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Abstract 
Some new construction methods of the optimum chemical balance weighing designs and pairwise 
efficiency and variance balanced designs are proposed, which are based on the incidence matrices 
of the known symmetric balanced incomplete block designs. Also the conditions under which the 
constructed chemical balance weighing designs become A-optimal are also been given. 
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1. Introduction 
Sir R. A. Fisher, a founder of modern concept of experimental designs gave the new ideas of designing in his 
first book Design of Experiment in the year 1935. Fisher’s work was continued by others; see [1]-[4]. The nec-
essary and sufficient condition for a general block design to be variance balanced and efficiency balanced was 
given in the literature [5]-[8]. The concept of repeated blocks was introduced by Van Lint; see [9]. Further some 
potential applications of the balanced incomplete block designs with repeated blocks were presented in the lit-
erature [10]-[13].  

Another important concept which we discuss in this paper is weighing designs. The concept of weighing de-
sign was originally given by Yates and formulated as a weighing problem by Hotelling and the condition of at-
taining the lower bound by each of the variance of the estimated weights was given by him; see [14] [15]. In the 
latter developments, attention has been made in the direction of obtaining optimum weighing designs. Prominent 
work has been done by many researchers in this field; see [16]-[20]. In recent years, the new methods of con-
structing the optimum chemical balance weighing designs and a lower bound for the variance of each of the es-
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timated weights from this chemical balance weighing design were obtained and a necessary and sufficient con-
dition for this lower bound to be attained was proposed in the literature; see [21]-[24]. The constructions were 
based on the incidence matrices of balanced incomplete block designs, balanced bipartite block designs, ternary 
balanced block designs and group divisible designs. 

Awad et al. [25] [26] gave the construction methods of obtaining optimum chemical balance weighing de-
signs using the incidence matrices of symmetric balanced incomplete block designs and some pairwise balanced 
designs were also been obtained which were efficiency as well as variance balanced. In that series we now pro-
pose another new construction methods of obtaining optimum chemical balance weighing designs using the in-
cidence matrices of symmetric balanced incomplete block designs and some more pairwise efficiency as well as 
variance balanced designs are proposed. Also we present the conditions under which the chemical balance 
weighing designs constructed by new construction methods leading to the A-optimal designs. 

Let us consider ν  treatments arranged in b  blocks, such that the thj  block contains jk  experimental 
units and the thi  treatment appears ir  times in the entire design, 1, 2, ,i ν=  ; 1, 2, ,j b=  . For any block 
design there exist a incidence matrix ijN n =    of order bν × , where ijn  denotes the number of experiment 
units in the thj  block getting the thi  treatment. When 1ijn =  or 0 i∀  and j , the design is said to be binary. 
Otherwise it is said to be nonbinary. In this paper we consider binary block designs only. The following addi-
tional notations are used [ ]1 2 bk k k k ′=   is the column vector of block sizes, [ ]1 2 vr r r r ′=   is the column 
vector of treatment replication, [ ]1 2diagb b bK k k k× =  , [ ]1 2diagv v vR r r r× =  , i jr k nΣ = Σ =  is the total num-
ber of experimental units, with this 1bN r=  and 1vN k′ =  Where 1a  is the 1a×  vector of ones. 

An equi-replicate, equi-block sized, incomplete design, which is also balanced in the sense given above is 
called balanced incomplete block design, which is an arrangement of ν  symbols (treatments) into b  sets 
(blocks) each containing k ( )k ν<  distinct symbols, such that any pair of distinct symbols occurs in exactly 
λ  sets. Then it is easy to see that each treatment occurs in r ( )λ>  sets. ν , b , r , k , λ  are called pa-
rameters of the BIBD and the parameters satisfies the relations r bkν = , ( ) ( )1 1r k λ ν− = −  and b ν≥  
(Fisher’s Inequality). A BIB design is said to be symmetric if b ν=  and r k= . In this case incidence matrix is 
a square matrix i.e. N N′ = . In case of symmetric balanced incomplete block design any two blocks have λ  
treatments in common. 

