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Abstract 
This paper investigated the dynamics of a dipole of 1 2±  parallel wedge disclination lines in a 
confined geometry, based on Landau-de Gennes theory. The behavior of the pair depends on the 
competition between two kinds of forces: the attractive force between the two defects, aggravating 
the annihilation process, and the anchoring forces coming from the substrates, inhibiting the anni- 
hilation process. There are three states when the system is equilibrium, divided by two critical 
thicknesses 1cd  and 2cd  (existing when 0 15r ξ≤ , 0r  is the initial distance between the two 
defects), both changing linearly with 0r . When the cell gap 1cd d> , the two defects coalesce and 

annihilate. The dynamics follows the function of ( )0r t t α∝ −  during the annihilation step when 
d  is sufficiently large, relative to 0r , where r  is the relative distance between the pair and 0t  
is the coalescence time. α  decreases with the decrease of d  or the increase of 0r . The anni- 
hilation process has delicate structures: when 0 15r ξ≤  and 2cd d>  or 0 15r ξ>  and 1cd d> , the 
two defects annihilate and the system is uniaxial at equilibrium state; when 0 15r ξ≤  and 

2 1c cd d d≥ > , the two defects coalesce and annihilate, and the system is not uniaxial, but biaxial in 
the region where the defects collide. When 1cd d≤ , the defects can be stable existence. 
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1. Introduction 
Defects are ubiquitous in nature and are important in particle physics, cosmology, and condensed matter physics 
[1]. This is explained by the importance of the role of defects in the course of different processes (phase transi-
tions, plastic deformations, electronic processes, etc.) [2]. Defects in liquid crystals (LCs) affect the manifesta-
tion of a number of optical, field, hydrodynamic, and other effects [2]. They have posed important problems in 
optoelectric applications [3] as well as in fundamental physics. They can trap nanoparticles [4] [5], mediate 
characteristic interaction between colloidal particles [5]-[7] and provide ordered templates for colloidal micro-
assembly [8]-[11]. Therefore, location control of topological defects is important for defect-mediated colloidal 
assembly, and guided polymerization and crystallization in the self-organized nematic order [5]. 

Defects in LCs are topological defects [2], also called disclinations [12]. They appear spontaneously at the 
isotropic-nematic transition when the ( )3O  symmetry of the isotropic phase is broken to the hD∞  symmetry 
of the nematic phase [13] [14]. They are moving during the equilibrium process. Therefore, the dynamics of to-
pological defects in the ordering process has attracted the interest of many researchers and has been largely stu-
died theoretically, numerically and experimentally over the last decades [13]-[26]. All of these studies focus on 
the relationship between ( )r t  and t  during the annihilation process, where ( )r t  is the relative distance be-
tween the defect pair and t  is the time for the annihilation. Most previous studies have been confined to inves-
tigating the annihilation of an isolated defect pair [15]-[26]. However, in real systems, disclinations are never 
isolated, but subjected to the anchoring forces coming from the substrates of the cell containing the liquid crystal. 
As a consequence, in a confined geometry, the substrate anchoring is expected to strongly influence the interac-
tions between defect lines. A similar anchoring effect has been invoked to explain the annihilation dynamics of 
nematic point defects confined in capillary tubes [27] and in hybrid cells [13] [14]. However, the behavior of 
defect lines in a confined geometry remains totally unexplored. 

In this paper, based on our previous study of the relaxation dynamics of a dipole of disclination lines with 
1 2m = ±  in a thin hybrid aligned nematic (HAN) cell [28], we continue to study the relaxation dynamics of the 

dipole in a confined geometry. 

2. Theoretical Basis 
2.1. Basic Equations 
The theoretical argument is based on Landau-de Gennes theory, in which the orientational order is described by 
a second-rank traceless and symmetric tensor [29] 

3

1
i i i

i
e eλ

=

= ⊗∑Q ,                                       (1) 

where ie  and iλ  are the eigenvectors and the corresponding eigenvalues of Q . In the isotropic phase, Q  
vanishes. When two eigenvalues of Q  coincide, the liquid crystal is in a uniaxial state, and Q  can be recast 
in the form 

( )3ij i j ijQ S n n δ= ⊗ − ,                                  (2) 

where S  is the uniaxial scalar order parameter, and the unit vector n  is the nematic director. When all eigen 
values of Q  are distinct, the liquid crystal is in a biaxial state. The degree of biaxiality of Q  can be defined as 
[29]-[31] 

( ) ( )2 32 3 21 6 tr trβ    = −    Q Q ,                                (3) 

2β  is a convenient parameter for illustrating spatial inhomogeneities of Q  and ranges in the interval [ ]0,1 . In 
all uniaxial states, 2 0β = , while states with maximal biaxiality correspond to 2 1β = .  

