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Abstract 
 
In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite 
duration signals. It is shown that multi-resolution capability, achieved without further observation, is ob-
tained by constructing multi-resolution signals from the only observed finite duration signal. Achieved reso-
lutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this se-
ries, multi-resolution Fourier performances are observed, applied to short signals and extended to time-fre-
quency analysis. 
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1. Introduction 
 
Analyzing single realization of noisy short-time signals 
(short data records), multi-resolution and space-frequen- 
cy or time-frequency approaches, estimating frequencies 
of multiple signals in noise, reduction of noise variance, 
recovery of missing parts of signals and so on, are im-
portant topics in many areas of sciences and industries 
(radar and sonar data processing, communications, geo-
physical and seismic exploration, biomedical engineer-
ing, non destructive testing, and so on). In pertinent lit-
erature, multi-resolution analysis is now considered as a 
standard tool by researchers in image and signal proc-
essing. One finds, for example, that resolving sinusoidal 
signals in noise with nearby frequencies is of special 
interest [1-5]. An other example of this importance is 
the well known development of various parametric spec-
tral estimation methods [6,7] and wavelet theories 
[8-10]. 

In real-world applications, one acquires only finite 
duration signals. These signals can be viewed as being 
obtained by windowing infinite signals with boxcar 
functions. Obtained signals are therefore assumed to 
vanish outside the observation interval. Many problems 
of the Fourier spectral estimation are traced to this as-
sumption made about the data outside the observation 
interval. The overall transform includes a convolution of 
the desired transform with that representing the window 
function. The main lobe width between 3-dB levels of 

the window transform, approximately the inverse of the 
time interval T, determines the frequency resolution. Al-
though important works proposed solutions that limit the 
impact of time windowing effects [11,12] and others that 
provide minimum-error band-limited approximation of 
non band-limited signals [13], performance limitations 
and their consequences as poor frequency and amplitude 
estimations remain non-recoverable. Moreover, the im-
portant frequency extent (multiple of the reciprocal of 
the observation interval) of spectral leakage perturbs 
amplitude estimation and masks weak components. 
Skillful selection of windows reduces only its amplitudes 
with no effect on its spectral extent. 

Parameter identification approach (autoregressive 
(AR), moving average (MA), ARMA) was used to avoid 
deficiencies of Fourier spectral estimation since unrealis-
tic assumption about the nature of the signal (zero or 
cyclic) outside the observation interval is eliminated. 
Important improvements over Fourier spectral estimation 
is reported by pertinent literature especially for short 
finite duration signals (higher resolution and lack of 
side-lobes). However, well known drawbacks of this 
approach are excessive sensitivity to observation noise 
(resolution varies as a function of the signal-to-noise 
ratio), important computation times with respect to FFT 
analysis, computational complexity [14-16], multiplicity 
of algorithms estimating model parameters and the ne-
cessity of subjective judgement in the selection of the 
order [17]. Contamination of parametric spectra by spu- 
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rious peaks is an inherent problem to parametric model-
ing. In [18], we proposed AR modeling of signal defined 
for low signal-to-noise ratios with an adapted model or-
der selection. We have shown that sensitivity to observa-
tion noise of AR modeling is drastically reduced whereas 
computation times remain important. 

Pisarenko harmonic decomposition, extended Prony’s 
method and Prony spectral line decomposition [19-21] 
depict analysis modelings similar to those of the pa-
rameter identification approach (ARMA or AR proc-
esses). Performances are dependent on the order, usually 
unknown, and remain sensitive to high level of observa-
tion noise. Deficiencies, mentioned above, are therefore 
encountered by these methods. On the other hand, the 
algorithm “MUSIC” for “Multiple Signal Classification” 
[22] detects frequencies in a signal by performing an 
eigen decomposition on the covariance matrix of a data 
vector of samples obtained from the samples of a con-
sidered signal. MUSIC assumes known the number of 
samples and the number of frequencies. This algorithm is 
attractive provided the available signal-to-noise (SNR) is 
high to resolve two distinct peaks in the estimated spec-
trum. One finds, however, that devised various methods 
[23] to overcome drawbacks such as weak robustness to 
both modeling errors and the presence of a strong back-
ground noise add to computational complexity and re-
quires high enough SNRs. 