Though there have been balanced designs in various senses (see [6] [27]). We will consider a balanced design 
of the following type. 

A block design is called variance balanced if and only if 
1) It permits the estimation of all normalized treatment contrasts with the same variance (see [7]). 
2) If the information matrix for treatment effects –1C R NK N ′= −  satisfies ( )1 1 1C Iν ν νµ ν ′= −   . 

where µ  is the unique nonzero eigen value of the matrix C  with the multiplicity ( )1v − , vI  is the v v×  
identity matrix.  

A block design is called efficiency balanced if  
1) Every contrast of treatment effects is estimated through the design with the same efficiency factor. 
2) ( ) ( )( )1 1 1 1 1 1oM R NK N n r I n rν ν νψ− − ′ ′ ′= − = ; see [2], and since oM S Sψ= , where ψ  is the unique 

non zero eigen value of oM  with multiplicity ( )1v − . For the EB block design N , the information matrix 

C  is given as ( ) ( )( )1 1C R n rrψ ′= − − ; see [28]. 

A block design is said to be pairwise balanced if 
1

b

ij i j
j

n n ′
=

= Λ∑  (a constant) for all i , i′ , i i′≠  and a pair- 

wise balanced block design is said to be binary if 0ijn =  or 1 only, for all i , j  and it has parameters ν , b , 
r , k , Λ  ( λ= , say) [in this case, when 1vr r=  and 1bk k= , it is a BIB design with parameters ν , b , r , 
k , λ ]. 

Weighing designs consists of n  groupings of the p  objects and suppose we want to determine the indi-
vidual weights of p  objects. We can fit the results into the general linear model  

Y X w e= +                                            (1) 
where Y  is an 1n×  random column vector of the observed weights, w  is the 1p×  column vector repre- 
senting the unknown weights of objects and e  is an 1n×  random column vector of errors such that 
( ) 0nE e =  and ( ) 2

nE ee Iσ′ = . ( )ijX x= , ( )1,2, , ;  1, 2, ,i n j p= =   is a n p×  matrix of known quanti-
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ties. The elements of matrix X  take the values as 
th th

th

th th

1 if the   object is placed in the left pan in the  weighing, 
1  if the   object is placed in the right pan in the  weighing

0 if the   object is not weighted in the  weighing

th
ij

j i
x j i

j i

+
= −




 

The normal equations estimating w  are of the form 
ˆX X w X Y′ ′=                                        (2) 

where ŵ  is the vector of the weights estimated by the least squares method.  
The matrix X  is called the design matrix. A weighing design is said to be singular or nonsingular, depend-

ing on whether the matrix X X′  is singular or nonsingular, respectively. It is obvious that the matrix X X′  is 
nonsingular if and only if the matrix X  is of full column ( )rank p= . Now, if X  is of full rank, that is, when 
X X′  is nonsingular, the least squares estimate of w  is given by 

( ) 1ŵ X X X Y−′ ′=                                     (3) 

and the variance-covariance matrix of ŵ  is 

( ) ( ) 12ˆVar w X Xσ −′=                                   (4) 

When the objects are placed on two pans in a chemical balance, we shall call the weighings two pan weighing 
and the design is known as two pan design or chemical balance weighing design. In chemical balance weighing 
design, the elements of design matrix ( )ijX x=  takes the values as +1 if the thj  object is placed in the left 
pan in the thi  weighing, 1−  if the thj  object is placed in the right pan in the thi  weighing and 0 if the thj  
object is not weighted in the thi  weighing. 

Hotelling has shown that if n  weighing operations are to determine the weights of p n=  objects, the 
minimum attainable variance for each of the estimated weights in this case is 2 nσ  and proved the theorem 
that each of the variance of the estimated weights attains the minimum if and only if pX X nI′ =  (see [14]). 