In the reduced space defined by Schopohl and Sluckin [32], the dynamics of Q  can be described as 

( ),ij ij ij k kQ t f Q f Q x∂ ∂ = ∂ ∂ − ∂ ∂ ∂ ∂   



 .                            (4) 

f  is the free-energy density in the reduced space. t  is given by t t τ= , and ( )CBSτ γ= − . Here, γ  is a 
nematic rotational viscosity. For more details, please refer to our previous study [28] [33] [34] or see Appendix. 
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2.2. Numerical Methods 
Time evolution of Q  in the Equation (4) is computed using a two-dimensional finite-difference-iterative-  
method employed in our previous studies [28] [33] [34]. The local values of the scalar order parameter, S , and 
the director, n , can be obtained from ( )tQ  through its largest eigenvalue and its associated eigenvector, re-
spectively.  

The reduced space is discretized into grids with the same interval of 0.25x z ξ∆ = ∆ =  . The discretization of 
time steps given by 35.0 10 τ−×  is sufficient to guarantee the stability of the numerical procedure. According to 
the parameters of 5CB given in [35], we have 6

0 0.043 10A −= ×  J/m3, 61.06 10B −= − ×  J/m3, 60.87 10C −= ×  
J/m3, 12

1 2.25 10L −= ×  J/m, 0.077γ =  Pa∙s and 2 3 13L L L+ =  [32]. Then 3.96ξ ≈  nm, 0.54 μsτ = . The 
bulk nematic-isotropic transition occurs at 1 3CA = . The scaled temperature is set at 0.25A = , which guaran-
tees the system being in the nematic state. 

Consider the pair positioned at ( )15 ,0,0ξ±  in a cell with the cell gap 90d ξ= , which guarantees the sub-
strates do not affect the pair. The lengths, xd  and yd , of the cell along the x- and the y-axes are much larger 
than d . The system is relaxed followed the Equation (4) from the initial condition: 

2

2

3cos 1 3cos sin 0
3cos sin 3sin 1 0

0 0 1
rT

θ θ θ
θ θ θ

 −
 

= − 
 − 

Q , 

where ( )3 1 1 8 3 4r cT S S A= = + −  , ( ) ( )1 2 2θ = Φ −Φ  u u  [12]. u  is the distance between the origin  

of coordinate and the observation point, ( )1Φ u  is the angle between the 1 2+  singularity—observation point 
line and the x-axis, ( )2Φ u  is the angle between the 1 2−  singularity—observation point line and the x-axis, 
as shown in Figure 1. θ  is the angle between n  and the x-axis. When the distance between the defects is re-
laxed to 0r  (any value wanted), liquid crystal cells with different cell gap are obtained using the plan-parallel 
technique. Take them as the initial conditions of our numerical calculations. The strong anchoring conditions on 
the bounding plates and free boundaries in the x-direction are used. 

3. Results and Discussion 
In order to analyze the influence of d  on the behavior of the defect pair, the time dependence of the distance 
r  between the defect pair for different d  with 0 20.5r ξ=  and moving velocity of the defects as a function 
of time are shown in Figure 2. 

The squares, circles and triangles represent numerical results with different cell gap d , respectively, and the 
full lines are the corresponding fitting curves with function of ( )0r t t α∝ −  [13] [21] in Figure 2(a), where 0t  
is the coalescence time. α  decreases and the fitting error increases with the decrease of d , respectively. α  
decreases from 0.403 0.016±  to 0.392 0.017±  and the relative error increases from 3.9% to 4.3% when d  
decreases from 30ξ  to 20ξ . Further decrease d  to 17.5ξ , α  decreases to 0.387 0.052± , the relative 
error is up to 13.4%, which means that the time dependence of r  has deviated from the exponential law, as 
shown in Figure 2(a). 
 

 u
 ( )1Φ u ( )2Φ u

z
+d/2

-d/2

x0

 
 

Figure 1. The geometry of the problem.                    
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Figure 2. (a) The time dependence of the distance r between the defect pair in a cell for different d with 0 20.5r ξ= ; (b) 
Moving velocity of the defects as a function of time for different d with 0 20.5r ξ= .                                      
 

The distance between two isolated oppositely charged defects is described as ( )0.5
0r t t∝ −  [13] [22]. In a 

confined geometry, the substrate anchoring forces influences the interactions between the defects. The thinner 
the cell gap, the greater the impact of the anchoring forces. Consequently, α  decreases and the fitting error in-
creases with the decrease of d. When d  decreases to 17.5ξ , the anchoring forces are so strong that they make 
the time dependence of r  deviate from the exponential law. 

