
American Journal of Computational Mathematics, 2014, 4, 446-454
Published Online December 2014 in SciRes. http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.45037

How to cite this paper: Rehman, S. (2014) Accuracy and Computational Cost of Interpolation Schemes While Performing
N-Body Simulations. American Journal of Computational Mathematics, 4, 446-454.
http://dx.doi.org/10.4236/ajcm.2014.45037

Accuracy and Computational Cost of
Interpolation Schemes While Performing
N-Body Simulations
Shafiq Ur Rehman1,2
1Department of Mathematics, The University of Auckland, Auckland, New Zealand
2Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan
Email: mailto:srehman@uet.edu.pk, srehman@uet.edu.pk

Received 31 October 2014; revised 28 November 2014; accepted 15 December 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The continuous approximations play a vital role in N-body simulations. We constructed three dif-
ferent types, namely, one-step (cubic and quintic Hermite), two-step, and three-step Hermite in-
terpolation schemes. The continuous approximations obtained by Hermite interpolation schemes
and interpolants for ODEX2 and ERKN integrators are discussed in this paper. The primary focus
of this paper is to measure the accuracy and computational cost of different types of interpolation
schemes for a variety of gravitational problems. The gravitational problems consist of Kepler’s
two-body problem and the more realistic problem involving the Sun and four gas-giants—Jupiter,
Saturn, Uranus, and Neptune. The numerical experiments are performed for the different integra-
tors together with one-step, two-step, and three-step Hermite interpolation schemes, as well as
the interpolants.

Keywords
N-Body Simulation, Integrators, Interpolation Schemes

1. Numerical Integrators and Interpolants
Explicit Runge-Kutta-Nyström methods (ERKN) were introduced by E. J. Nyström in 1925 [1]. Here, we are
using two variable-step-size ERKN integrators: Integrator ERKN689 is a nine stage, 6-8 FSAL pair [2] and
ERKN101217 is a seventeen stage, 10-12 non-FSAL pair [2]. Dormand and Prince [3] and then Baker et al. [4]
developed continuous approximation with embedded Runge-Kutta-Nyström methods, in which a third RKN pro-
cess of order p* was used to approximate the solutions, ()1ny t α− + and ()1ny t α− +′ , where 1 1 1n n nt t hα α− + − −= +

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.45037
http://dx.doi.org/10.4236/ajcm.2014.45037
http://www.scirp.org/
mailto:srehman@uet.edu.pk
mailto:srehman@uet.edu.pk
http://creativecommons.org/licenses/by/4.0/

S. Rehman

447

with α typically in (0, 1]. For ERKN101217, we used three existing interpolants: a 23-stage interpolant with
10p∗ = , a 26-stage interpolant with 11p∗ = , and a 29-stage interpolant with 12p∗ = . The coefficients for

these interpolants are not tabulated in this paper but are freely available on-line [4]. For ERKN689, we used an
8th-order interpolant with 12 stages. The coefficients for the continuous approximation of ERKN689 were pro-
vided by P. W. Sharp (private communication).

For the direct numerical approximation of systems of second-order ODEs, Hairer, Nørsett and Wanner [5]
developed an extrapolation code ODEX2 based on the explicit midpoint rule with order selection and step-size
control. The ODEX2 integrator is good for all tolerances, especially for high arithmetic precision, for example,
10−20 or 10−30. For ODEX2 integrator we used the built-in interpolant.

Störmer methods are an important class of numerical methods for solving systems of second-order ordinary
differential equations. Störmer methods were introduced by Störmer [6]. These methods have long been utilized
for accurate long-term simulations of the solar system [7]. Grazier [8] recommended a fixed-step-size Störmer
method of order 13 that used backward differences in summed form, summing from the highest to lowest dif-
ferences. In this paper we consider an order-13, fixed-step-size Störmer method and refer to it as the -13S in-
tegrator.

