )1 2,1 2  representation of the homogeneous Lorentz group...” Usually a canonical 
procedure for quantization is used although it is not manifestly covariant. We can describe the electromagnetic 
field with the four-component vector potential, but the photon only has two polarization states. One method of 
handling the problem is to introduce two non-physical photons along with the real ones, the Gupta-Bleuler 
procedure [20]. Another method is to give the photon a very, very small mass [21]. Following Bjorken and Drell 
[17] we will take only the transverse components and “abandon manifest covariance.” We start with Maxwell 
equations (in the absence of source charges and currents),  

( )
( )
( ) ( )
( ) ( )

0,
0,

,
.

x
x
x x t
x x t

∇⋅ =
∇ ⋅ =
∇× = −∂ ∂
∇× = ∂ ∂

E
H
E H
H E

                                  (1) 
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This implies a vector potential, ( ),Aµ φ= Α , that satisfies,  

( ) ( )
( ) ( )

,

.

x x t

x x

φ= −∂ ∂ −∇

= ∇×

E A

H A
                                  (2) 

For any electromagnetic field, E  and H , there are many Aµ ’s that differ by a gauge transformation. 
A satisfactory Lagrangian density is given by,  

1 .
2

A AA
x x x
µ µν

ν µ ν

 ∂ ∂ ∂
= − −   ∂ ∂ ∂  

                                (3) 

Using the standard method, we construct conjugate momenta from  ,  

0
0

0

0,

.k k k
kk

A
A

A E
xA

π

π

∂
= =
∂

∂∂
= = − − =

∂∂










                               (4) 

2.1.2. Composite Photon Theory 
We start with the neutrino field. Solving the Dirac equation for a massless particle, 0pµ µγ Ψ = , with  

( )eipxuΨ = p , results in the spinors, 

( ) ( )

( ) ( )

1 2

31 2
1 13 3

31 1

1 13 3
1 1 1 2

31 2

3

1

, ,1
2 2

0 0
0 0

0 0
0 0

, ,1
2 2

1

p ip
E pp ip

E p E pE pu u
E E

E p E p
u u p ip

E E
E pp ip

E p

+ −
+ −

− +
+ −

− +   
   ++   + +   += =
   
   
   
   
   
   
   + +   = = − +
   

++   
   +   

p p

p p

               (5) 

where ( ),p iEµ = p , and the superscripts and subscripts on u  refer to the energy and helicity states re- 
spectively. The gamma matrices in the Weyl basis were used in solving the Dirac equation: 

1 2

3 4

0 0 0 0 0 0 1
0 0 0 0 0 1 0

,     ,
0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

,     ,
0 0 0 1 0 0 0

0 0 0 0 1 0 0

i
i

i
i

i
i

i
i

γ γ

γ γ

   
   −   = =
   − −
   
−   
   
   −   = =
   −
   
   

                           (6) 

5
1 2 3 4

1 0 0 0
0 1 0 0

.
0 0 1 0
0 0 0 1

γ γ γ γ γ

 
 
 = − =
 −
 

− 

                                     (7) 

We designate 1a  as the annihilation operator for 1ν , the right-handed neutrino, and 1c  as the annihilation 
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operator for 1ν , the left-handed antineutrino. We assign 2a  as the annihilation operator for 2ν , the left- 
handed neutrino, and 2c  as the annihilation operator for 2ν , the right-handed antineutrino. Since only 2ν  and 

2ν  have been observed, we take the neutrino field to be, 

( ) ( ) ( ) ( ) ( ){ }1 1
2 1 2 1

1 e eikx ikx

k
x a u c u

V
+ − −
− +   Ψ = + −   ∑ †k k k k                     (8) 

where we have used only the two corresponding spinors, and kx  stands for k tω⋅ −k x . A four-vector field can 
be created from a fermion-antifermion pair, 

.i µγΨ Ψ                                            (9) 

The fermion and antifermion are bound by this attractive local vector interaction of Equation (9) as discussed 
by Fermi and Yang [22]. We postulate that this local interaction between the neutrino and antineutrino is re- 
sponsible for their interaction with the electromagnetic coupling constant “α ” while a single neutrino interacts 
with the weak coupling constant “ g ”. Both Kronig [23] and de Broglie [1] suggested local interactions in their 
work on the composite photon theory. Since the neutrino and antineutrino momenta are in opposite directions, 
we take the photon field to be [12],  

( ) ( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) }

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 e
2

                 e ,

ipx
R L

p

ipx
R L

A x G u i u G u i u
V

G u i u G u i u

µ µ µ

µ µ

γ γ
ω

γ γ

+ − − +
− + + −

− + + − −
+ − − +

−  = + 

 + + 

∑
p

† †

p p p p p p

p p p p p p
           (10) 

with the annihilation operators for left-circularly and right-circularly polarized photons with momentum p  
given by, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†
2 2