The moving velocity of the defects increases rapidly with time because the elastic force between the two de-
fects is 1F r∝  [12], but decreases with the decrease of d . It decreases slightly when d  decreases from 
60ξ  to 30ξ , but rapidly when the cell gap decreases to 20ξ  and 17.5ξ , as shown in Figure 2(b). This re-
sults in the increase of the coalescence time 0t  with the decrease of d . The coalescence time slightly increas-
es from 35.3τ  to 37.75τ  when d decreases from 60ξ  to 30ξ , but soars to 55.5τ  and 90τ  when d de- 
creases to 20ξ  and 17.5ξ , respectively. 

It indicates that the anchoring forces coming from the substrates produce a negligible effect on the defects 
when 30d ξ≥ . But, when 20d ξ≤ , the anchoring forces strongly affect the behavior of the dipole: inhibiting 
the moving movement of the defects. The thinner the cell gap, the greater the impact of the anchoring forces. 
Consequently, the moving velocity of the defects decreases with the decrease of the cell gap. 

In order to analyze the influence of 0r  on the behavior of the defect pair, the time dependence of the distance 
r  between the defect pair and moving velocity of the defects as a function of time for different 0r  with 

20d ξ=  are shown in Figure 3. 
α  decreases with the increase of r0. It decreases from 0.441 0.033±  to 0.392 0.017±  when 0r  increases 

from 15ξ  to 20.5ξ . The time dependence of r  follows the exponential law when 0 20.5r ξ≤ . When 0r  
increases to 25ξ , α  decreases to 0.300 ± 0.046, hence the relative error is up to 15%, which indicates the 
time dependence of r  has deviated from the exponential law. The direct elastic interaction between the defects 
gives an elastic force 1F r∝  [12], resulting in the rapid decrease of the moving velocity with the increase of 
r0, as shown in Figure 3(b). Therefore, the coalescence time 0t  soars from 17τ  to 190τ  when r0 increases 
from 15ξ  to 25ξ . 

Increasing the initial distance has the same effect as reducing the cell gap: inhibiting the relative movement of 
the defects. The behavior of the pair depends on the competition between the attractive force, determined by the 
distance r  between the defect pair, and the anchoring forces, determined by the cell gap d. The attractive force 
aggravates the annihilation process, while the anchoring forces inhibit the annihilation process. If the role of one 
kind of force is weakened, then the impact of the other will be relatively enhanced. Therefore, the impact of the 
anchoring forces are relatively enhanced with the increase of 0r , which results in the decrease of α  with the 
increase of 0r  and the time dependence of r  deviating from the exponential law when 0r  increases to 25ξ . 

The anchoring forces and the attractive force must be balanced and the defects can be stable existence under 
certain conditions. In order to find the conditions, the dynamic behavior of the dipole is studied in detail by va-
rying the cell gap d  and the initial distance 0r . The results are shown in Figure 4 and Figure 5. 
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Figure 3. (a) The time dependence of the distance r between the defect pair in a cell for different r0 with d = 20ξ. Squares, 
circles and triangles represent numerical results. The full lines are the corresponding fitting curves with ( )0r t t α∝ − ; (b) 
Moving velocity of the defects as a function of time for different r0 with d = 20ξ.                                          
 

When 0 15r ξ> , there are two equilibrium states, as shown in Figure 4(a), Figure 4(b) and Figure 5. The 
critical thicknesses 1cd  are 19ξ  and 16ξ , respectively. When 1cd d> , the two defects annihilate because 
the attractive force between them plays a major role and a uniform uniaxial state is formed when the system is 
equilibrium. When 1cd d≤ , the defects can be stable existence because the anchoring forces are so strong that 
they can inhibit the relative movement of the defects. The thinner the cell gap, the greater the impact of the anc-
horing forces. As a consequence, the relative moving distance decreases with the decrease of d .  