1.1. Hermite Interpolation Schemes
Hermite interpolation uses derivative and function values and is named after Charles Hermite (1822-1901). We
used four schemes: one-step (cubic and quintic Hermite), two-step and three-step Hermite interpolation schemes.
The cubic Hermite interpolation polynomial is of degree 3, while the quintic, two-step and three-step Hermite
interpolation polynomials are of degrees 5, 8 and 11, respectively. The interpolation schemes are derived using a
Newton divided difference approach, which is described in Section 1.1.1. There is a second approach, which we
call the direct approach that is frequently used by other researchers; for example, see [9]. This approach is par-
ticularly suited for cubic and quintic Hermite interpolation schemes, and we describe it in Sections 1.1.2 and
1.1.3.

1.1.1. Newton Divided Difference Approach
To determine the interpolating polynomial ()mP t for the m points (),j jt y , 0,1, , 1j m= − , using the New-
ton divided difference (NDD) approach, we write ()mP t as

() () ()() () ()0 1 0 2 0 1 0 1 ,m m mP t a a t t a t t t t a t t t t −= + − + − − + + − − 

where the a’s are calculated from the divided differences. The ith divided difference can be calculated using

[] [] []
()

1 0 1
0 1

0

, , , ,
, , , ,i i

i
i

f t t f t t
f t t t

t t
−−

=
−

 



see Table 1. We now discuss how the NDD must be modified when derivative values are used. Let us consider
the first-order differences in Table 1. For example, if 1 0t t= then we have

[] ()
1 0

0 1 0lim , .
t t

f t t f t
→

′=

Similarly, for the second-order differences in Table 1, if, for example, 2 0t t= then we find

[] ()
2 0

0
0 1 2lim , , .

2t t

f t
f t t t

→

′′
=

Hence, for Hermite interpolation schemes we can use the NDD approach if the derivatives replace the cor-
responding divided differences.

1.1.2. Cubic Hermite Interpolation
In this section and the next, we describe the direct approach for obtaining the cubic and quintic Hermite poly-
nomials. The cubic Hermite interpolation polynomial ()3P t for the time-step from 1nt t −= to nt t= interpo-
lates the data (),n i n it y− − and (),n i n it y− −′ at time n it − , for 1i = and 0. In the direct approach, the cubic Her-
mite interpolation polynomial is written as

S. Rehman

448

Table 1. An illustrative Newton divided difference table.

j jt ()jf t

0 0t 0y

 []0 1,f t t

1 1t 1y []0 1 2, ,f t t t

 []1 2,f t t []0 1 2 3, , ,f t t t t

2 2t 2y []1 2 3, ,f t t t []0 1 2 3 4, , , ,f t t t t t

 []2 3,f t t []1 2 3 4, , ,f t t t t []0 1 2 3 4 5, , , , ,f t t t t t t

3 3t 3y []2 3 4, ,f t t t []1 2 3 4 5, , , ,f t t t t t

 []3 4,f t t []2 3 4 5, , ,f t t t t

4 4t 4y []3 4 5, ,f t t t

 []4 5,f t t

5 5t 5y

()3 0 1 1 1 2 3 ,n n n nP t a y a Hy a y a Hy− −′ ′= + + +

where,

() ()2
0 1 2 1 ,a τ τ= − +

()2
1 1 ,a τ τ= −

()2
2 3 2 ,a τ τ= −

()2
3 1 ,a τ τ= −

and 1n nH t t −= − with ()1nt t Hτ −= − . Since the values of y and y′ at both ends of each step are interpo-
lated, the piecewise defined approximation ()numy t formed from the cubic Hermite polynomial is continuous
and has a continuous first derivative.

1.1.3. Quintic Hermite Interpolation
The quintic Hermite interpolation polynomial ()5P t for the time-step from 1nt t −= to nt t= interpolates the
data (),n i n it y− − , (),n i n it y− −′ , and (),n i n it y− −′′ at time n it − , for 1i = and 0. As for cubic Hermite interpolation,
the quintic Hermite interpolation polynomial can be derived using a direct approach and written as

() 2 2
5 0 1 1 1 2 1 3 4 5 ,n n n n n nP t a y a Hy a H y a y a Hy a H y− − −′ ′′ ′ ′′= + + + + +

where,

() ()3 2
0 1 6 3 1 ,a τ τ τ= − + +

() ()3
1 1 3 1 ,a τ τ τ= − +

()3 2
2 1 2,a τ τ= −

()3 2
3 6 15 10 ,a τ τ τ= − +

()()3
4 1 3 4 ,a τ τ τ= − −

()23
5 1 2,a τ τ= −

S. Rehman

449

and 1n nH t t −= − with ()1nt t Hτ −= − , as before. Since the values of y, y′ , and y′′ at both ends of each step
are interpolated, the piecewise defined approximation ()numy t formed from the quintic Hermite polynomial is
continuous and has continuous first and second derivatives.