†
2 2

1 ,
2

1 ,
2

L

R

G F c a

G F c a

= − +

= + −

∑

∑
k

k

p k k p k

p k p k k
                         (11) 

where ( )F k  is a spectral function. 
Although many sets of gamma matrices satisfy the Dirac equation, one must use the Weyl representation of 

gamma matrices to obtain spinors appropriate for the composite photon. If a different set of gamma matrices is 
used, the photon field will NOT satisfy Maxwell equations. Kronig [23] was the first to realize this, but he did 
not mention the deeper significance, i.e., two-component neutrinos are required for a composite photon. At that 
time a two-component neutrino theory would have been rejected because it violated parity. The connection 
between the photon antisymmetric tensor and the two-component Weyl equation was also noted by Sen [24]. 
Although we are working at the four-component level, one can form a composite photon at the two-component 
level [12]. 

2.2. Commutation Relations 
2.2.1. Elementary Photon Theory 
In classical Hamiltonian mechanics, the Poisson bracket is defined as,  

[ ], PB
k k k k

F G F GF G
q p p q
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

                                 (12) 

where ( )kq t  are the generalized coordinate and ( )kp t  are the generalized momenta. If we use iq  and jp  
in place F  and G , we obtain the fundamental Poisson brackets,  

( ) ( )
( ) ( )
( ) ( )

, 0,

, 0,

, .

i j PB

i j PB

i j ijPB

q t q t

p t p t

q t p t δ

  = 

  = 

  = 

                                       (13) 
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In going over to quantum theory, it is hypothesized that the fundamental Poisson brackets become com- 
mutators with iq , and ip  becoming operators,  

( ) ( )
( ) ( )
( ) ( )

, 0,

, 0,

, .

i j

i j

i j ij

q t q t

p t p t

q t p t iδ

  = 
  = 
  = 

                                     (14) 

The generalized coordinates and momenta for the classical electromagnetic field are, 

( ) ( )
( ) ( )

, ,

, .
i

j

q t A t

p t t
µ

µπ

→

→

x

x
                                      (15) 

Thus, the fundamental commutators become,  

( ) ( )

( ) ( )

( ) ( ) ( )3

, , , 0,

, , , 0,

, , , .

A t A t

t t

t A t i

µ ν

µ ν

µ ν µν

π π

π δ δ

′  = 

′  = 

′ ′  = − − 

x x

x x

x x x x

                             (16) 

However, the third Equation of (16) is not consistent with Maxwell equations, so we must depart from the 
canonical path [17] and replace it with,  

( ) ( ) ( ), , , .trt A t iµ ν µνπ δ′ ′  = + − x x x x                                (17) 

Expanding the A  and π  into plane waves, 

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

3 2
†

3 1

2
3

3
1

d e e ,
2 2π

d e e
2 2π

ipx ipx

p

p ipx ipx

px b b

x i p b b

λ
λ λ

λ

λ
λ λ

λ

ω

ω
π

−

=

−

=

 = + 

 = = − + 

∑∫

∑∫

†

A p p p

A p p p





               (18) 

where 0p pω = , and ( )bλ p  and ( )†bλ p  are identified as annihilation and creation operators for polarization  
λ . We take the two unit polarization vectors to be perpendicular to p  in order to satisfy ( ) 0x∇⋅ =A  (i.e.,  
radiation gauge),  

( ) 0.λ ⋅ =p p                                        (19) 

Also it is convenient to choose,  

( ) ( ) .λ λ
λλδ′

′⋅ =p p                                      (20) 

Inverting Equation (18) we obtain the amplitudes, ( )bλ p  and ( )†bλ p , 

( )
( )( )

( ) ( ) ( )

( )
( )( )

( ) ( ) ( )

3

3

3
†

3

d e ,
2 2π

d e .
2 2π

ipx

p

p

ipx

p

p

xb x i x

xb x i x

λ
λ

λ
λ

ω
ω

ω
ω

−

 = ⋅ + 

 = − ⋅ + 

∫

∫

p p A A

p p A A









                   (21) 

Following Bjorken and Drell [17], we use Equations (16) and (17) to obtain commutation relations for the 
annihilation and creation operators,  
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( ) ( )
( ) ( )
( ) ( ) ( )

† †

†

, 0,

, 0,

, .

b b

b b

b b

λ λ

λ λ

λ λ λλδ δ

′

′

′ ′

=  
  = 
  = − 

p q

p q

p q p q

                              (22) 

Left-handed and right-handed circularly polarized annihilation operators are obtained from the combinations,  

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 ,
2

1 ,
2

L

R

b b ib

b b ib

= −  

= +  

p p p

p p p
                               (23) 

and they obey the commutation relations, 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

† †

†

† †

†

†

, 0,     , 0,

, ,

, 0,     , 0,

, ,

, 0,     , 0.