An alternative non parametric approach for the resolu-
tion of mentioned problems is developed by wavelets. It 
is well known that wavelet transforms have remarkable 
resolution properties but trail some drawbacks: 1) wave-
lets capture only few oscillations and therefore act as 
local magnifiers independently of the nature of the signal 
under analysis (stationary, quasi-stationary or not); 2) the 
necessity of skillful selection of appropriate wavelets to 
the signal under analysis; 3) the problem of interpretation 
of wavelets spectra is made quite difficult since the Fou-
rier spectrum of a wavelet is in itself a complex one. Let 
us note that Fourier coefficients are not only concepts but 
have physical evidence; 4) information on frequency is 
only approximative since a wavelet does not have a pure 
frequency as a sine wave. Characterization of a precise 
frequency content is therefore not suitable by means of 
wavelets; 5) when treating extraction of signals from 
noise [24] we have shown in [25] that wavelet denoising, 
fail or yield notably perturbed results when spectral den-
sities of colored noise (Gaussian or not) and the signal 
overlap. 

In this work, we propose multi-resolution theory of 
Fourier spectral estimates. The key idea is based on the 
fact that observed signals carry information on their un-
observed or missing parts and the difficulty of the task is 

to let these signals reveal this hidden information by us-
ing the simplest possible theory. Our main effort, de-
scribed here, is to construct signals from the only ob-
served one able to reveal in the frequency domain re-
sulting transforms whose main lobe-widths between 
3-dB levels, and therefore resolutions, decrease as 
lengths of constructed signals increase. The number of 
resolution levels is defined as a function of the length of 
the corresponding multi-resolution signal in order to de-
pict detailed or global views. Multi-resolution signals 
can be viewed as wavelets composed of versions of the 
signal itself analyzed by means of FFT spectral estima-
tion. Advantages of the proposed approach are: 

1) Resolution at any desired level is applied simulta-
neously to all corresponding points of the frequency axis. 
The whole frequency axis is magnified. 

2) Contraction of spectral leakage and improvement of 
frequency estimation proportionally to levels of multi- 
resolution signals (second part of this series). 

3) Easier and efficient implementation since the popu-
lar FFT algorithm remains used for all computations. 
Important reduction of computation times are expected 
when compared to those required by parametric or 
wavelet approaches. 

4) Reduction of the spectral variance of resolved noisy 
spectral estimates as a function of the applied resolution 
level. This helps simple and efficient denoising of a sin-
gle noisy realization of a short signal (third part of this 
series). 

5) Unlike models based on estimation of correlation 
lags, here, phase information is not destroyed. Inverse 
transformation recovers missing parts of observed sig-
nals (second part of this series). 

6) Performances of the denoising tools [24-27] based 
on FFT algorithm can be used for extraction of buried 
resolved spectral estimates (third part of this work). 

7) Extension of obtained results to a novel time-fre-
quency analysis is proposed in the fourth part of this work. 

8) Extraction of buried time-varying spectra in noise is 
treated in the fifth part of this work. 

9) One can also apply the theory to a novel image 
processing. 

It is crucial to notice that our main focus of attention 
in the first part of this work is to derive expressions of 
multi-resolution signals. In section III, we precise basics 
of multi-resolution Fourier analysis by constructing dou-
ble resolution signals and generalizing the theory to 
higher frequency resolution levels. Resolution properties, 
contraction of spectral leakage, improvement of fre-
quency estimation and recovering of missing parts of 
short signals are discussed and observed in the forth-
coming parts of this series. 
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2. Signal Representation 
 
Consider a continuous-time real signal  x t  for <  

 and let <t   X   be its bandpass spectrum de-
fined by, 

  min max= 0,X      .          (1) 

where min  and max  are the bounds of the spectral 
support of  X  .  