1.1.4. Two-Step Hermite Interpolation Polynomial
The two-step Hermite interpolation polynomial ()8P t for the two-time-steps from 2nt t −= to nt t= interpo-
lates the data (),n i n it y− − , (),n i n it y− −′ , and (),n i n it y− −′′ at time n it − , with 2,1,i = and 0. The two-step Hermite
interpolation polynomial ()8P t can then be written in Horner’s nested multiplication form as

() () () () () () ()()(((
() () ()()()())))

8 11 2 22 2 33 2 44 1 55 1

66 1 77 88 99 ,

n n n n n

n n n

P t D t t D t t D t t D t t D t t

D t t D t t D t t D

− − − − −

−

= + − + − + − + − + −


× + − + − + − 


where the coefficients iiD , 1, ,9i =  , are obtained using a NDD table. Since the values of y, y′ , and y′′ at
both ends of each step are interpolated, the piecewise defined approximation ()numy t formed from the two-step
Hermite polynomial is continuous and has continuous first and second derivatives.

1.1.5. Three-Step Hermite Interpolation Polynomial
Similarly, the three-step Hermite interpolation polynomial interpolates the data (),n i n it y− − , (),n i n it y− −′ , and
(),n i n it y− −′′ at time n it − , for 3, 2,1,i = and 0. Hence, it is the degree-11 polynomial ()11P t defined over a
three-time-step from 3nt t −= to nt t= . Using Horner’s nested multiplication form, we can write ()11P t as

() () () () () ()()()()()
() () () () ()()((((
()())))))

11 11 3 22 3 33 3 44 2 55 2

66 2 77 1 88 1 99 1 1010

1111 1212 .

n n n n n

n n n n n

n

P D t t D t t D t t D t t D t t

D t t D t t D t t D t t D t t

D t t D

− − − − −

− − − −

   = + − + − + − + − + −  
× + − + − + − + − + −


× + −  

As for the two-step Hermite interpolation polynomial, the coefficients iiD , 1, ,12i =  , of ()11P t are ob-
tained using NDD. Since the values of y, y′ , and y′′ at both ends of each step are interpolated, the piecewise
defined approximation ()numy t formed from the three-step Hermite polynomial is continuous and has conti-
nuous first and second derivatives.

We compared the maximum error in position and the CPU-time for P3 and P5 evaluated using NDD and the
direct approach. The comparison was done for one period of Kepler problem for eccentricities of 0.05 to 0.9 (see
Section 2.1 for more details on the experiment), and the Jovian problem [10].

For the two-body problem, no significant differences in the maximum error as CPU-time were observed be-
tween these two approaches. For the Jovian problem, the direct approach takes approximately half the CPU-time
of the NDD approach. The coefficients of the polynomial for the NDD approach depend on the components of
the solution vector. For the direct approach the coefficients are independent of the components, so they can be
used as a vector to approximate polynomials and that will save CPU-time.

In the rest of the paper, cubic and quintic Hermite interpolation schemes are implemented using the direct ap-
proach. For two-step and three-step Hermite interpolation schemes we implemented the NDD approach, because
it is really difficult to find the coefficients for the direct approach.

2. Numerical Experiments
Here, we examine the error growth in the position and velocity for the Kepler problem. The experiments for
short-term integrations are performed using four different types of interpolation schemes applied to the Kepler
problem over the interval of 2π.

2.1. Kepler Problem with Different Eccentricities
The solution to the Kepler problem is periodic with period 2π. We do not have to calculate the reference solution,

S. Rehman

450

so the Kepler problem is well suited for testing the accuracy of integration over a short time interval. This as-
sumes the step-size is chosen so that 2πt = is hit exactly.

