
Applied Mathematics, 2014, 5, 3474-3483 
Published Online December 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.521325    

How to cite this paper: Zhang, Q.X. and Gao, L. (2014) New Oscillation Criteria of Second-Order Nonlinear Delay Dynamic 
Equations on Time Scales. Applied Mathematics, 5, 3474-3483. http://dx.doi.org/10.4236/am.2014.521325  

 
 

New Oscillation Criteria of Second-Order 
Nonlinear Delay Dynamic Equations on  
Time Scales 
Quanxin Zhang, Li Gao 
Department of Mathematics, Binzhou University, Shandong, China 
Email: 3314744@163.com, gaolibzxy@163.com  
 
Received 25 September 2014; revised 22 October 2014; accepted 10 November 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
By using the generalized Riccati transformation and the integral averaging technique, the paper 
establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations 
on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay 
differential equation and the second-order nonlinear delay difference equation on time scales. 
The Theorems in this paper are new even in the continuous and the discrete cases. 
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1. Introduction 
According to the important academic value and application background in Quantum Physics (especially in Nuc-
lear Physics), engineering mechanics and control theory, the oscillation theory of dynamic equations on time 
scales has become one of the research hotspots. The paper will deal with the oscillatory behavior of all solutions 
of second-order nonlinear delay dynamic equation 

( ) ( )( )( ) ( ) ( )( )( ) 00,   ,   a t x t q t f x t t t t
γ

τ
∆

∆ + = ∈ ≥                       (1) 

In order to obtain the main results, we give the following hypotheses: 
(H1)   is a time scale (i.e., a nonempty closed subset of the real numbers  ) which is unbounded above, 

and 0t ∈  with 0 0t > . We define the time scale interval of the form [ )0 ,t ∞ 
 by [ ) [ )0 0, ,t t∞ = ∞ ∩  . 

(H2) 1γ ≥  is the ratio of two positive odd integers. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.521325
http://dx.doi.org/10.4236/am.2014.521325
http://www.scirp.org/
mailto:3314744@163.com
mailto:gaolibzxy@163.com
http://creativecommons.org/licenses/by/4.0/


Q. X. Zhang, L. Gao 
 

 
3475 

(H3) a, q are positive real-valued right-dense continuous functions on an arbitrary time scale  . 
(H4) [ )( )1

0 , ,rdC tτ ∈ ∞    is a strictly increasing function such that ( )t tτ ≤  and ( )tτ → ∞  as t →∞  
and ( ): τ= ⊂   . 

(H5) ( ),f C∈  
 is a continuous function, for some positive constant L which satisfies 

( ) for all 0
f x

L x
x

≥ ≠  

According to the solution of (1), we mean a nontrivial real-valued function x satisfying (1) for t∈ . We re-
call that a solution x of Equation (1) is said to be oscillatory on [ )0 ,t ∞   in case it is neither eventually positive 
nor eventually negative; otherwise, the solution is said to be nonoscillatory. Equation (1) is said to be oscillatory 
in case all of its solutions are oscillatory. Our attention is restricted on those solutions of (1) which are not 
eventually identically zero. Since ( ) 0a t > , we shall consider both the cases 

( )0

1

1
t

t
a t

γ∞  
∆ = ∞  

 
∫                                     (2) 

and 

( )0

1

1
t

t
a t

γ∞  
∆ < ∞  

 
∫                                     (3) 

It is easy to see that (1) can be transformed into a second-order nonlinear delay dynamic equation 

( ) ( )( ) ( ) ( )( )( ) 00,   ,   a t x t q t f x t t t tτ
∆∆ + = ∈ ≥                         (4) 

where 1γ = . In (1), if ( )f x xγ= , ( )t tτ = , then (1) is simplified to an equation 

( ) ( )( )( ) ( ) ( ) 00,   ,   a t x t q t x t t t t
γ γ

∆
∆ + = ∈ ≥                          (5) 

In (4), if ( ) 1a t = , then (4) is simplified to an equation 

( ) ( ) ( )( )( ) 00,   ,   x t q t f x t t t tτ∆∆ + = ∈ ≥                           (6) 

In (6), if ( )f x x= , then (6) is simplified to an equation 

( ) ( ) ( )( ) 00,   ,   x t q t x t t t tτ∆∆ + = ∈ ≥                            (7) 