A finite duration signal  Tx t  “cut out” from  x t  
in the time interval  is given by,  [0, ]T

        , [0,
= =

0, otherwise.T T

]x t t T
x t x t t


 


    (2) 

where  is the rectangular time window whose  T
t

length T is denoted by its lower script. 
The notion of resolution used here is related to the 

ability of the developed theory to discriminate between 
two or more pure sinusoids. It is well known that within 
the framework of the definition given by (2), two sinu-
soids of respective angular frequencies 1  and 0  are 
barely resolvable if, 

1 0 = 2T    .             (3) 

Sinusoids are discriminated if they are more than 

1 0=     apart in the frequency domain and simi-
larly, this discrimination is achieved in the time domain 
if sinusoids are more than  apart. In other words, the 
signal and its Fourier transform cannot be both highly 
concentrated. The uncertainty principle (3) is called also 
“Rayleigh criterion” [1]. 

T

In this work, given the time interval , we are inter-
ested in signals for which two angular frequency com-
ponents 

T

1  and 0  are unresolvable, i.e.,  

2T    .                (4) 

However, according to the indeterminacy principle (or 
Heisenberg inequality widely known for its applications 
in quantum mechanics [28], signal processing [29] and 
various other theories [30]) the resolution in angular fre-
quency and observation time cannot be arbitrarily small, 
i.e.,  

1 2T   .                 (5) 

 
3. Multi-Resolution Fourier Analysis 
 
3.1. Double Resolution Fourier Analysis 
 
Here, we use the only observed signal  Tx t

T
 to con-

struct a double resolution signal for which =   is 
satisfied. This double resolution ability requires an an-
gular frequency axis whose locations are separated by 

the mutual distance T . How to create these locations 
by using the only available time interval, ? We pro-
pose hereafter a two-step procedure using the “one- 
point” interpolation followed by zeros insertion in the 
frequency domain. This helps to derive expression of the 
double resolution window, describe its properties and 
represent double resolution signals.  

T

 
3.1.1. One-Point Interpolation 
The “one-point” interpolation used here in the frequency 
domain means one-point insertion between two existing 
frequency locations separated by the mutual distance 

T . Hence, given the finite duration observed signal 
 Tx t , we can form the overall signal defined in [0, 2T] 

by writing,  

       2 2
ˆT

T T TT
x t t x t z t  T ,    (6) 

where   0Tz t  ,  0,t T   and 
2T

 is the rec-
tangular window of length 2T. The upper script T in 

 t

 2ˆ
T
Tx t  denotes the length of the most narrow time win-

dow whereas the lower script 2T is the length of the time 
extension obtained here by addition of zeros in the time 
interval of length T. 

Now, it is crucial to notice that the overall signal 
 2ˆ

T
Tx t  can be written as a function of the true signal 
 2Tx t . An equivalent form of (6) using  2Tx t  is 

therefore given by,   

      2 22
ˆT

T TT T
x t t x t  t .          (7) 

One can see easily that (7) can be put under the form,  

     
     

2 2 2

2 22

ˆ

2,

T T
T T T

T
T TT

x t x t t

x t t t







   
     (8) 

where     2
T
T T T

t t t T    . 

The window  2 t T
T  extends over the interval [0, 2T] 

(lower script) and the length of its most narrow time 
sub-window is T (upper script). The window  2

T
T t  is 

“tailed-window” whose tail (or zero-padding), repre-
sented by  TTz t  , as defined above, has the same 
length as the observed signal.  
 
3.1.2. Zeros Insertion in the Frequency Domain 
The transform of the tailed-window  constructed 
above defines the angular frequency locations 

 2
T
T t

{0, T , 
 , 2 ,T T }     The second step in the construction 

aims at eliminating angular frequency representation of 
the signal at these locations. This means that sought 
transform of the constructed window depicts zeros at 
these locations. 