The error in the position and velocity of the Kepler problem is given by the L2-norm

() () ()
() () ()

num true 2

num true 2

 ,

 ,
r

v

E t r t r t

E t v t v t

= −

= −

where ()numr t and ()truer t are the vectors of the numerical and true solutions, and ()numv t and ()truev t are
the vectors of the derivatives to the numerical and true solutions, respectively.

The graphs in Figure 1 are for experiments performed with the cubic, quintic, two-step, and three-step Her-
mite interpolation schemes applied to the Kepler problem over the interval []0,2π for eccentricities in the
range [0.05, 0.9]; note that, in reality, planets and test particles do not have eccentricity 0, and we used 0.05 as
an approximate upper bound for the eccentricities of the Jovian planets. The selection of these interpolation
schemes is motivated by the fact that they can be used with all the integrators described in this paper. The inter-
polants, on the other hand, are related to specific integrators; for example, the 12-stage interpolant can only be
used with the ERKN689 integrator. For the experiments shown in Figure 1, the interval of integration is subdi-
vided into 30 evenly spaced sub-intervals; experiments with different numbers of sub-intervals are recorded in
Table 2. We then evaluate the position and velocity at 10 evenly spaced points on each sub-interval using dif-
ferent interpolation schemes. Note that we also tested with up to 100 sample points and observed a variation in
the error of not more than 1%. The information, such as, positions, velocities, and times, are saved in separate
files. In a post-processing step, we then calculate the errors in the positions and velocities with respect to the
analytical solution that we obtain at the stored values of time. The velocity polynomials for all these interpola-
tion schemes are obtained by differentiating their corresponding position polynomials.

From Figure 1, we observe a clear pattern; as the eccentricity increases, the maximum error in the position
also increases. The variation in the error is understandable, because the error depends upon the eccentricity. To
illustrate this fact, recall that the analytical solution to the Kepler problem is given by

() ()() () ()
T

2
1 2, cos , 1 sin ,y t y t e eη η = − −  

 (1)

Figure 1. The maximum global error in position for the cubic, quintic, 2-step, and 3-step
Hermite interpolation schemes against different eccentricities applied to the two-body prob-
lem over a period of 2π.

S. Rehman

451

Table 2. The maximum global error in position for eccentricity 0.05 attained by different interpolation schemes applied to
the Kepler problem over the interval [0, 2π] with four choices of numbers of evenly spaced sub-intervals. The dash means
the combination is not used.

Nsub Cubic Quintic 2-step 3-step

17 060.71 10−× 080.19 10−× 110.87 10−× 120.21 10−×

79 080.15 10−× 120.19 10−× 160.56 10−× 160.55 10−×

255 100.14 10−× 150.18 10−× 160.55 10−× -

1080 130.44 10−× 160.56 10−× - -

where η is the eccentric anomaly satisfying () sint eη η= − and the interpolation error, for example, for the

y1-component of this solution can be written as
() ()
()

1
11

1 !

p
p y

h
p

ξ
α

+
+

+
. The first three derivatives of y1 are

()
()

1 sind
 ,

d 1 cos
y
t e

η
η

−
=

−

()
()()

2
1

2 3

cosd
 ,

d 1 cos

ey
t e

η

η

−
=

−

() ()()
()()

23
1

3 5

sin 1 2 cos 3d
.

d 1 cos

e ey
t e

η η

η

+ −
=

−

It is clear that these and all subsequent derivatives are expected to involve the factor ()()1 1 cose η− . Since
the minimum value of ()1 cose η− gets smaller and smaller as e increases, it is expected that the error in-
creases as e increases; a similar argument holds for the y2-component. Indeed, for all interpolation schemes the
minimum error in the position occurs at eccentricity 0.05 and the maximum error at eccentricity 0.9 in Figure 1.
We also observe in Figure 1 that, for small eccentricity like e = 0.05, the difference in the errors between con-
secutive interpolation schemes is approximately two orders of magnitude. As e increases to 1, this difference
decreases and all four errors in Figure 1 appear to converge. We also computed the error in the velocity and
found that it is nearly two orders of magnitude larger than the error in the position. These experiments were also
performed in quadruple-precision, but there was hardly any difference between the estimated errors obtained in
double- and quadruple-precision. For example, using a 3-step interpolation scheme with eccentricity 0.05 and
0.9, the differences between the estimated errors in the position obtained in double- and quadruple-precision are
4.40 × 10−15 and 1.67 × 10−14, respectively. We conclude that the interpolation schemes are not affected a great
deal by the round-off error when using 30 evenly spaced sub-intervals.