2. Variance Limit of Estimated Weights 
Let X  be an n p×  matrix of rank p  of a chemical balance weighing design and let jm  be the number of 
times in which thj  object is weighed, 1, 2, ,j p= 

 (i.e. the jm  be the number of elements equal to −1 and 1 
in thj  column of matrix X ). Then Ceranka et al. (see [21]) proved the following theorem:  

Theorem 2.1. For any n p×  matrix X , of a nonsingular chemical balance weighing design, in which  
maximum number of elements equal to 1−  and 1 in columns is equal to m, where { }1 2max , , , pm m m m=  .  

Then each of the variances of the estimated weights attains the minimum if and only if  

pX X mI′ =                                          (5) 

Also a nonsingular chemical balance weighing design is said to be optimal for the estimating individual 
weights of objects if the variances of their estimators attain the lower bound given by,  

( )
2

ˆVar ,     1, 2, ,w j p
m
σ

= =                              (6) 

In SBIB design ( ), ,D v r λ ; the block intersection between any two blocks is constant i.e. λ . Using this 
concept Banerjee (see [29]) proved the following results;  

Proposition 2.2. Existence of SBIB design ( ), ,v r λ ; implies the existence of a BIB design ′  with pa- 

rameters v v′ = , 2
2
v

b ′ =


 
 

, ( )1r r ν′ = − , k k′ = , 2
2
k

λ
′ =


 
 

. 

Proposition 2.3. Existence of SBIB design ( ), ,v r λ ; implies the existence of a BIB design ′  with pa- 

rameters v v′ = , 
2
v

b λ
′ =


 
 

, 
2
r

r r ′ =


 
 

, k k′ = , 
2
k

λ λ
′ =


 
 

. 

3. Construction of Design Matrix: Method I 
In SBIB design D  with the parameters v b= , r k= , λ ; fix the thj  block ( )1,2, ,j b=  . Corresponding 
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to the thj  fixed block, give negative sign to all the λ  common treatments of remaining ( )1b −  blocks. Then 
eliminate that fixed block. Thus matrix 1N  of design 1D  is obtained. 

Now doing the same procedure for all the remaining ( )1b −  blocks, the incidence matrix 1N∗  of the new 
design 1D∗  so formed is the matrix having the elements 1, 1−  and 0; given as follows 

[ ]1 1 2N N N Nν∗ =                                        (7) 

Then combining the incidence matrix N  of SBIB design repeated s-times with 1N ∗  we get the matrix X  
of a chemical balance weighing design as 

-times

1

s

X N N N∗

′ 
 =
  



                                      (8) 

Under the present construction scheme, we have 2
2

b
v

n s 
+ 

 
=  and p v= . Thus the each column of X  

will contain ( )1 r b r srρ = − + elements equal to 1, ( )2 1r rρ = −  elements equal to 1−  and 1 2n ρ ρ− −  ele-

ments equal to zero. Clearly such a design implies that each object is weighted ( )1 2 1m r b srρ ρ= + = − +  

times in 2
2

b
v

n s 
+ 

 
=  weighing operations.  

Lemma 3.1. A design given by X  of the form (8) is non singular if and only if ( ) ( )( )4r b r k sλ λ− ≠ − + . 
Proof. For the design matrix X  given by (8), we have 

( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( )( ){ }

1 1 4 1 4

       4 1 4

X X r sr k k k s I k k k s J

X X r b r k s I k k k s J

ν νν

ν νν

ν λ λ λ λ λ λ

λ λ λ λ

 ′ = − + − − − − + + − − − + 
 ′⇒ = − + − + + − − − − 

       (9)
 

and 

( ) ( ) ( ) ( )( ){ } ( ) ( ) ( )( ){ } 1
1 1 1 4 1 1 4X X r b s k k k s r b s k k k s