After the careful consideration of the linear delay dynamic equations by Agarwal, Bohner and Saker in 2005 
[1] (7) and the nonlinear delay dynamic equations by Sahiner [2] (6), some sufficient conditions for oscillation 
of (7) and (6) have been established. In 2007, Erbe, Peterson and Saker [3] considered the general nonlinear de-
lay dynamic equations (4) and obtained some new oscillation criteria, which improved the results given by Sa-
hiner [2]. Saker [4] in 2005 and Grace, Bohner and Agarwal [5] in 2009 considered the half-linear dynamic equ-
ations (5), and established some sufficient conditions for oscillation of (5). For other related results, we recom-
mend the references [6]-[10]. On the basis of these, by using the generalized Riccati transformation and integral 
averaging technique, we continue to discuss the oscillation of solutions of (1) and obtain some new oscillatory 
criteria of Philos-type for (1). 

A time scale   is an arbitrary nonempty closed subset of the real numbers  . Since we are interested in 
oscillatory behavior, we suppose that the time scale under consideration is not bounded above, i.e., sup = ∞ . 
On any time scale we define the forward and the backward jump operators by 

( ) { } ( ) { }inf :   and  sup :t s s t t s s tσ ρ= ∈ > = ∈ <   

A point t∈  is said to be left-dense if ( )t tρ = , right-dense if ( )t tσ = , left-scattered if ( )t tρ <  and 
right-scattered if ( )t tσ > . The graininess µ  of the time scale is defined by ( ) ( )t t tµ σ= − . A function 
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:f →   is said to be rd-continuous if it is continuous at each right-dense point and if there exists a finite left 
limit at all left-dense points. 

Throughout this paper, we will make use of the following product and quotient rules for the derivative of the 
product fg and the quotient f g  of two differentiable functions f and g 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )fg t f t g t f t g t f t g t f t g tσ σ∆ ∆ ∆ ∆ ∆= + = +                (8) 

( ) ( ) ( ) ( ) ( )
( ) ( )( )

f t g t f t g tf t
g g t g tσ

∆ ∆ ∆− 
= 

 
                             (9) 

For ,  b c∈  and a differentiable function f, the Cauchy integral of f ∆  is defined by 

( ) ( ) ( )c

b
f t t f c b∆ ∆ = −∫  

The integration by parts formula reads 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c

b b
f t g t t f c g c f b g b f t g t tσ∆ ∆∆ = − − ∆∫ ∫                   (10) 

and infinite integrals are defined by 

( ) ( )lim
t

b bt
f s s f s s

∞

→∞
∆ = ∆∫ ∫  

For more details, see [11] [12]. 

2. Main Results 
In order to obtain the main results, the following lemmas are first introduced. 

Lemma 1 (Han et al. [[10], Lemma 2.2]) Assume that :τ →   is strictly increasing and ( ): τ= ⊂   is 
a time scale, ( )( ) ( )( )t tτ σ σ τ= . Let :x →  . If ( )tτ ∆ , and let ( )( )x tτ∆  exist for kt∈ , then 

( )( )( )x tτ
∆

 exist, and 

( )( )( ) ( )( ) ( )x t x t tτ τ τ
∆ ∆ ∆=                               (11) 

Lemma 2 (Bohner et al. [[11], Theorem 1.90]) Assume that ( )x t  is Δ-differentiable and eventually positive 
or eventually negative, then 

( )( )( ) ( )( ) ( ) ( ) ( )
11

0
1 dx t hx t h x t x t h

γγ
γ σ

∆ − ∆ = + − ∫                     (12) 

Lemma 3 (Sun et al. [[13], Lemma 2.1]) Assume that the conditions (H1)-(H5) and (2) hold, and let ( )x t  be 
an eventually position solution of (1), then there exists [ )1 0 ,t t∈ ∞ 

 such that 

( ) ( ) ( )( )( ) [ )10,    0,     ,x t a t x t t t
γ ∆

∆ ∆> < ∈ ∞                        (13) 

Next, we will provide a new sufficient condition for oscillation of all solutions of (1), which can be consi-
dered as the extension of the result of Philos [14] for oscillation of second-order differential equations. 