L L L L

L L

R R R R

R R

L R L R

b b b b

b b

b b b b

b b

b b b b

δ

δ

 = =    
  = − 

 = =    
  = − 

 = =    

p q p q

p q p q

p q p q

p q p q

p q p q

                        (24) 

From this discussion it is evident that the elementary photon commutation relations were carried over from 
the classical canonical formalism and are not based on any fundamental principle. The photon distribution for 
Blackbody radiation can be calculated using the second quantization method [25], including commutation 
relations of Equation (22), resulting in Planck’s law, 

1 .
e 1pp kTn ω=

−
                                         (25) 

2.2.2. Composite Photon Theory 
Composite integral spin particles obey commutation relations [26]-[28] that are derived from the fermion anti- 
commutation relations of their constituents. For composite photons we have,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

† †

†

† †

†

†

2 † †
2 2 2 2

2

, 0,     , 0,

, 1 , ,

, 0,     , 0,

, 1 , ,

, 0,     , 0,

, ,

,

L L L L

L L L

R R R R

R R R

L R L R

L
k

R
k

G G G G

G G

G G G G

G G

G G G G

F a a c c

F a

δ

δ

 = =    
  = − − ∆ 

 = =    
  = − − ∆ 

 = =    

 ∆ = + + + − − 

∆ =

∑

∑

p q p q

p q p q p p

p q p q

p q p q p p

p q p q

p p k p k p k k k

p p k ( ) ( ) ( ) ( )† †
2 2 2 2 .a c c − − + + + k k p k p k

               (26) 

In obtaining the commutation relations involving ( ),R∆ p p  and ( ),L∆ p p , we have taken the expectation 
values. Here the linearly-polarized photon annihilation operators are defined as,  

( ) ( ) ( )

( ) ( ) ( )

1 ,
2

2

L R

L R

G G

i G G

ξ

η

= +  

= −  

p p p

p p p
                              (27) 
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and they obey the commutation relations, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( )( )

† †

†

† †

†

†

, 0,     , 0,

1, 1 , , ,
2

, 0,     , 0,

1, 1 , , ,
2

, 0,

, , , .
2

L R

L R

L R
i

ξ ξ ξ ξ

ξ ξ δ

η η η η

η η δ

ξ η

ξ η δ

 = =    

   = − − ∆ + ∆    

 = =    

   = − − ∆ + ∆    

=  

  = − ∆ − ∆ 

p q p q

p q p q p p p p

p q p q

p q p q p p p p

p q

p q p q p p p p

                  (28) 

One virtue of a good theory is simplicity. Although the composite photon commutations relations (26) and (28) 
appear more complex than the elementary commutations relations (22) and (24), they are really simpler because 
it is only necessary to postulate the fermion anticommutation relations and then derive boson commutation 
relations. A more detailed discussion is contained in Ref. [7]. 

The composite photon distribution for Blackbody radiation can be calculated using the second quantization 
method [25] as above, but with the composite photon commutation relations. This results [7] in,  

1 .
1e 1 1p kT

n
ω

=
 + − Ω 

p                                  (29) 

The 1
Ω

 component is less than 10−9, so the difference between Equation (25) and (29) is too small to 

measure. 

2.3. Polarization Vectors 
In the elementary theory the polarization vectors are chosen so that the electromagnetic field satisfies Maxwell 
equations. In composite theory there is no flexibility; the polarization vectors are given by the neutrino bis- 
pinors. 

2.3.1. Elementary Photon Theory 
Polarization vectors for photons with spin parallel and antiparallel to their momentum (taken to be along the 
third axis) are given by,  

( ) ( )

( ) ( )

1

2

1 1, ,0,0 ,
2

1 1, ,0,0 .
2

n i

n i

µ

µ

=

= −




                                (30) 

In Section 2.2 we chose some properties of the polarization vectors in Equation (19) and (20). In four 
dimensions we have,  

( ) ( )j k
jkp pµ µ δ∗⋅ =                                     (31) 

and the dot products with the internal four-momentum pµ ,  

( )
( )

1

2

0,

0.

p p

p p
µ µ

µ µ

=

=




                                      (32) 
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Also in three dimensions, 

( ) ( )
( ) ( )

1 1

2 2

,

.
p

p

i

i

ω

ω

× = −

× =

p p p

p p p

 

 
                                (33) 

To calculate the completeness relation, we use linear polarization vectors. Noting that the sum over polari- 
zation states only involves the two transverse polarizations and not the third direction p ,  

( ) ( ) ( ) ( ) ( ) ( )
2 3

3 3
2

1 1
.j l

j l j l j l jl

p p
p

λ λ λ λ

λ λ
δ

= =

= − = −∑ ∑p p p p p p                          (34) 