ν
ν λ λ λ λ

−
   ′ = − + + − − − − − × − + − − − − −     (10) 

the determinant (10) is equal to zero if and only if  

( ) ( ) ( )( ) ( ) ( )( )1 1 4 4r b s k k k s r b r k sλ λ λ λ− + = − − − − ⇒ − = − +  

or ( ) ( ) ( ) ( )( ){ }1 1 1 4r b s k k k sν λ λ− + = − − − − −  

but ( ) ( ) ( ) ( )( ){ }1 1 1 4r b s k k k sν λ λ− + + − − − − −  is positive and then ( )det 0X X′ =  if and only if  

( ) ( )( )4r b r k sλ λ− = − + . So the lemma is proved. □ 
Theorem 3.2. The non-singular chemical balance weighing design with matrix X  given by (8) is optimal if 

and only if 

( ) ( )1 4k k k sλ λ− = − −                                   (11) 

Proof. From the conditions (5) and (9) it follows that a chemical balance weighing design is optimal if and 
only if the condition (11) holds. Hence the theorem. 

If the chemical balance weighing design given by matrix X  of the form (8) is optimal then 

( ) ( )
2

ˆVar ;     1, 2, ,
1jw j p

r b s
σ

= =
− +

  

Example 3.3. Consider a SBIB design with parameters 7v b= = , 4r k= = , 2λ = ; whose blocks are gi- 
ven by (3,5,6,7), (1,4,6,7), (1,2,5,7), (1,2,3,6), (2,3,4,7), (1,3,4,5), (2,4,5,6). 

Theorem 3.2 yields a design matrix X  of optimum chemical balance weighing design as 
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 1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0

0 1 1 1 0 0 1
1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 1 0 0 1 0

0 1 1 1 0 0 1
1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1

0 1 1 1 0 0 1
1

− −
− −

− −
− −
− −

− −
− −

− −
− −

− −
− −

− −
− −

− −
− −

− −
− −

− −
− −

− −
− −

− −
− 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 − −
 

− − 
 − − 

− −  
1 1 1 0 0 1 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0

0 1 1 1 0 0 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0

0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0

- --

− −
− −

− −
− −

− −
− −
− −

− −
− −

− −
− −

− −
− −
− −

− −
      

     

0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



X =
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Clearly such a design implies that each object is weighted 32m =  times in 56n =  weighing operations and  
( ) 2ˆVar 32jw σ=  for each 1,2, ,7j = 

. 

Corollary 3.4. If the SBIB design exists with parameters b Nν = = , ( ) 2r k N d= = ± , ( )2 1 4N dλ = ± + ;  
then the design matrix 1N∗  so formed using above method is optimum chemical balance weighing design. 

Corollary 3.5. If in the design 1D∗ ; 1−  is replaced by zero then the new design 1D∗∗  so formed is a BIB 

design with parameters V ν= , 2
2

B
v

=


 
 

, ( )R r b r= − , K k λ= − , 2
2

k λ−
Λ =


 
 

. Then the structure  

-times
1

1

s

N N N N∗
∗∗

 
 =
  



                                   (12) 

form a pairwise VB and EB design D*1 with parameters 

 1    Vν ∗ = , 1    b B sb∗ = + , 2 ,  r R sr∗ = +

 

1 1 1
1 2,   ,   ,k k k k sλ λ λ∗ ∗ ∗= − = = Λ +

 
( ) ( )1 1

1
1   and  1 1 .s sk k

k kr
λ ν λµ ν λ ψ λ∗ ∗

∗

   = − − + = − − − +      
 

4. Construction of Design Matrix: Method II 
In SBIB design D  with the parameters bν = , r k= , λ ; consider the λ  blocks containing any pair of 
treatments say ( ),θ ψ . Now rearranging the λ -blocks corresponding to the pair ( ),θ ψ  and giving the nega-
tive sign to the treatments θ  and ψ  both; the matrix 1N  of design 1D  is obtained. 