We propose to double the length of the interval in 
which  2ˆ

T
Tx t  is defined by substituting 4T for 2T in the 

subscripts of (8). As the signal  2ˆ
T
Tx t  is defined in the 
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interval [0, 2T], doubling the length of its time interval is 
obtained by introducing a local period of length 2T so 
that the length of the time interval reaches 4T. This 
gives, 

   
1

4 2
0

ˆ ˆ 2T T
T T

p

x t x t p


  T .           (9) 

By using (8), we can write,   

     
1

4 4 2
0

ˆ 2T T
T T T

p

x t t x t p


  T ,     (10) 

where,  

     4 44
2T

T T
t t t  

T
T 

t pT

,      (11) 

and,  

     
3

4
0

1
pT

T T
p

t


    .      (12) 

One can see easily that angular frequency axis of the 
transform of the signal  4ˆ

T
Tx t  depicts angular fre-

quency locations separated by the mutual distance π/T as 
follows: each angular frequency interval [nL, (n + 1)L], 
where n is an integer and L = 2π/T, is divided into four 
sub-intervals defined by the locations,  

        , , 1 4 , 1 2 , 3 4 , 1n nL n L n L n L n L      

with imposed zeros at {nL, (n + 1/2)L, (n+1)L}. The 
transform of the signal in [nL, (n + 1)L] is represented at 
the two locations (n + 1/4)L and (n + 3/4)L separated by 
L/2. We have therefore an angular frequency axis with 
locations separated by the mutual distance π/T. 

Let us consider hereafter properties of the derived 
window  represented by (11).  4

T
T t

 
3.1.3. Properties in the Frequency Domain 
The window  is defined in the interval [0, 4T] 
and has a local period given by 2T. It is easy to see that 

, resulting from the addition of 

 4
T
T t

 4
T
T t  4T

t  and 
, has the following transform,  4

T
T t

     (4,1) 4 (4,1)
=W H H    ,      (13) 

where  
4

H   and  
(4,1)

H   are respectively Fourier 

transforms of  and , i.e.,  4T
t  4

T
T t 

     
4 4

= 4 2H T S T      

      
(4,1)

= 4 2 sin 2 cos H i TS T T T     ,  (14) 

where    = sinS x x x . The complex exponential  
4

   

represents phase induced by the absolute position of the 
time interval on the time scale. 

One can see from (14) that the width, defined here by 

the interval for which  2 =S T 0  for  = 2 4k T   
where k ± 1, is given by T . The length T  is the 
width of the most narrow frequency response of the 
window  4

T
Tw t . 

Let us note that,  

 
 

 
 

 
4 (4,1) (4,1)= 2 = 2 =0

= =
T T

H H H   
    

 0

(15) 

The amplitude spectrum  
(4,1)

H   reaches an extre- 

mum in the interval  0, 2T    for which,  

 
(4,1)

= 0

d
[0, 2 ], = 0

d

H
T



 





   ,    (16) 

where  d dH x x  represents the derivative of  H x  
with respect to x . 

Here some algebra yields  0 . This means 
that this extremum is achieved at the midway bounds 
defining the interval 

4T 

 0, 2T   . Now, let us focus on 
the bandwidth   of (4,1)  W  . The bandwidth is 
defined here as the main lobe width between 3-dB or 
1 2 levels of the resulting transform of the window. 
According to (14) and (16),  

   
(4,1) 4 == 00

H H
  

   .        (17) 

It follows that the bandwidth of )((4,1) W  is so that,  

     (4,1) 4
B B =w W w H T 

       2 ,  (18) 

where Bw  f     represents the bandwidth of  f  . 
Now, let us use, in the following, the result (18) in 

order to find the bandwidth of  4ˆ
T
Tx t  as defined by 

(10).  
 
3.1.4. Double Resolution Properties 
Here, we derive the bandwidth of the constructed overall 
signal as defined by (10). Hence, by considering (10) in 
the frequency domain, we can write,   

    

       

1

2 (4,1)
0

2 (4,1)2

, 2 2

,

T
p

X T FT x t pT W

X H W

  

    





 
   

 
   




*

*

  (19) 

where the second argument  2 T  of X̂  represents 
the bandwidth we are searching for and [ ]FT x  is the 
Fourier transform of x . Here  X   and  

2
H   

are respectively Fourier transforms of the signal  x t  
and the rectangular window 

2
 H t  of length 2T in 

which it is observed. Here also, the bandwidth of 
2

H  
is roughly T . The term  2   gathers phases 
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resulting from time translation. 
The convolution between the windows  H

2
  and 

 (4,1)W   yields a window with the broadest of the two 
bandwidths. According to (18), this gives,   

       2 (4,1)2
, =H T H W     * ,   (20) 

where the bandwidth of  ,H T   is given by its 
second argument T . 