When 0 15r ξ≤ , there are three equilibrium states, divided by two critical thicknesses: 1cd  and 2cd , as 
shown in Figures 4(c)-(e) and Figure 5. The two critical thicknesses both change linearly with the initial dis-
tance 0r . The corresponding fitting equations are 1 00.761cd r=  and 2 06.95 0.31cd r= + , respectively. When 

1cd d> , the two defects annihilate. The annihilation process has delicate structures. When 2cd d> , the two de-
fects annihilate and a uniform uniaxial state is formed when the system is equilibrium. When 2 1c cd d d≥ > , the 
two defects annihilate. However, the system is not uniform uniaxial, but biaxial in the region where the defects 
collide. Since the two defects are oppositely charged and the total charge is conserved, the defects disappear 
when they collide. But, the director in the region where the defects collide distorts inhomogeneously, which 
creates the biaxial layers. The range of the cell gap d  corresponding to this state increases with the decrease of 

0r . When 1cd d≤ , the dipole can be stable existence as the system is equilibrium because the anchoring forces 
play a major role under this condition. 

4. Conclusions 
The behavior of the dipole in a confined geometry depends on the competition between two kinds of forces: the 
attractive force and the anchoring force. The former aggravates the annihilation process, while the latter inhibits 
it. The system has three equilibrium states, divided by two critical thicknesses 1cd  and 2cd . When 1cd d> ,  
the pair annihilates, and the dynamics follows the function of ( )0r t t α∝ −  as d  is sufficiently large. α  de-  
creases with the decrease of d  or increase of 0r . The annihilation process has delicate structures: when 

0 15r ξ≤  and 2cd d>  or 0  15r ξ>  and 1cd d> , the system is uniaxial at equilibrium state; while, when 
0 15r ξ≤  and 2 1c cd d d≥ > , the system is biaxial in the region where the defects collide. When 1cd d≤ , the 

dipole can be stable existence. 
As far as we know, it is the first time to discover the stable existence of the oppositely charged defects under 

certain conditions. This research plays a major role in the formation and control of topological defects, and has 
significant academic value for mediation of defects on colloidal particles in nematic liquid crystals. 
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Figure 4. The time dependence of 2β  across the defect center parallel to the x-axis at equilibrium 
states: (a) 0 25r ξ= ; (b) 0 20.5r ξ= ; (c) 0 15r ξ= ; (d) 0 10r ξ= ; (e) 0 5r ξ= .                          

 

 
Figure 5. Phase diagram. The circles and squires represent numerical results of dc1 and dc2, respec-
tively; the full lines are the corresponding linear fits.                                                 
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Appendix 
The free-energy density f  of a NLC without external field can be expressed as 

e bf f f= + .                                      (A1) 

They are, respectively, the elastic and the bulk free-energy densities. The former is induced by the inhomo-
geneous order in LCs. It can be given the form 

1 2 3
ij ij ij ijik ik

e
k k j k k j

Q Q Q QQ Q
f L L L

x x x x x x
∂ ∂ ∂ ∂∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂

,                        (A2) 

where 1 2,  L L  and 3L  are elastic constants. The latter is a potential that depends on Q . It is conventionally 
described by an expansion in Q  up to the fourth order 

( )22 3 22 3 2bf Atr Btr C tr= + +Q Q Q .                          (A3) 

Usually it is assumed that ( )0A A T T ∗= − , where T  is temperature and T ∗  is the supercooling tempera-
ture. 0A , B  and C  are coefficients. The traceless and symmetry of Q  are taken into account by the intro-
duction of the Lagrange parameter tensor [32]: 0ij ij ijk kλ δ ε λΛ = − . The full free-energy functional is 

( ) ( ), 2e bf f tr f= + +Λ ΛQ Q .                               (A4) 

The calculation can be simplified by dimensionless variables. Here, we follow the rescaling of Schopohl and 
Sluckin [32] by defining the following dimensionless quantities 

( )( )34 9 ,     ,     ,     ij ij Cf f B C Q Q S x x y yξ ξ= = = = 

  , 

where 9cS B C= −  is the order parameter at the isotropic-nematic phase transition point and  

( ) 2
1 19CL BS CL Bξ = − =  is the characteristic length for order-parameter changes. Hence, the dynamics  

of Q  can be described as 

( ),ij ij ij k kQ t f Q f Q x∂ ∂ = ∂ ∂ − ∂ ∂ ∂ ∂   



 .                            (4) 
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