Now doing the same procedure for all the 
2
v 
 
 

 sets of blocks, the incidence matrix 2N∗  of the new design  

2D∗  so formed is the matrix having the elements 1, 1−  and 0; given as follows 

2 1 2
2

N N N N ν∗  
 
 

 
 =
  
                                   (13) 

Then combining the incidence matrix N  of SBIB design repeated s -times with 2N∗  we get the matrix 
X  of a chemical balance weighing design as 

-times

2

s

X N N N∗

′ 
 =
  



                                   (14) 

Under the present construction scheme, we have 
2
v

sbn λ
 

+ 
 

=  and p v= . Thus the each column of X  

will contain 1 3
3
r

srρ
 

= + 
 

 elements equal to 1, ( )2 1r kρ = −  elements equal to 1−  and 1 2– –n ρ ρ  ele-

ments equal to zero. Clearly such a design implies that each object is weighted 1 2 
2
k

m sr rρ ρ
 

+ 
 

= + =  times 

in 
2
v

sbn λ
 

+ 
 

=  weighing operations.  

Lemma 4.1. A design given by X  of the form (14) is non singular if and only if ( ) ( )22 4r k s rλ ν λ − − ≠ −  . 

Proof. For the design matrix X  given by (14), we have 
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( )

( )

( )

( )

2

2

2

2

4
2 2

4
2

4 ( )
2

4
2

k
r sr k k s I

k k s

X X

X

J

r k s r I

k k s J

X

ν

νν

ν

νν

λ λ

λ λ

λ ν λ

λ λ

      = + − − − +            
  + − − +   
  ⇒ = − − + −   
  + − − +   

′

′

                       (15) 

and 

( ) ( )

( )

2

1
2

1 4
2 2

4
2 2

k
r sr k k s

r
r sr k k

X X

s
ν

λν λ

λ λ
−

       = + + − − − +             

       × + − − − +             

′

                     (16) 

the determinant (16) is equal to zero if and only if  

( )

( )

( )

2

2

2

4
2

4
2

k
r sr

k k s

r k

s r

λ λ

λ ν

λ

 
+ 

 

 = − − + 

 ⇒ − − 

= −

 

or ( ) ( )21 4
2 2
k

r sr k k sλν λ
    + = − − − +      

 

but ( ) ( )21 4
2 2
k

r sr k k sλν λ
      + + − − − +          

 is positive and then ( )det 0X X′ =  if and only if  

( ) ( )22 4r k s rλ ν λ − − = −  . So the lemma is proved. □ 

Theorem 4.2. The non-singular chemical balance weighing design with matrix X  given by (8) is optimal if 
and only if 

( ) [ ]24 2k k s− = −                                     (17) 

Proof. From the conditions (5) and (15) it follows that a chemical balance weighing design is optimal if and 
only if the condition (17) holds. Hence the theorem. 

If the chemical balance weighing design given by matrix X  of the form (14) is optimal then 

( )
2

ˆVar ;     1, 2, ,

2

jw j p
k

r s

σ
= =

  
+  

  



 

Example 4.3. Consider a SBIB design with parameters 7v b= = , 3r k= = , 1λ = ; whose blocks are given 
by (1,2,4), (2,3,5), (3,4,6), (4,5,7), (1,5,6), (2,6,7), (1,3,7). 

Theorem 4.2 yields a design matrix X  of optimum chemical balance weighing design as 
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1 1 0 1 0 0 0
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 0 0 1 1 0
1 0 0 0 1 1 0
1 0 1 0 0 0 1

0 1 1 0 1 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 1 0 0 0 1 1
0 1 0 0 0 1 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
1 0 1 0 0 0 1
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 1 0 0 0 1 1

1 1

X

− −
− −
− −
− −
− −
− −

− −
− −
− −
− −
− −

− −
− −
− −

= − −
− −
− −
− −

− −
− −

− −
      

0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Clearly such a design implies that each object is weighted 12m =  times in 28n =  weighing operations and 
( ) 2ˆVar 12jw σ=  for each 1,2, ,7j = 

. 

Corollary 4.4. If the SBIB design exists with block size 6r ≤  and 5λ ≤ ; then the design matrix X  so 
formed using above method II is optimum chemical balance weighing design. 