By using (20), (19) becomes, 

     ˆ , , X X H      * T ,    (21) 

only if,  

= 2 . 

This defines the frequency resolution,  

=T   . 

It is crucial to notice that the true spectrum 
 , X T   can be extracted from  ˆ ,X T   as 

shown in the second part of this series.  
 
3.1.5. Expression of Double Resolution Signals 
Expression of a double resolution signal as a function of 
the only observed finite duration signal  Tx t  is 
obtained by considering (10). One can see easily that,  

     

   

1

4 4 2
0

1

4
0

ˆ 2

2 .

T T
T T T

p

TT
p

x t t x t p

t x t pT






 

 





T

      (22) 

Components of the overall signal (22) are  Tx t  and 
its translated version  2T x t T . Notice that for resolv- 
ing potential ambiguities [6] or smoothing the appearance 
of the spectral estimates, one can apply zero-padding to 
the double resolution signal as defined by (22) and not to 
the signal depicted by (7) (see the second part of this 
series).  
 
3.2. Fourfold Frequency Resolution 
 
3.2.1. Quadruple Resolution Window 
It can be seen immediately that the quadruple resolution 
window can be obtained from the double resolution one 
(13) by substituting 8T for 4T in the lower scripts and  
2T for T in upper scripts. The expression corresponding 
overall signal of length  is given by,  T8

     
1

2 2
8 8 4

0

ˆ 4T T
T T T

p

x t t x t p


  T ,    (23) 

where,  

      2
8 88

2T
T T

t t t   2T
T .     (24) 

Conclusions in the frequency domain for this 
quadruple resolution window are therefore straight- 

forward and one finds easily that the frequency reso- 
lution is given by, = 2T   . The main concern 
hereafter is to find the expression in the time domain of 
the quadruple resolution signal as a function of the only 
observed one  Tx t .  
 
3.2.2. The Overall Signal 
The half-period restriction (in the interval [0 ) of 
(24) yields,  

, 4 ]T

      2
4 44

= 2T
T T

w t t t 2T
T .         (25) 

As the window   2
4

T
Tt 

]T
t4T

 imposes zeros in 
the interval [2 , then, the overall signal , 4T  2

4ˆ
T
Tx t  

(in the interval ) is given by, [0,4 ]T

      2
4 2ˆ 2T
T T T T x t x t q t T z t T     ,   (26) 

where  2 = 0Tz t  in the interval [0  and , 2 ]T  Tq t  is 
an unknown signal.  
 
3.2.3. Signal Identification 
Now, the difficulty of the task depicted by (26) is the 
identification of the unknown signal  Tq t  by using the 
only known signal  Tx t . The half-period restriction of 
(23), yields,  

        2 2
4 4 4 4 2

ˆ T T
T T T T T x t x t w t x t t   .        (27) 

By using (26), (27) becomes, 

       
     

2 2

2

=

= .

T T T T

T T T

x t q t T x t t

x t t t T

 

   


 

 (28) 

Since     2 =T TT
x t t x t , then the unknown 

signal  Tq t  is specified by,   

  = ,T Tq t x t  ,           (29) 

where  represents an unknown phase that characterizes 
the signal    2T T

x t t T  “cut-out” from  2Tx t   
 2T
t  with respect to T x t . 

In the following, we identify the expression of the 
signal  Tq t  by using its amplitude and phase spectra 
together with the sign of its angular frequency. 
 
3.2.4. Amplitude Spectrum 
The spectrum of  Tq t , as defined by (29), is given by,  

    ( )= ei
T TQ X    .       (30) 

According to (30),    =T TQ X  . 
 