Theorem 1 Assume that the conditions (H1) - (H5), (2) hold and ( )( ) ( )( )t tτ σ σ τ= . Let  
( ) [ ){ }0 0: , : , , ,H D t s t s t t s t≡ ≥ ≥ ∈ ∞ → 

 be a rd-continuous function such that 

( ) ( ) [ )0 0 0, 0    ,  , 0    ,  , ,H t t for t t H t s for t s t t s t= ≥ > > ≥ ∈ ∞   

and H has a non-positive continuous Δ-partial derivative ( ),sH t s∆  with respect to the second variable. Fur-
thermore, let :h D →  be a rd-continuous function, and satisfies 

( ) ( ) ( ) ( ), , ,      ,sH t s h t s H t s for all t s D∆− = ∈   

Assume that there exists a positive nondecreasing Δ-differentiable function [ )( )1
0 , ,rdC tδ ∈ ∞ 

 such that for 
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every positive constant M, 

( ) ( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

0

1

2

1
0

1limsup , , ,
, 4

t

tt

a s
LH t s s q s s H t s s h t s s

H t t M s s

γ

γ
γ

τ
δ δ δ

δ τ

∆
−

→∞ ∆

 
 

− − ∆ = ∞ 
 
 

∫   (14) 

for 0t s t> ≥ , [ )0,  ,t s t∈ ∞ 
. Then (1) is oscillatory on [ )0 ,t ∞ 

. 
Proof. Suppose that ( )x t  is a nonoscillatory solution of (1) on [ )0 ,t ∞ 

. Without loss of generality, we 
assume that ( ) 0x t >  and ( )( ) 0x tτ >  for all [ )1,t t∈ ∞ 

, [ )1 0 ,t t∈ ∞ 
, and we shall only consider this case. 

When ( )x t  is eventually negative, the proof is similar. By Lemma 3, we have (23). Define the function ( )W t  
by 

( ) ( )
( ) ( )( )

( )( ) [ )1,     ,
a t x t

W t t t t
x t

γ

δ
τ

∆

= ∈ ∞ 
                         (15) 

Then on [ )1,t ∞ 
, we have ( ) 0W t > , and by (8)-(9), we obtain 

( ) ( )
( )( ) ( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( ) ( ) ( )( )( )

( )( ) ( )( )( )
x t t t x tt

W t a t x t a t x t
x t x t x t

γγ τ δ δ τδ
σ σ

τ τ τ σ

∆∆∆
∆ ∆ ∆

−
= +  

[ )1,t t∈ ∞ 
. Based on (1) and (15), we can obtain 

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( )( )

t a t x t x tt
W t Lq t t W t

t x t x t

γ
δ σ σ τδ

δ σ
δ σ τ τ σ

∆∆∆
∆ ≤ − + −  

by using (11), we have ( )( )( ) ( )( ) ( )x t x t tτ τ τ
∆ ∆ ∆=  thus 

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( )( ) ( )( ) ( )
( )( ) ( )( )( )

t a t x t x t tt
W t Lq t t W t

t x t x t

γ
δ σ σ τ τδ

δ σ
δ σ τ τ σ

∆ ∆ ∆∆
∆ ≤ − + −        (16) 

By ( ) ( )( )( ) 0a t x t
γ ∆

∆ <  and ( ) 0x t∆ > , we have 

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ) and  a t x t a t x t x t x t
γ γ

τ τ σ σ τ τ σ∆ ∆≥ ≤              (17) 

Substituting (17) in (16), we obtain 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( )

( )( )
( ) ( ) ( )( ) ( )( )( )

( )( )( )( )

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( )( )
( ) ( )

( )( ) ( )( )( )
( )( )( )

( )( )( )

1 1

2

1

2

2 1
1 .

t t a t x ta tt
W t Lq t t W t

t a t x t

a tt t t
Lq t t W t W t

t a t a t t x t

γ
γ

γ

γ

δ τ σ σσδ
δ σ

δ σ τ τ σ

σδ δ τ
δ σ σ

δ σ τ σ δ σ σ

+∆ ∆∆
∆

∆ ∆

−∆

 
≤ − + −  

 

 
= − + −  

 

 (18) 

[ )1,t t∈ ∞ 
. Now, due to the fact that ( ) ( )( )a t x t

γ∆  is positive and nonincreasing, there exists an [ )1,T t∈ ∞ 
 

sufficiently large such that ( ) ( )( ) 1a t x t
M

γ∆ ≤  for some positive constant M and [ ),t T∈ ∞ 
, and we have 

( )( ) ( )( )( ) 1a t x t
M

γ
σ σ∆ ≤ , so that 
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( )( )( )
( )( )( )

1

1

1 Ma t
x t

γ
γ

γ σ
σ

−

−∆
≥                               (19) 

Substituting (19) into (18), we obtain 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( )