2.3.2. Composite Photon Theory 
From Equation (10) we see that the polarization vectors are neutrino bispinors:  

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1

2 1 1
1 1

1 ,
2
1 .
2

p u i u

p u i u

µ µ

µ µ

γ

γ

+ −
− +

− +
+ −

−  =  

−  =  

p p

p p




                            (35) 

Carrying out the matrix multiplications results in, 

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
1 1 2 3 1 1 2 3 2 1 2

3 3

2 2 2 2
2 1 2 3 1 1 2 3 2 1 2

3 3

1 , , ,0 ,
2

1 , , ,0 .
2

ip p E p E p p p iE ip E ip p ipp
E E p E E p E

ip p E p E p p p iE ip E ip p ipp
E E p E E p E

µ

µ

 − + + − − + + − − −
=   + + 

 + + − − − − + − +
=   + + 





         (36) 

Since the neutrino spinors and the polarization vectors only depend upon the direction of p , we can set 
E=n p . 

( )

( )

2 2 2
1 1 2 3 1 1 2 1 3 3

1 2
3 3

2 2 2
2 1 2 3 1 1 2 1 3 3

1 2
3 3

11 , , ,0 ,
1 12

11 , , ,0 .
1 12

in n n n n n in in in
n n in

n n

in n n n n n in in in
n n in

n n

µ

µ

 − + + − − + + +
= − − 

+ + 
 + + − − − − −

= − + 
+ + 





                 (37) 

As one can see these polarization vectors are good for any direction n , while the elementary polarization 
vectors, Equation (30), are only given along the third axis. These polarization vectors satisfy the normalization 
relation,  

( ) ( )j k
jkp pµ µ δ∗⋅ =                                        (38) 

and the dot products with the internal four-momentum pµ  give,  

( )
( )

1

2

0,

0.

p p

p p
µ µ

µ µ

=

=




                                         (39) 

Also in three dimensions,  

( ) ( )
( ) ( )

1 1

2 2

,

.
p

p

i

i

ω

ω

× = −

× =

p p p

p p p

 

 
                                     (40) 

Using Equation (36) we calculate the completeness relation, 

( ) ( ) ( ) ( )
2 2

2
1 1

.j j j j

j j

p p
E
µ ν

µ ν µ ν µνδ∗ ∗

= =

= = −∑ ∑p p p p                             (41) 
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2.4. Maxwell Equations 
2.4.1. Elementary Photon Theory 
In the elementary theory, Maxwell equations are taken as an experimental result as discussed in Section 2.1.1. 
The vector potential, ( )A xµ , is then created to satisfy Maxwell equations. 

2.4.2. Composite Photon Theory 
In the composite theory, Maxwell equations are derived, as they must be if the composite theory is relevant. 
Substituting Equation (35) into Equation (10) gives Aµ  in terms of the polarization vectors,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 21 e e .
2

ipx ipx
R L R L

p

A x G G G G
Vµ µ µ µ µω

∗ ∗ −   = + + +   ∑ † †

p
p p p p p p p p         (42) 

The electric and magnetic fields are obtained from ( ) ( )x x t= −∂ ∂E A  and ( ) ( )x x= ∇×H A  as usual,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2e e
2

p ipx ipx
R L R LE x i G G G G

Vµ µ µ µ µ

ω
∗ ∗ −   = + − +   ∑ † †

p
p p p p p p p p          (43) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2e e .
2

p ipx ipx
R L R LH x G G G G

Vµ µ µ µ µ

ω
∗ ∗ −   = − + −   ∑ † †

p
p p p p p p p p          (44) 

Using Equation (39) we obtain,  

( )
( )

0,

0

x

x

∇⋅ =

∇ ⋅ =

E

H
                                         (45) 

and with Equation (40) we obtain,  

( ) ( )
( ) ( )

,

.

x x t

x x t

∇× = −∂ ∂

∇× = ∂ ∂

E H

H E
                                (46) 

Using Equation (39) again, we see that Aµ  satisfies the Lorentz condition, 

( ) 0.A x xµ µ∂ ∂ =                                       (47) 

2.5. Number Operator 
2.5.1. Elementary Photon Theory 
The numbers operator for an elementary photon is defined as, 

( ) ( ) ( )† .N b bλ λ λ=p p p                                   (48) 

When acting on a number state or Fock state, it returns the number of photons with momentum p  and 
polarization λ .  

( ) ( )( ) ( )( )† †0 0
m m

N b m bλ λ λ=p p p                           (49) 

for a state with m  photons. Normalizing in the usual manner [25],  

( ) ( )
( )

† 1 1 ,

1 .

pb n n n

b n n n

λ λ λ
λ

λ λ λ
λ

= + +

= −

p p

p p p

p

p
                             (50) 

Acting on the one and zero particle states results in, 

( )
( )

† 0 1 ,

1 0 .

p

p

b

b

λ
λ

λ
λ

=

=

p

p
                                     (51) 
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2.5.2. Composite Photon Theory 
The number operators for right-handed and left-handed composite photons are defined as,  

( ) ( ) ( )

( ) ( ) ( )

†

†

,

.