Corollary 4.5. If the SBIB design exists with parameters ( ), 1, 2ν ν ν− − ; then the design matrix X  given 
by (14) is optimum chemical balance weighing design if and only if 7v ≤ . 

Corollary 4.6. If in the design 2D∗ ; 1−  is replaced by zero then the new design 2D∗∗  so formed is a BIB  

design with parameters V ν= , 
2

B
v

λ


=


 
 

, 
3

3R
r

=


 
 

, 2K k= − , ( )( )2 2 3k kλΛ = − −   . Then the struc-

ture  
-times

2
2

s

N N N N∗
∗∗

 
 =
  



                              (18) 

form a pairwise VB and EB design 2D ∗  with parameters 
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2    Vν ∗ = ,

 

2    b B sb∗ = + ,

 

2r R sr∗ = + , 2
1 2k k∗ = − , 2

2k k∗ = , 2 sλ λ∗ = Λ + , 

 ( ) ( )2 2
2

3 3
  and  1

2 2
k ks s

k kr
νλµ νλ ψ∗ ∗
∗

− −   
= + = − +   

   
 

5. A-Optimality of Chemical Balance Weighing Design 
Some problems related to the optimality of chemical balance weighing designs were considered in the literature;  
see [17] [30] [31]. Wong and Masaro [32] [33] gave the lower bound for ( ) 1tr X X − ′   and some construction  

methods of the A-optimal chemical balance weighing designs. 
Let X  be a n p×  design matrix of a chemical balance weighing design. Then the following results from  

Ceranka et al. [34] give the lower bound for ( ) 1tr X X − ′  . 

Theorem 5.1. For any nonsingular chemical balance weighing design with the design matrix ( )ijX x=  we 
have 

( )
2

1tr pX X
q n

− ′ ≥  ⋅
                                    (19) 

where ( )1 2max , , , nq q q q=  , 2
1j

p
ijiq x

=
= ∑ , 1, 2, ,i n=  . 

The case when q p= ; we get the inequality given in Wong and Masaro [32]. 
Definition 5.2. Any nonsingular chemical balance weighing design with the design matrix ( )ijX x=  is said 

to be A-optimal if 

( )
2

1tr pX X
q n

− ′ =  ⋅
                                     (20) 

Theorem 5.3. Any nonsingular chemical balance weighing design with the design matrix ( )ijX x=  is 
A-optimal if and only if 

p
q nX X I

p
⋅′ =                                          (21) 

6. Checking the A-Optimality in Methods I and II 
For the construction Method I of chemical balance weighing design; the Lemma 3.1 proven above gave the nec-
essary condition for the design matrix X  of the form (8) to be non-singular. 

Theorem 6.1. The non-singular chemical balance weighing design with matrix X  given by (8) is A-optimal 
if and only if 

( ) ( )1 4k k k sλ λ− = − −                                      (22) 

( ) ( ) ( )
( )

and    
1

4r b r
q v sb

k
v

s
v

λ λ− +
− +

+ =
 −                          (23) 

Proof. For the design matrix X  given in (8) we have 

( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ){ }

1 1 4 1 4

       4 1 4

X X r sr k k k s I k k k s J

X X r b r k s I k k k s J

ν νν

ν νν

ν λ λ λ λ λ λ

λ λ λ λ

 ′ = − + − − − − + + − − − + 
   ′⇒ = − + − + + − − − −   

 

and  

( )1
v

q v v
X

b
v

X
s

I
− +  ′ =  

Comparing these two equalities we get 
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( ) ( )1 4k k k sλ λ− = − −    

and 

( ) ( ) ( ){ } ( )
( ) ( ) ( )