( )( )( ) ( )( )( )
( )( )( )

( ) ( ) ( )
( )( ) ( )( ) ( )

( )( )( )
( )( )( )

1 2

1 2

2

2 .

t t t
W t Lq t t W t M W t

t
a t t

W tt
Lq t t W t t

t t

γ
γ

γ

δ δ τ
δ σ σ

δ σ
τ δ σ

σδ
δ σ δ

δ σ δ σ

∆ ∆−
∆

∆

≤ − + −

= − + −

         (20) 

where ( ) ( ) ( ) ( )

( )( )( )

1

1

t t
t M

a t

γ
γ

γ

δ τ
δ

τ

∆−

= . Thus, for every [ )1,  ,t T t∈ ∞ 
 with 1t T t≥ ≥ , by (10), we obtain 

( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( )( )

( ) ( )
( )( )( )
( )( )( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )
( )( )( )
( )( )( )

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )
( )( )( )
( )( )( )

( ) ( )

2

2

2

2

2

2

,

, , ,

,

, , ,
, ,

, ,
, , ,

,

s

t

T

t t

T T

t

T

t t

T T

t t

T T

t

T

LH t s s q s s

s
H t T W T H t s W s s H t s W s s

s

W s
H t s s s

s

W ss H t s s h t s H t s
H t T W T W s s H t s s s

s s

W ss H t s s h t s
H t T W T H t s W s s H t s s s

s s

H t T W T

δ

δ
σ σ

δ σ

σ
δ

δ σ

σδ δ
σ δ

δ σ δ σ

σδ δ
σ δ

δ σ δ σ

∆
∆

∆

∆

∆

≤ − − ∆ + ∆

− ∆

−
= + ∆ − ∆

−
≤ + ∆ − ∆

= −

∫

∫ ∫

∫

∫ ∫

∫ ∫

( )
( ) ( )( )

( )( )
( ) ( ) ( ) ( )

( )

( )( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2

1

2

1

1

2

1

, , ,

2

, ,
4

, , , .
4

t

T

t

T

H t s W s s H t s s h t s
s s

s s

a s
s H t s s h t s s

M s s

a s
H t T W T s H t s s h t s s

M s s

γ

γ
γ

γ

γ
γ

σ δ δ
δ

δ σ δ

τ
δ δ

δ τ

τ
δ δ

δ τ

∆

∆
−

∆

∆
−

∆

 −
 − ∆
 
 

 + − ∆ 

 ≤ + − ∆ 

∫

∫

∫

(21) 

By (21), we obtain 

( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

2

1

0

, , ,
4

, , .

t

T

a s
LH t s s q s s H t s s h t s s

M s s

H t T W T H t t W T

γ

γ
γ

τ
δ δ δ

δ τ

∆
−

∆

 
 

− − ∆ 
 
 

≤ ≤

∫  

From the above inequality, denoting 0T T= , we obtain 
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( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

{ } ( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ){ }

0

0

0 0

0

0

1

2

1

1

2

1

0 0

, , ,
4

, , ,
4

, .

t

t

T t

t t

T

t

a s
LH t s s q s s H t s s h t s s

M s s

a s
LH t s s q s s H t s s h t s s

M s s

H t t L s q s s W T

γ

γ
γ

γ

γ
γ

τ
δ δ δ

δ τ

τ
δ δ δ

δ τ

δ

∆
−

∆

∆
−

∆

 
 

− − ∆ 
 
 

 
 

= + − − ∆ 
 
 

≤ ∆ +

∫

∫ ∫

∫

 

The above inequality implies that 

( ) ( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

0

0

0

1

2

1
0

0

1limsup , , ,
, 4

.

t

tt

T

t

a s
LH t s s q s s H t s s h t s s

H t t M s s

L s q s s W T

γ

γ
γ

τ
δ δ δ

δ τ

δ

∆
−

→∞ ∆

 
 

− − ∆ 
 
 

≤ ∆ +

∫

∫

 

So we have a contradiction to the condition (14). This completes the proof. 
Remark 1 From Theorem 1, we can obtain different conditions for oscillation of all solutions of (1) with 

different choices of ( )tδ  and ( ),H t s . For example, ( ) ( ), mH t s t s= −  or ( ) 1, ln
1

mtH t s
s
+ =  + 

. 