R R R

L L L

N G G

N G G

=

=

p p p

p p p
                                   (52) 

Perkins [7] showed that the effect of the composite photon’s number operator acting on a state of m  right- 
handed composite photons is, 

( ) ( )( ) ( ) ( )( )† †1
0 0

m m

R R R

m m
N G m G

− 
= − 

Ω 
p p p                     (53) 

where Ω  is a constant equal to the number of states used to construct the wave packet, and ( ) 0 0RN =p .  
This result differs from that for the elementary photon because of the second term, which is small for large Ω . 
Normalizing,  

( ) ( )

( )
( )

† 1 1 1 ,

1
1 1 ,

R
R R R

R

R
R R R

R

n
G n n n

n
G n n n

 
= + − +  Ω 

 −
 = − −
 Ω 

p
p p p

p
p p p

p

p

                          (54) 

where Rnp  is the state of Rnp  right-handed composite photons having momentum p  which is created by  

applying ( )†
RG p  on the vacuum Rnp  times. Note that,  

( )

( )

† 0 1 ,

1 0 ,

R
R

R
R

G

G

=

=

p

p

p

p
                                             (55) 

which is the same result as obtained with boson operators. The formulas in Equation (54) are similar to those in 
Equation (50) with correction factors that approach zero for large Ω . 

2.6. Commutation Relations for E and H  
2.6.1. Elementary Photon Theory 
The commutation relations for electric and magnetic fields in the elementary photon theory are [29], 

( ) ( ) ( )
0 0

,i j ij
i j

E x E y iD x y
x y x y

δ
 ∂ ∂ ∂ ∂  = − −       ∂ ∂ ∂ ∂ 

                  (56) 

( ) ( ) ( ) ( ), ,i j i jH x H y E x E y   =                                    (57) 

and 

( ) ( ) ( )
3

10

, .i j ijk
k k

E x H y iD x y
y x=

∂ ∂  = − −    ∂ ∂∑                        (58) 

2.6.2. Composite Photon Theory 
With the composite photon theory, the commutation relations for E  and H  are similar to the ones for the 
elementary photon theory. However, the extra terms in composite commutation relations (26) result in extra 
terms for the E  and H  commutation relations [7]. With the extra terms the commutation relations do not 
vanish for space-like intervals, indicating that composite particles have a finite extent in space [7]. 
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

3 1
3

0 0

3
3 1

3
10

, d sin , ,
16π

                                d cos , , ,
16π

i j ij p R L
i j

ijk p R L
k k

iE x E y iD x y p p x y
x y x y

i p p x y
y x

δ ω

ω

−

−

=

 ∂ ∂ ∂ ∂    = − − − ⋅ − ∆ + ∆       ∂ ∂ ∂ ∂   
∂ ∂

− ⋅ − ∆ − ∆  ∂ ∂

∫

∑ ∫

p p p p

p p p p

 

(59) 

( ) ( ) ( ) ( ), ,i j i jH x H y E x E y   =                               (60) 

and 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

3
3 1

3
10

3 1
3

0 0

, d sin , ,
16π

                                 d cos , , .
16π

i j ijk p R L
k k

ij p R L
i j

iE x H y iD x y p p x y
y x

i p p x y
x y x y

ω

δ ω

−

=

−

∂ ∂    = − − − ⋅ − ∆ + ∆     ∂ ∂  

 ∂ ∂ ∂ ∂
− − ⋅ − ∆ − ∆     ∂ ∂ ∂ ∂ 

∑ ∫

∫

p p p p

p p p p



    (61) 

2.7. Charge Conjugation and Parity  
2.7.1. Elementary Photon Theory  
The antiphoton is identical to the photon. Thus the electromagnetic field can at most change by a factor of 1−  
under charge conjugation. Since the electromagnetic current, ( )xµj , changes sign under the operation of charge 
conjugation, 

( ) ( )C x xµ µ= −j j                                     (62) 

the electromagnetic field must transform as, 

( ) ( )C x xµ µ= −A A                                   (63) 

in order to leave the product ( ) ( )x xµ µ⋅j A  in the Lagrangian invariant. For ( )xµA  in the plane-wave re- 
presentation, Equation (18), this means,  

( ) ( )
( ) ( )

C ,

C .
R R

L L

b b

b b

= −

= −

p p

p p
                                  (64) 

Under the parity operator the vector potential transforms as,  

( ) ( )P , , .t tµ µ= −A x A x                                (65) 

This implies that the creation and annihilations operators change as,  

( ) ( )
( ) ( )

P ,

P .
R L

L R

b b

b b

= −

= −

p p

p p
                                  (66) 

Under the combined operation of CP,  

( ) ( )CP , , .t tµ µ= − −A x A x                               (67) 

In short-hand notation, 

C ,
P ,
CP .