As mentioned earlier, the same sets of experiments described in Figure 1, were also done with different
numbers of sub-intervals. We experimented with 17, 79, 255, and 1080 evenly spaced sub-intervals over the in-
terval []0,2π . The associated errors for e = 0.05 are shown in Table 2. This particular selection of the number
of sub-intervals is due to the fact that we wish to maintain the best observed accuracy of the integrators ODEX2,
ERKN101217, ERKN689, and -13S ; see [10] and note that we use a time-step of 4 days for -13S . For exam-
ple, the ODEX2 integrator applied to the Jovian problem achieves best accuracy using tolerance 10−16 and an
average time-step of approximately 260 days over one million years. Since Jupiter’s orbital period is approx-
imately 4320 Earth days, a time-step of 260 days gives approximately 17 steps.

The results in Table 2 show reasonably good agreement with the expected values calculated from the orders
of the polynomial, discounting the possible increase in round-off error from using a higher-order interpolation
scheme and a large number of sub-intervals. For example, using the cubic Hermite interpolation scheme, and
going from 17 to 79 sub-intervals, the expected value is () ()4 06 0917 79 0.71 10 1.52 10− −× × ≈ × which has very
good agreement with the value 0.15 × 10−08 mentioned in Table 2.

From Table 2 we find that the accuracy for a given interpolation scheme improves if the number of sub-in-
tervals increases. We also deduce from Table 2 that it makes no sense to use any of the four interpolation

S. Rehman

452

schemes with ODEX2 if the required maximum global error is 10−15 and 17 sub-intervals are used. For 79 sub-
intervals (used for ERKN101217) only the 2-step and 3-step Hermite interpolation schemes achieve the required
accuracy. Similarly, for ERKN689, the quintic and 2-step interpolation schemes achieve the required accuracy,
whereas for the -13S integrator, only the quintic Hermite interpolation scheme does.

2.2. Computational Cost of Interpolation Schemes
Let us now consider the CPU-time by looking at individual interpolation schemes. Our expectation, at least for
the interpolation schemes, is that the CPU-time is proportional to the number of multiplications. If one interpo-
lation scheme uses twice as many multiplications then the CPU-time is expected to be twice as large. There will
not be many divisions, and the number of subtractions and additions is typically proportional to the number of
multiplications. Normally, when timing a program, an overhead is introduced. Therefore, care has been taken
not to include such overheads in the final results. We also checked reproducibility of the results and observed a
maximum variation of not more than 2.5%.

As discussed earlier, there are two different approaches to form interpolation schemes. Here, the experiments
are performed using a direct approach for cubic and quintic Hermite interpolation, and the Newton divided dif-
ference approach for 2-step and 3-step Hermite interpolation schemes. In most cases, interpolation schemes are
split into two subroutines, one for finding the coefficients and one for evaluating the polynomials. For
ERKN689 and ERKN101217, with the interpolants we have additional stage derivatives (function evaluations).
Overall, we have three different groups of interpolation schemes:

1) For cubic and quintic Hermite interpolation schemes, we evaluate the coefficients of the polynomial, which
are independent of the components, and the polynomial as one subroutine.

2) For 2-step and 3-step Hermite interpolation schemes, we have two subroutines:
a) The calculation of the coefficients by forming a Newton divided difference table;
b) The evaluation of the polynomial.
3) For the interpolants, we have three subroutines:
a) The evaluation of the coefficients b ;
b) The evaluation of the additional stage derivatives;
c) The evaluation of the polynomial using a) and b).
For ODEX2, the pieces of information required to form the interpolant are considered part of the integration,

and we only consider the evaluation of the polynomial; see Table 5.
Since the coefficients of the polynomials for cubic and quintic interpolations are independent of the compo-

nents, the experiments for these interpolation schemes are performed as one unit. As can be seen from the for-
mulae in Sections 1.1.2 and 1.1.3, the quintic Hermite interpolation scheme uses approximately 93% more mul-
tiplications than cubic Hermite interpolation when applied to the Jovian problem. When we did our experiment,
we found that the quintic Hermite interpolation scheme uses approximately 96% more CPU-time than cubic
Hermite interpolation, which is in good agreement with the expected value.

