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Abstract 
The goal of the present paper is to establish some new approach on the basic integral inequality of 
Gronwall-Bellman type and its generalizations involving function of one independent variable 
which provides explicit bounds on unknown functions. The inequalities given here can be used as 
tools in the qualitative theory of certain partial differential and integral equations. 
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1. Introduction 
The Gronwall type integral inequalities provide a necessary tool for the study of the theory of differential equa-
tions, integral equations and inequalities of the various types. Some applications of this result can be used to the 
study of existence, uniqueness theory of differential equations and the stability of the solution of linear and 
nonlinear differential equations. During the past few years, several authors have established several Gronwall 
type integral inequalities in one or two independent real variables [1]-[15]. Of course, such results have applica-
tion in the theory of partial differential equations and Volterra integral equations. 

Closely related to the foregoing first-order ordinary differential operators is the following result of Bellman 
[11]: If the functions ( )g t  and ( )u t  are nonnegative for 0t ≥ , and if 0c ≥ , the inequality 

( ) ( ) ( )
0

d , 0
t

u t c g s u s s t≤ + ≥∫  

implies that  

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.521326
http://dx.doi.org/10.4236/am.2014.521326
http://www.scirp.org/
mailto:dr.zareenkhan@ymail.com
http://creativecommons.org/licenses/by/4.0/


Z. A. Khan 
 

 
3485 

( ) ( )
0

exp d ,    0
t

u t c g s s t
 

≤ ≥ 
 
∫                               (1.1) 

Our aim in this paper is to establish new explicit bounds on some basic integral inequalities of one independ-
ent variable which will be equally important in handling the inequality (1.1). Given application in this paper is 
also illustrating the usefulness of our result. 

2. Main Results 
Lemma 2.1: Let ( )u t  and ( )g t  be nonnegative continuous functions defined for [ )0,I = ∞ . Let ( ) 1k t >  
defined for [ )0,I = ∞  and also ( )k t′  be nonnegative continuous functions defined for [ )0,I = ∞ . If 

( ) ( ) ( ) ( )
0

d ,   
t

u t k t g s u s s  t I≤ + ∀ ∈∫                            (2.1) 

Then 

( ) ( ) ( ) ( ) ( )
0

0 exp 0 d ,    
t

u t k k t k g s s t I
 

≤ − + ∀ ∈ 
 

∫                       (2.2) 

Proof: Define a function ( )m t  by the right-hand side of (2.1), such that 

( ) ( ) ( ) ( )
0

d
t

m t k t g s u s s= + ∫                               (2.3) 

where  

( ) ( )0 0m k=                                     (2.4) 

Then ( ) 1m t > . From (2.1) and (2.3), we observe that 

( ) ( )u t m t≤                                     (2.5) 

Differentiating both sides of (2.3) with respect to t, we get 

( ) ( ) ( ) ( )m t k t g t u t′ ′= +  

By using (2.5) and since ( ) 1k t > , the above equation can be restated as 

( )
( ) ( ) ( )

m t
k t g t

m t
′

′≤ +                                  (2.6) 

Integrating both sides of (2.6) from 0 to t and also using (2.4), we observe that 

( ) ( ) ( ) ( ) ( )
0

0 exp 0 d
t

m t k k t k g s s
 

≤ − + 
 

∫                          (2.7) 

From (2.5) and (2.7), we get the required inequality (2.2). 
Theorem 2.2: Let ( )u t , ( )f t  and ( )g t  be nonnegative continuous functions defined for [ )0,I = ∞ . Let 
( ) 1k t >  defined for [ )0,I = ∞  and also ( )k t′  be nonnegative continuous functions defined for [ )0,I = ∞ . 

If 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d ,   
t t s

u t k t f s u s s f s g u s  t I
 

≤ + + ∂ ∂ ∂ ∀ ∈ 
 

∫ ∫ ∫                 (2.8) 

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0 0

0 exp 0 d d ,    
t s

u t k t k f s k s k f g s t I
 

≤ + − + ∂ + ∂ ∂ ∀ ∈ 
 

∫ ∫            (2.9) 

Proof: Define a function ( )m t  by the right-hand side of (2.8), such that 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d ,   
t t s

m t k t f s u s s f s g u s  t I
 

= + + ∂ ∂ ∂ ∀ ∈ 
 

∫ ∫ ∫               (2.10) 

where  

( ) ( )0 0m k=                                    (2.11) 