( )
1

1
1 4

1
4

q
r sr k k k s r b r k

v v
s

sb q v v sb
v v

ν λ λ λ λ λ
− + − +   − + − − − − + = − + − + =  ⇒  

If (22) is satisfied then we get the condition (23) from the last equation. Hence the theorem. 
For the construction Method II of chemical balance weighing design; the Lemma 4.1 proven above gave the 

necessary condition for the design matrix X  of the form (14) to be non-singular. 
Theorem 6.2. The non-singular chemical balance weighing design with matrix X  given by (14) is A-op- 

timal if and only if 

( ) ( )24 2k k s− = −                                      (24) 

and 

( ) ( )2 2
4

2

q sb
r k s r

v

ν
λ

λ ν λ

  
+  

   − − + − =                           (25) 

Proof. For the design matrix X  given in (14) we have 

( ) ( )

( ) ( ) ( )

2 2

2 2

4 4
2 2 2

        4 4
2 2

k
r sr k k s I k k s J

r k s r I k k s J

X X

X X

ν νν

ν νν

λ λλ λ

λ λν λ λ

          = + − − − + + − − +                  
     ⇒ = − − + − + − − +       

′

′

 

and 

2
q sb

I
v

X X ν

ν
λ
  

+  
 ′  =  

Comparing these two equalities we get 

( ) ( )24 2k k s− = −  

and 

( ) ( ) ( )2 22 2
4  4

2 2 2

q sb q sb
k

r sr k k s r k s r
v v

ν ν
λ λ

λ λλ ν λ

      
+ +                     + − − − + = ⇒ − − + − =            

 

If (24) is satisfied then we get the condition (25) from the last equation. Hence the theorem. 

7. Discussion 
The following Table 1 and Table 2 provide the list of pairwise variance and efficiency balanced block designs 
for Methods I and II respectively, which can be obtained by using certain known SBIB designs. 

8. Conclusion 
It is well known that pairwise balanced designs are not always efficiency as well as variance balanced. But in 
this research we have significantly shown that the proposed pairwise balanced designs are efficiency as well as 
variance balanced. Further there is a scope to propose different methods of construction to obtain the optimum 
chemical balance weighing designs and pairwise variance and efficiency balanced block designs, which will ful- 
fill the optimality criteria by means of efficiency. In this research paper we also gave the conditions under which 
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Table 1. For method I.                                                                          

S. No. 1ν ∗  1b∗  1r∗  1
1k ∗  1

2k ∗  1λ∗  1µ∗  1ψ ∗  Reference No.** 

1 7 56 18 2 3 4 11.6667 0.3519 R (10), MH (1) 

2 7 56 20 2 4 6 14.0000 0.3000 R (11) 

3 11 132 40 3 5 10 30.8000 0.2300 R (29), MH (5) 

4 11 132 42 3 6 12 33.0000 0.2143 R (30) 

 
Table 2. For method II.                                                                          

S. No. 2ν ∗  2b∗  2r∗  2
1k ∗  2

2k ∗  2λ∗  2µ∗  2ψ ∗  Reference No.** 

1 4 16 6 1 3 0 2.6667 0.5556 R (2) 

2 5 40 20 2 4 3 15.0000 0.25 R (4) 

3 6 72 40 3 5 12 33.6 0.16 R (8) 

4 7 28 6 1 3 0 2.3333 0.61111 R (10), MH (1) 

5 7 56 20 2 4 2 14.0000 0.3 R (11) 

6 7 112 66 4 6 30 58.3333 0.11616 R (13) 

7 11 132 40 3 5 6 30.8 0.23 R (29), MH (5) 

8 11 176 66 4 6 18 55.0000 0.16667 R (30) 

9 13 104 20 2 4 1 13.0000 0.35 R (37), MH (3) 

10 16 256 66 4 6 12 53.3333 0.19192 R (47), MH (10) 

11 21 252 40 3 5 3 29.4 0.265 R (58), MH (7) 

12 31 496 66 4 6 6 51.6667 0.21717 R (75), MH (12) 

**The symbols ( )R α  and ( )MH α  denote the reference number α  in Raghavrao [30] and Marshal Halls [35] list. 

 
the constructed chemical balance weighing designs lead to A-optimal designs. The only limitation of this re-
search is that the obtained pairwise balanced designs all have large number of replications. 
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