Table 3 shows the CPU-time for finding the stage derivatives of the pairs (without the cost of additional stage
derivatives) used in ERKN689 and ERKN101217 when applied to the Jovian problem. With ERKN689 we use
the property FSAL (first same as last), so that we need only 8 derivative evaluations per step. Similarly, the
12-stage interpolant has effectively 11 stage derivatives. Observe from Table 3 that the average CPU-time con-
sumed per stage is approximately 8.74 × 10−07 and 8.71 × 10−07 for ERKN689 and ERKN101217, respectively.
Therefore, the expected CPU-time for ERKN689 with a 12-stage interpolant is approximately 9.61 × 10−06. For
ERKN101217, the expected CPU-time for finding coefficients is approximately 2.00 × 10−05, 2.26 × 10−05, and
2.52 × 10−05 with 23-stage, 26-stage, and 29-stage interpolants, respectively.

Table 4 gives the CPU time needed to find the coefficients of the interpolation schemes and evaluate all the
derivatives for the interpolants when solving the Jovian problem. We observe that all values in Table 4 have
reasonably good agreement with the prescribed values for CPU-time. Note also that the 3-step Hermite interpo-
lation scheme in Table 4 uses approximately 96% more multiplications than the 2-step Hermite interpolation
scheme, which is reasonably well matched by our finding of 93%.

Table 5 shows the CPU-time for evaluating the position and velocity components using the different interpo-
lation polynomials. The 3-step interpolation scheme uses approximately 76% more CPU-time than the 2-step
interpolation, which is again in agreement with the CPU-times observed in Table 4. Similarly, the difference in

S. Rehman

453

Table 3. The CPU-time in seconds for evaluating the stage derivatives (without the
cost of additional function evaluations) for ERKN689 and ERKN101217 applied to
the Jovian problem.

Integrator
ERKN689 ERKN101217

9-stage 17-stage

CPU-time 066.99 10−× 051.48 10−×

Table 4. The CPU-time in seconds for finding the coefficients of the interpolation schemes and evaluating all the stage de-
rivatives of the interpolants applied to the Jovian problem.

Interpolation ERKN689 ERKN101217

Polynomial 2-step 3-step 12-stage 23-stage 26-stage 29-stage

CPU-time 62.83 10−× 65.54 10−× 69.54 10−× 52.00 10−× 52.32 10−× 52.66 10−×

Table 5. The CPU-time in seconds for evaluating the position and velocity polynomials using different interpolation poly-
nomials applied to the Jovian problem.

Interpolation ERKN68 ERKN101217 ODEX2

Polynomial 2-step 3-step 12-stage 23-stage 26-stage 29-stage Interpolant

CPU-time 76.7 10−× 61.18 10−× 72.97 10−× 74.42 10−× 74.96 10−× 75.50 10−× 61.48 10−×

CPU-time between the 23-stage and 29-stage interpolants is twice the difference between the 23-stage and 26-
stage interpolants which is in good agreement with the difference observed in Table 4.

3. Summary
The primary objective of this paper was to discuss the accuracy and computational cost of different interpolation
schemes while performing N-body simulations. The interpolation schemes play a vital role in these kinds of si-
mulations. We constructed three different types, namely, one-step (cubic and quintic Hermite), two-step and
three-step Hermite interpolation schemes. For short-term simulations, we investigated the performance of these
interpolation schemes applied to the Kepler problem over the interval [0, 2] for eccentricities in the range [0.05,
0.9]. We observed that the maximum error in position was monotonically increasing as a function of eccentricity.
For a given number of sub-intervals we used in this paper, the higher-order interpolation schemes achieve better
accuracy and for a given interpolation scheme the accuracy improves if the number of sub-intervals is increased.
We also investigated the CPU-time by looking at individual interpolation schemes. Our expectation, at least for
the interpolation schemes, was that the CPU-time was proportional to the number of multiplications. For exam-
ple, the quintic Hermite interpolation scheme uses approximately 93% more multiplications than cubic Hermite
interpolation when applied to the Jovian problem. When we did our experiment, we found that the quintic Her-
mite interpolation scheme used approximately 96% more CPU-time than cubic Hermite interpolation, which
was in good agreement with the expected value. We also checked reproducibility of the results and observed a
maximum variation of not more than 2.5%.