γ γ
γ γ
γ γ

= −
=
= −

                                      (68) 

2.7.2. Composite Photon Theory 
Under C (charge conjugation) and P (parity), the neutrino annihilation operator transform as follows:  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 2 1

1 2 1 2

2 1 2 1

1 2 1 2

C ,     C ,

C ,     C ,

P ,     P ,

P ,     P .

a c c a

a c c a

a a c c

a a c c

= =

= =

= − = −

= − = −

k k k k

k k k k

k k k k

k k k k

                         (69) 

We construct the composite antiphoton field in a manner similar to that of the composite photon field,  

( ) ( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) }

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 e
2

                    e ,

ipx
R L

p

ipx
R L

x G u i u G u i u
V

G u i u G u i u

µ µ µ

µ µ

γ γ
ω

γ γ

− + + −
− + + −

+ − − + −
+ − − +

 = + 

 + + 

∑
p

† †

A p p p p p p

p p p p p p
         (70) 

with the annihilation operators for left-circularly and right-circularly polarized antiphotons with momentum p  
given by, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†
1 1

†
1 1

1 ,
2

1 .
2

L

R

G F c a

G F c a

= + −

= − +

∑

∑
k

k

p k p k k

p k k p k
                       (71) 

Note that ( )xA  contains the other two spinors from Equation (5). Appying the charge conjugation and 
parity operators on the composite photon annihilation operators gives, 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

C ,

C ,

P ,

P ,

L L

R R

L R

R L

G G

G G

G G

G G

= −

= −

= −

= −

p p

p p

p p

p p

                                       (72) 

where we have taken ( )†F k  to be symmetric in k . Applying the charge conjugation and parity operators on 
the composite photon field gives,  

( ) ( )
( ) ( )

,

, , ,

x x

P t t
µ µ

µ µ

= −

= −

CA A

A x A x
                                    (73) 

since 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

,

,

.

u i u u i u

u i u u i u

u i u u i u

µ µ

µ µ

µ µ

γ γ

γ γ

γ γ

+ − − +
− + − +

− + + −
+ − + −

+ − − +
− + + −

= −

= −

− − =

p p p p

p p p p

p p p p

                       (74) 

Under the combined operation of CP,  

( ) ( )CP , , .t tµ µ= − −A x A x                                    (75) 

In short-hand notation,  

2 1C e eν ν=  

2 1C .e eν ν=                                      (76) 

Since the internal structure of the composite photon is,  

2 2e eγ ν ν=                                      (77) 

the antiphoton is, 

1 1 .e eγ ν ν=                                      (78) 

Not only is γ  different than γ , but its neutrinos types have never been observed. Under C and P, 
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Cγ γ= −  

Pγ γ=  

Cγ γ= −  

P .γ γ=                                       (79) 

The photon and antiphoton are invariant only under the combined operation of charge conjugation and parity,  

2 2CP e eγ ν ν γ= = −  

1 1CP .e eγ ν ν γ= = −                                   (80) 

However, there can be photon states that are eigenstates of C and P. As is done with the neutral kaon, we 
create superpositions of the particle and antiparticle, 

( )1
1
2

γ γ γ= +  

( )2
1 .
2

γ γ γ= −                                  (81) 

Under charge conjugation,  

1 1C γ γ= −  

2 2C γ γ=                                      (82) 

showing that 1γ  is an eigenstate of C with value 1− , while 2γ  is an eigenstate of C with value 1+  with  
similar results under parity. In the composite photon theory the electromagnetic field transforms in the usual 
way only under the combined operation of CP. 

2.8. Symmetry under Interchange  
2.8.1. Elementary Photon Theory 
Since the photon is its own antiparticle, all photons are identical. Thus, a state of two photons must be sym- 
metric under interchange. This result has been used to rule out certain reactions [30] [31]. 

2.8.2. Composite Photon Theory 
In the composite theory, four photon states exist, i.e., γ , γ , 1γ , and 2γ . If the photons are not identical, a 
state of two photons can be antisymmetric (as well as symmetric) under interchange. Therefore, a vector particle  
can decay into two photons [13]. 

2.9. Photon-Electron Interaction 
Here we examine Compton scattering, using Feynman diagrams. (The photo-electric effect is similar.) Figure 
1(a) shows the usual Feynman diagram for Compton scattering with the incoming photon imparting energy and 
momentum to an electron. Figure 1(b) shows the same process with the photon replaced by the bound state of 
the neutrino-antineutrino pair as a chain of constituent fermion-antifermion bubbles. The local interaction is 
similar to that in Fermi’s beta decay theory [32]. The relevant Feynman rules are: 

Incoming electron: ( )11 2
1,   1,  2eV λ λ− Ψ =1p . 