Then ( ) 1m t > . From (2.9) and (2.10), we observe that 

( ) ( )u t m t≤                                    (2.12) 

Differentiating both sides of (2.10) with respect to t, we get 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t

m t k t f t u t g s u s s
 

′ ′= + + 
 

∫  

By using (2.12), the above equation can be restated as 

( ) ( ) ( ) ( )m t k t f t v t′ ′≤ +                                (2.13) 

where 

( ) ( ) ( ) ( )
0

d
t

v t m t g s m s s= + ∫                              (2.14) 

and  
( ) ( ) ( )0 0 0v m k= =                                 (2.15) 

Again differentiating both sides of (2.14) with respect to x and using (2.13) and using the fact that ( ) ( )m t v t≤ , 
we get 

( )
( ) ( ) ( ) ( )v t

k t f t g t
v t
′

′≤ + +                               (2.16) 

By applying Lemma 2.1 implies the estimation of ( )v t  as 

( ) ( ) ( ) ( ) ( ) ( )
0

0 exp 0 0 0 d
t

v t k k t k f g s
 

≤ − + +   
 

∫                     (2.17) 

By substituting (2.17) in (2.13), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 exp 0 d
t

m t k t k f t k t k f s g s s
 

′ ′≤ + − + +   
 

∫  

Integrating both sides of the above inequality from 0 to t and also using (2.11), we observe that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 exp 0 d d
t s

m t k t k f s k s k f g s
 

≤ + − + ∂ + ∂ ∂   
 

∫ ∫              (2.18) 

From (2.12) and (2.18), we get the required inequality (2.9). This completes the proof. 
Theorem 2.3: Let ( )u t , ( )f t  and ( )g t , ( )k t  and ( )k t′  be defined as in Theorem 2.2. If 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

d d d d ,   
t t s

u t k t f s u s s f s f g u s  t I
τ

τ τ
  

≤ + + ∂ ∂ ∂ ∀ ∈     
∫ ∫ ∫ ∫          (2.19) 

Then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0 0 0

0 exp 0 d d d ,    
t s

u t k t f s k s k f k k f g s t I
τ

τ τ τ
  

≤ + + − + ∂ + ∂ ∂ ∀ ∈  
   

∫ ∫ ∫  

Proof: The proof of Theorem 2.3 is the same as the proof of Theorem 2.2 and by applying the Lemma 2.1 
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with suitable modifications. 

3. Application 
As an application, let us consider the bound for the solution of Volterra integral equation of the form 

( ) ( ) ( ) ( ) ( )( )
0

, , , d
t

x t f t p t s g t x s Tx s s= + ∫                          (3.1) 

where x, f and g are the elements of Rn, ( ),p t s  is a n × n matrix, ,n n ng C I R R R ∈ × ×   and , nx C I R ∈    
and T be a continuous operator such that T maps ( )C I  into ( )C I . 

Define  

( ), 1p t s ≤                                      (3.2) 

and  

( ) ( ), ,  ,   g t x y f t x y t I≤  +  ∈                              (3.3) 

Also let ( ) ( )f t k t≤ , where ( ) 1k t >                            (3.4) 

( ) ( ) ( )
0

d   ,   
t

Tx t g s x s s t I≤ ∈∫                              (3.5) 

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0 0

0 exp 0 d d ,    
t s

x t k t k f s k s k f g s t I
 

≤ + − + ∂ + ∂ ∂ ∀ ∈ 
 

∫ ∫  

Proof: Taking absolute value of the both sides of (3.1), we get 

( ) ( ) ( ) ( ) ( )( )
0

, , , d
t

x t f t p t s g s x s Tx s s≤ + ∫                        (3.6) 

By substituting from (3.2), (3.3), (3.4) and (3.5) in (3.6), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d ,   
t t s

x t k t f s x s s f s g x s  t I
 

≤ + + ∂ ∂ ∂ ∀ ∈ 
 

∫ ∫ ∫  

The remaining proof will be the same as the proof of Theorem 2.2 with suitable modifications. We note that 
Theorem 2.2 can be used to study the stability, boundedness and continuous dependence of the solutions of 
(3.1). 

4. Conclusion 
We finally mention that the integral inequalities obtained in this paper allow us to study the stability, bounded-
ness and asymptotic behavior of the solutions of a class of more general partial differential and integral equa-
tions. 
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