Acknowledgements
The author is grateful to the Higher Education Commission (HEC) of Pakistan for providing the funding to carry
out this research. Special thanks go to Dr. P. W. Sharp and Prof. H. M. Osinga for their valuable suggestions,
discussions, and guidance throughout this research.

References
[1] Nyström, E.J. (1925) Über die numerische Integration von Differentialgleichungen. Acta Societatis Scientiarum Fen-

nicae, 50, 1-54.

S. Rehman

454

[2] Dormand, J., El-Mikkawy, M.E.A. and Prince, P. (1987) Higher Order Embedded Runge-Kutta-Nyström Formulae.
IMA Journal of Numerical Analysis, 7, 423-430. http://dx.doi.org/10.1093/imanum/7.4.423

[3] Dormand, J.R. and Prince, P.J. (1987) New Runge-Kutta Algorithms for Numerical Simulation in Dynamical Astron-
omy. Celestial Mechanics, 18, 223-232. http://dx.doi.org/10.1007/BF01230162

[4] Baker, T.S., Dormand, J.R. and Prince, P.J. (1999) Continuous Approximation with Embedded Runge-Kutta-Nyström
Methods. Applied Numerical Mathematics, 29, 171-188. http://dx.doi.org/10.1016/S0168-9274(98)00065-8

[5] Hairer, E., Nørsett, S.P. and Wanner, G. (1987) Solving Ordinary Differential Equations I: Nonstiff Problems. Sprin-
ger-Verlag, Berlin.

[6] Störmer, C. (1907) Sur les trajectoires des corpuscles électrisés. Acta Societatis Scientiarum Fennicae, 24, 221-247.
[7] Grazier, K.R., Newman, W.I., Kaula, W.M. and Hyman, J.M. (1999) Dynamical Evolution of Planetesimals in Outer

Solar System. ICARUS, 140, 341-352. http://dx.doi.org/10.1006/icar.1999.6146
[8] Grazier, K.R. (1997) The Stability of Planetesimal Niches in the Outer Solar System: A Numerical Investigation. Ph.D.

Thesis, University of California, Berkeley.
[9] Grazier, K.R., Newman, W.I. and Sharp, P.W. (2013) A Multirate Störmer Algorithm for Close Encounters. The As-

tronomical Journal, 145, 112-119. http://dx.doi.org/10.1088/0004-6256/145/4/112
[10] Rehman, S. (2013) Jovian Problem: Performance of Some High-Order Numerical Integrators. American Journal of

Computational Mathematics, 3, 195-204. http://dx.doi.org/10.4236/ajcm.2013.33028

http://dx.doi.org/10.1093/imanum/7.4.423
http://dx.doi.org/10.1007/BF01230162
http://dx.doi.org/10.1016/S0168-9274(98)00065-8
http://dx.doi.org/10.1006/icar.1999.6146
http://dx.doi.org/10.1088/0004-6256/145/4/112
http://dx.doi.org/10.4236/ajcm.2013.33028

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Accuracy and Computational Cost of Interpolation Schemes While Performing N-Body Simulations
	Abstract
	Keywords
	1. Numerical Integrators and Interpolants
	1.1. Hermite Interpolation Schemes
	1.1.1. Newton Divided Difference Approach
	1.1.2. Cubic Hermite Interpolation
	1.1.3. Quintic Hermite Interpolation
	1.1.4. Two-Step Hermite Interpolation Polynomial
	1.1.5. Three-Step Hermite Interpolation Polynomial

	2. Numerical Experiments
	2.1. Kepler Problem with Different Eccentricities
	2.2. Computational Cost of Interpolation Schemes

	3. Summary
	Acknowledgements
	References