Now, let us consider the function ( ),H t s  defined by 

( ) ( ) [ )0 0, , 1, , , , .mH t s t s m t s t t s t= − ≥ ≥ ≥ ∈ ∞ 
 

Then ( ), 0H t t =  for 0t t≥ , and ( ), 0H t s > , ( ), 0sH t s∆ ≤  for 0t s t> ≥ , [ )0 , ,t s t∈ ∞ 
. Furthermore,  

the function h with ( ) ( )
2

2,
m

h t s m t s
−

= −  for 0>t s t≥ , [ )0 , ,t s t∈ ∞ 
. Hence we have the following results. 

Corollary 1 Assume that the conditions (H1) - (H5), (2) hold and ( )( ) ( )( )t tτ σ σ τ= . Furthermore, assume 
that there exists a positive nondecreasing Δ-differentiable function [ )( )1

0 , ,rdC tδ ∈ ∞ 
 such that for every 

positive constant M and 1m ≥ , 

( ) ( ) ( )
( )( )( )

( ) ( ) ( )
( ) ( )

0

1
2

1

1limsup
4

t m
m tt

a s s
t s L s q s s m s

t st M s s

γ

γ
γ

τ δ
δ δ

δ τ

∆
−

→∞ ∆

 
  

− − − ∆ = ∞  −  
 

∫          (22) 

for 0>t s t≥ , [ )0 , ,t s t∈ ∞ 
. Then (1) is oscillatory on [ )0 ,t ∞ 

. 
Now, when (3) holds, we give the oscillatory criteria of Philos-type for (1). 
Theorem 2 Assume that the conditions (H1) - (H5), (3) hold and ( )( ) ( )( )t tτ σ σ τ= , and let H, h and δ  be 

defined as in Theorem 1 and the condition (14) holds. Furthermore, assume that for every [ )1 0 ,t t∈ ∞ 
, 

( ) ( ) ( )
1 1

1

1 s

t t
u q u u s

a s

γ

θ
∞  

∆ ∆ = ∞ 
  

∫ ∫                             (23) 

where 

( ) ( )

1

1
t

t s
a s

γ

θ
∞  

= ∆  
 

∫  

Then (1) is oscillatory on [ )0 ,t ∞ 
. 

Proof. Suppose that ( )x t  is a nonoscillatory solution of (1) on [ )0 ,t ∞  . Without loss of generality, we as-
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sume that ( ) 0x t >  and ( )( ) 0x tτ >  for all [ )1,t t∈ ∞ 
, [ )1 0 ,t t∈ ∞  , and we shall only consider this case. 

When ( )x t  is eventually negative, the proof is similar. Since ( ) ( )( )a t x t
γ∆  is decreasing, it is eventually of 

one sign and hence ( )x t∆  is eventually of one sign. Thus, we shall distinguish the following two cases: 
(1) ( ) 0x t∆ >  for 1t t≥ ; and 
(2) ( ) 0x t∆ <  for 1t t≥ . 
Case (1). The proof when ( )x t∆  is an eventually positive is similar to that of the proof of Theorem 1 and it 

hence is omitted. 
Case (2). For 1s t t≥ ≥ , we have 

( ) ( )( ) ( ) ( )( )a s x s a t x t
γ γ∆ ∆− ≥ −  

and hence 

( ) ( )
( ) ( )( )

1

a t
x s x t

a s

γ
∆ ∆ 

− ≥ −  
 

                              (24) 

Integrating (24) from 1t t≥  to u t≥  and letting u →∞  yields 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) [ )
1

11

1
1   for  ,

t
x t s a t x t t a t x t t t

a s

γ
γγ θ

∞ ∆ ∆

 
  ≥ ∆ − = − ∈ ∞   
   

∫ 
 

and thus 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) [ )1 1 1=   for  ,x t t a t x t t a t x t b t t t
γ γγ γ γ γγθ θ θ∆ ∆≥ − ≥ − ∈ ∞         (25) 

where ( ) ( )
1

1 1 0b a t x tγ ∆= − > . Using (25) in Equation (1), we find 

( ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) [ )1  for  ,a t x t Lq t x t Lq t x t bL t q t t t
γ

τ θ
∆

∆− ≥ ≥ ≥ ∈ ∞             (26) 

Integrating (26) from t1 to t, we have 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1 1

1 1
t t

t t
a t x t a t x t bL s q s s bL s q s s

γ γ
θ θ∆ ∆− ≥ − + ∆ ≥ ∆∫ ∫  

so that 

( ) ( ) ( ) ( )
1

1

t

t

bLx t s q s s
a t

γ

θ∆  
− ≥ ∆ 

  
∫                              (27) 