3.2.5. Phase Spectrum 
Let us consider the amplitude spectrum of the sum of 

 Tx t and  Tq t . By assuming that    =T TX X    
( )ei  and using (30), we have, 
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       [ ( ) ( )]= 1 e = 2i
T T T TX Q X X         . 

(31) 
Here (31) is satisfied only if, 

    = T     .         (32) 

By using (32), the spectrum of  Tq t , as depicted by 
(30), yields,   

   = e i T
T TQ X    .        (33) 

 
3.2.6. The Angular Frequency 
By setting =   and =  

 T

, we find respectively 
by applying inverse Fourier transformation to (33) the 
following four signals x t T , , )( TtxT   Tx T t  
and  Tx T t  . Since,  

   [0, ], = = 0T Tt T x T t x t T     ,    (34) 

then the unknown signal is the time reversed signal of 
the observed one, i.e.,   

   [0, ], = 0T Tt T q t x T t    .    (35) 

3.2.7. Expression of Fourfold Frequency Resolution 
Signals 

The expression of fourfold frequency resolution signals 
is now easily obtained by combining (26) and (35), i.e.,   

        
1

2
8 8

0

ˆ 4 4 2T
T T TT

p

x t t x t pT x p T


      t . 

(36) 

Zero-padding is applied to the fourfold resolution 
signal as depicted by (36). Analyzed signals are depicted 
with angular frequency separations given by 2T .  
 
3.3. Threefold and Quintuple Frequency 

Resolution Signals 
 
Threefold and quintuple frequency resolution signals can 
be immediately deduced from above developments on 
respectively double and fourfold resolution signals as 
shown below.  
 
3.3.1. Resolution Windows 
By generalizing overall signals as given by (8) and (23) 
to threefold and quintuple overall signals, we have,  

           2ˆ 2I s T I s T
sT sT sTsT

x t x t t t    2 ,   (37) 

where s = 3 and s = 5 are for respectively threefold and 
quintuple resolution signals. Here  2I s  represents the 
integer part of 2s . 

Let us introduce the local period sT  and rewrite (37) 
in the interval [0,2 ]sT  as follows,  

         
1

2 2
2 2

0

ˆ I s T I s T
sT sT sT

p

x t w t x t spT


   .       (38) 

The obtained resolution window is therefore given by, 

        

     

1
2

2 2 2
0

2 1

=

2 .

I s T
sT sT I s T

p

I s T T

w t t t spT

t sp I s T





 

   

 


   (39) 

In the frequency domain,    2
2
I s T
sTw t  yields,  

      
 

 

   

 
   

2
2 , 2 2 , [ /2

2

2 , [ 2

=

= 2

ˆ cos 2 ,

s
s I s s I s

s

s I s

W H H

sT S s T

H s





 

  

 







 T



   (40) 

where    = sinS x x x  and  
2s

   is a phase 

induced by absolute position on the time scale. Here 

 
 

2 , [ /2
ˆ

s I s
H   is so that,  

  
   

22 , 2

ˆ
ss I s

H H   .      (41) 

Let us note that,  

    2 , 2
=

= 0
s I s

sT
W





,          (42) 

and the bandwidth of )(/2])[,(2 sIsW  is given by,   

        2 , 2 2
Bw Bw

s I s s
W H 
         sT    (43) 

One can see immediately that Fourier transformation 
of (38) yields,  

             

    
2 , 22

ˆ ,2

,2 ,

s s I ss
X T X H W

X H sT

     

 


    

 

* *

*



  (44) 

where  s   are phases induced by the time position 
on the time scale and  represents the convolution. *

Equality (44) is satisfied only if,  

,= s  

and the bandwidth of the spectrum, as depicted by (44) 
exhibits therefore the resolution,  

= 2π .T s  

 
3.3.2. Expression of Threefold and Quintuple 

Resolution Signals 
By using (38) and (39), expressions of threefold and 
quintuple resolution signals in the interval [0, 2sT], are 
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respectively specified for s = 3 and s = 5 by,  

       

     

1
2

2 2
0

ˆ

2 1 2

I s T
sT TsT

p

T

x t t x t spT

.I s x sp T t



 

    


   (45) 

Here also zero-padding can be applied to resolution 
signals as defined by (45).  
 