Outgoing electron: ( )21 2
2,   1,  2eV λ λ− Ψ =2p . 

Propagator: ( ) ( )2 2
e ei p m p mµ µγ− + + . 

Incoming neutrino: ( )1 2 1
1V u− +
− 1k . 

Incoming antineutrino: ( )1 2 1
1V u− −
+ 1r . 

Outgoing neutrino: ( )1 2 1
1V u− +
− 2k . 
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Figure 1. Compton scattering. (a) Elementary photon 
theory; (b) Composite photon theory.                       

 
Outgoing antineutrino: ( )1 2 1

1V u− −
+ 2r . 

Incoming photon: ( )1
2

i

kV µω 1k . 

Outgoing photon: ( )1
2

i

kV µω
∗

2k . 

Vertex: ie µγ− . 

2.9.1. Elementary Photon Theory 
The matrix element for Compton scattering as shown in Figure 1(a) is,  

( ) ( ) ( ) ( ) ( )2 1

1 2
2 2 2

, ,
.

2
ei i

e e
qp e

i q mie
V q m

µ µλ λ
µ µ µ µ

λ λ

γ
γ γ

ω
∗

 − +−  = Ψ Ψ 
+  

∑ 2 2 1 1p k k p                      (83) 

2.9.2. Composite Photon Theory 
In the composite theory the matrix element for Compton scattering as shown in Figure 1(b) is, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1

1 2

2 1

1 1 1 1
1 1 1 12 2 2

, ,

1 1 1 1
1 1 1 12 2

2

              .

e
e e

qp e

e
e e

e

i q mie u u u u
V q m

i q m
u u u u

q m

µ µλ λ
µ µ µ

λ λ

µ µλ λ
µ µ µ

γ
γ γ γ

ω

γ
γ γ γ

− + − +
+ − + −

+ − + −
− + − +

 − +− = Ψ Ψ
+

− + +Ψ Ψ 
+ 

∑ 2 2 2 1 1 1

2 1 1 1 2 2

p r k p r k

p k r p k r



     (84) 

The matrix element contains components,  

( ) ( ) ( ) ( )2 11 1
1 1e eu uλ λ

µ µγ γ− +
+ −   Ψ Ψ   2 2 2 1p r k p                          (85) 

and 

( ) ( ) ( ) ( )2 11 1
1 1 .e eu uλ λ

µ µγ γ+ −
− +   Ψ Ψ   2 1 1 1p k r p                          (86) 
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Since the electron-neutrino interaction is V-A, we must insert the projection operator, ( )5
1 1
2

γ−  to select  

states with negative-helicity particles and positive-helicity antiparticles. With this insertion we have com- 
ponents, 

( ) ( ) ( ) ( ) ( ) ( )2 11 1
5 1 1 5

1 1 1
4 e eu uλ λ

µ µγ γ γ γ− +
+ −   Ψ − − Ψ   2 2 2 1p r k p               (87) 

and 

( ) ( ) ( ) ( ) ( ) ( )2 11 1
5 1 1 5

1 1 1 .
4 e eu uλ λ

µ µγ γ γ γ+ −
− +   Ψ − − Ψ   2 1 1 1p k r p               (88) 

Since ( )1
1u−
+ p  designates a positive-helicity antiparticle and ( )1

1u+
− p  designates a negative-helicity particle  

the insertion of ( )5
1 1
2

γ−  does not change the result [13]. However, for the interaction of an antiphoton with  

an electron, the terms contain components,  

( ) ( ) ( ) ( ) ( ) ( )2 11 1
5 1 1 5

1 1 1
4 e eu uλ λ

µ µγ γ γ γ− +
− +   Ψ − − Ψ   2 2 2 1p r k p               (89) 

and 

( ) ( ) ( ) ( ) ( ) ( )2 11 1
5 1 1 5

1 1 1 .
4 e eu uλ λ

µ µγ γ γ γ+ −
+ −   Ψ − − Ψ   2 1 1 1p k r p               (90) 

The ( ) ( )1
5 11 uγ +

+− p  and ( ) ( )1
5 11 uγ −

−− p  terms equate to zero as,  

( ) ( )
1 2

1 3 3
35 1

1
0 0 0 0 0
0 0 0 0 01 1 .
0 0 1 0 02 2 2

0
0 0 0 1 0

0

p ip
E p E pE pu

E E
γ +

+

 
    +    + +    +− = =
    
    
    

 

p              (91) 

This indicates that antiphotons do NOT interact with elections in a matter world, because 1eν  and 1eν  have 
the wrong helicity. 