4. Optimum Resolution Signal 
 
Here we propose to find the finest level of resolution and 
the corresponding expression of the resolution signal by 
using the lower bound of the uncertainty principle.  
 
4.1. Variation of the Resolution 
 
It is well known that when a function is scaled 
   g t g at
> 1a

 where , then it is contracted if 
 and expanded when . Above expressions of 

multi-resolution signals show that we have a contrac- 
tion-expansion effect evaluated by increasing or de- 
creasing the length of the local period of the 
multi-resolution window by the constant quantity 

> 0a
a < 1

T  
representing the  original observation interval of the 
signal  x t . We have therefore a  discrete variation of 
the resolution, sT , where s = 2, 3, 4, 5. Now, the 
question of interest is the achievable finest limit of 
frequency resolution. This is discussed hereafter.  
 
4.2. Levels of Multi-Resolution Signals 
 
Let us consider the two following important facts : 

1) Frequency spacing between adjacent frequency 
components of the double resolution signal is  2T . 
Clearly, this frequency spacing is greater than the 
spacing  1 2T  defined by the lower bound of the 
uncertainty principle. Similarly, for the quadruple 
frequency signal, we have the spacing  4T  that 
remains greater than  1 2T . By generalizing these 
results, one finds that any frequency spacing of any 
multi-resolution signal is conditioned by,   

   , 1 2s sT T   .            (46) 

This immediately yields,  

2 [ ]s I  ,                  (47) 

where  I x  is the integer part of x . 
As the lower limit of the indeterminacy principle 

cannot be arbitrarily small, this means that we cannot 
build resolution signals for which (47) is not fulfilled. 
Resolution levels, s , are therefore limited by 6s  . 

2) Here we discuss the significance of the upper bound 
 provided by the inequality (47) by considering the 

indeterminacy principle as an uncertainty principle. To 
see this, let us compare the variation between two 
adjacent frequency resolution levels with the lower 
bound of the uncertainty principle (given by 0.5). The 
variation between two adjacent resolutions  and 

 is given by,  

6=s

5=s
6=s

     =5 =6
= 0

s s
T T T        .2 .    (48) 

It can be seen that depicting frequency separations by 
using quintuple ( ) resolution signal instead of the 
sextuple resolution signal ( ) yields errors smaller 
than the lower bound of the uncertainty principle. This 
means that the optimal resolution signal has the 
quintuple form given by (45) for which,  

5=s
6=s

0.4T    .            (49) 

Here, (49) represents the achieved optimal Fourier 
frequency resolution.  
 
4.3. Expression of Multi-Resolution Signals 
 
By generalizing expression depicted by (45) to double 
and fourfold resolution signals and generalization of the 
equivalent form (38) initially written for  and 

 to  and , we can write,  
3=s

5=s 2=s 4=s

   
       

        
 

2

1
2

2 2
0

( )

=

2 1 2

= .

T

I s T
sT sT sT

p

T T

s T

x t

w t x t spT t

2

1

=0

ˆ I s
sT

p

x t spT I s x sp I s T t

x t



 

       

  

 




 

(50) 

Notice that for the sake of simplicity, the resolution 
signal constructed from  x t  is relabeled  ( )s Tx t     
where  ( )s Tx t     is the resolution operator of level 
s  (lower script) applied to  Tx t . 
 
5. Conclusions 
 
We proposed multi-resolution theory of Fourier spectral 
estimates. We have shown that multi-resolution capabil-
ity, achieved without further observation, is obtained by 
constructing multi-resolution signals from the only ob-
served finite duration signal. Obtained frequency resolu-
tions are not limited by the length of the observation in-
terval and meet bounds of the indeterminacy principle or 
Heisenberg inequality. Observation results and applica-
tion of the Fourier multi-resolution theory to short sig-
nals and time-frequency analysis are reported in the 
forthcoming parts of this series. 
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