In an antimatter world, the positron-neutrino interaction is V + A and ( )5
1 1
2

γ+  selects states with positive-  

helicity particles and negative-helicity antiparticles. In a symmetric manner photons do not interact with 
positrons in an antimatter world [13]. 

Experiment [33] shows that all the photons in positronium are detected. Therefore, the photons involved must 
be 1γ  and 2γ , the superposition of γ  and γ . 

Positrons interact with the electromagnetic field in a manner similar to that of electrons. Thus, the composite 
photon theory requires that the effect of virtual photons is the same in matter and antimatter worlds. 

3. Conclusions 
In comparing the elementary and composite photon theories, it is noted that in the elementary theory it is 
difficult to describe the electromagnetic field with the four-component vector potential. This is because the 
photon has only two polarization states. This problem does not exist with the composite photon theory. The 
commutation relations are more complex in the composite theory because of the composite photon’s internal 
fermion structure. However, this complexity is not unique to the composite photon; other composite particles 
with internal fermions have similar complexity. In the elementary theory the polarization vectors are chosen to 
give a transverse field, while in the composite theory they are determined by the fermion bispinors. The com- 
posite theory predicts Maxwell equations, while the elementary theory has been created to encompass it. Some 
differences are so slight that they are almost impossible to detect experimentally (i.e., Planck’s law). However, 
the composite theory predicts that the antiphoton is different than the photon. 
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Pryce [4] had many arguments against a composite photon theory. His arguments are either not valid or 
irrelevant. Let us look at them one by one: 1) Pryce: “In so far as the failure of the theory can be traced to any 
one cause it is fair to say that it lies in the fact that light waves are polarized transversely while neutrino ‘waves’ 
are polarized longitudinally.” Both Case [5] and Berezinski [6] asserted that constructing transversely polarized 
photons is not a problem. The fact that one can combine neutrino fields and obtain a composite photon that 
satisfies Maxwell equations (as in Section 2.4.2) proves that this is not a problem. 2) Pryce: “In order to fix the 
representation, therefore, we must decide on a definite a  [polarization vector perpendicular to n ]. This choice 
is entirely arbitrary, for among all unit vectors perpendicular to a given direction in space all are equivalent and 
none is singled out in any way.” The composite theory singled out the two polarization vectors of Equation (36) 
which are functions of n . Under a rotation by an angle θ  about n  they change into themselves.  

( ) ( )
( ) ( )

1 1

2 2

e ,

e .

i

i

n n

n n

θ
µ µ

θ
µ µ

−

→

→

 

 
                                 (92) 

Note that ( )1 n  is a self-orthogonal complex unit vector [34]. 3) Pryce: “the theory [must] be invariant 
under a change of co-ordinate system... it has been necessary to analyze rather carefully the transformation of 
the amplitudes under certain types of rotation and this reveals an arbitrariness in the choice of certain phases.” In 
order to obtain the completeness relation, Equation (41), Kronig [23] arbitrarily wrote his Equation (17) con- 
necting neutrino spinors. Pryce showed that Kronig’s Equation (17) combined with Kronig’s Equation (19) was 
not invariant under a rotation of the coordinate system. Kronig’s Equation (17) is not needed, as one can obtain 
the completeness relation, Equation (41), from the plane-wave spinors as shown in Section 2.3.2. Pryce’s argu- 
ment that the composite photon theory is not invariant under a rotation of coordinate system, applies to one 
unnecessary equation in Kronig’s paper. 4) Pryce: “The conditions under which this will lead to a satisfactory 
theory of light are (1) that certain [Bose] commutation rules be satisfied; (2) that the theory be invariant under a 
change of coordinate system.” Pryce required that composite photons satisfied Bose commutation relations.  
(Jordan and Kronig were working on that assumption.) Pryce [4] showed that requiring ( ) ( )†, 0ξ η  = p q   

meant that 0ξ = . For a proof using the last of Equation (28), see [12]. This is a valid point, but it is really 
irrelevant. Integral spin particles are considered to be bosons, and most integral spin particles (deuterons, helium 
nuclei, Cooper pairs, pions, kaons, etc.) are composite particles formed of fermions. These composite particles 
cannot satisfy Bose commutation relations because of their internal fermion structure, but their difference from 
perfect bosons is so small that it has not been detected, with the exception of Cooper pairs [27]. In the 
asymptotic limit, which usually applies, these composite particles are bosons. 

An important test of these ideas will occur when the photons from anti-Hydrogen are examined. The com- 
posite photon theory predicts that the antiphotons from anti-Hydrogen will have the wrong helicity for inter- 
action with electrons, and thus the antiphotons will not be detectable. Furthermore, ordinary photons have the 
wrong helicity for interaction with anti-hydrogen. 
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