Integrating (27) from t1 to t, we obtain 

( ) ( ) ( ) ( ) ( ) ( )
1

1

1 1
1

>   as  
t s

t t

bLx t x t x t u q u u s t
a s

γ

θ
 

∞ ≥ − + ≥ ∆ ∆ →∞ →∞ 
  

∫ ∫  

by (23), which is a contradiction. This completes the proof.                                          
Remark 2 In the past, the usual result is that the condition (3) was established, then every solution of the 

Equation (1) is either oscillatory or converges to zero. But now Theorem 2 in our paper prove that if the condi-
tion (3) is satisfied, every solution of the Equation (1) is oscillatory. 

Similar to the Corollary 1, by applying Theorem 2 with 

( ) ( ) [ )0 0, 1, , , ,mH t s t s m t s t t s t− = − ≥ ≥ ≥ ∈ ∞ 
 

we have the following results. 
Corollary 2 Assume that the conditions (H1) - (H5), (3), (22), (23) hold and ( )( ) ( )( )t tτ σ σ τ= , then (1) is 

oscillatory on [ )0 ,t ∞ 
. 

Next, we give a result of a succinctness and convenient to application. 
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Theorem 3 Assume that the conditions (H1) - (H5), (2) hold and ( )( ) ( )( )t tτ σ σ τ= , and let  
( ) [ ){ }0 0: , : , , ,H D t s t s t t s t≡ ≥ ≥ ∈ ∞ →  

 be a rd-continuous function such that 

( ) ( ) [ )0 0 0, 0    ,  , 0    ,   , ,H t t for t t H t s for t s t t s t= ≥ > > ≥ ∈ ∞   

and H has a non-positive continuous Δ-partial derivative ( ),sH t s∆  with respect to the second variable. Fur-
thermore, assume that there exists a positive Δ-differentiable function [ )( )1

0 , ,rdC tδ ∈ ∞ 
 such that for every 

positive constant M, 

( ) ( ) ( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )0

1 2

1
0

1 ,limsup
, 4

t

tt

a s s
H t s Lq s s s

H t t M s s

γ

γ
γ

τ δ
δ

δ τ

∆

−
→∞ ∆

 
 

− ∆ = ∞ 
 
 

∫               (28) 

for 0t s t> ≥ , [ )0,  ,t s t∈ ∞ 
. Then (1) is oscillatory on [ )0 ,t ∞ 

. 
Proof. Suppose that ( )x t  is a nonoscillatory solution of (1) on [ )0 ,t ∞ 

. Without loss of generality, assume 
that ( ) 0x t >  and ( )( ) 0x tτ >  for all [ )1,t t∈ ∞ 

, [ )1 0 ,t t∈ ∞ 
, which we shall only consider this case. When 

( )x t  is eventually negative, the proof is similar. Proceeding as in the proof of Theorem 1, we obtain (20), thus  

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( )

( )( )( ) ( )( )( )
( )( )( )

( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( )( )
( )( )

( )( )( ) ( )

( ) ( ) ( )

( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )

1 2

1 2

2
11 12

1 1 1

1 2

1

4 2

,
4

t t t
W t Lq t t W t M W t

t
a t t

a t ta t t M t t
Lq t t W t

M t t M t tt a t

a t t
Lq t t

M t t

γ
γ

γ

γ
γγ γ

γ γ
γ γ γ

γ

γ
γ

δ δ τ
δ σ σ

δ σ
τ δ σ

τ δτ δ δ τ
δ σ

δ τ δ τδ σ τ

τ δ
δ

δ τ

∆ ∆−
∆

− ∆∆ ∆

− −∆ ∆

∆

−
∆

≤ − + −

 
 
 = − + − −
 
  

 
 

≤ − − 
 
 

 (29) 

for all [ )1,t t∈ ∞ 
. Then from (29), we have 

( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )
( )

1 2

1
4

a s s
Lq s s W s

M s s

γ

γ
γ

τ δ
δ

δ τ

∆
∆

−
∆

− ≤ −  

for all [ )1,s t∈ ∞ 
, and therefore, for all 1t s t> ≥ , 

( ) ( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1

1 1

1 2

1
1

20

1 1 0 1

, ,
4

, , , , ,s

t t

t t

tt

t t

a s s
H t s Lq s s s H t s W s s

M s s

H t s W s H t s W s s H t t W t H t t W t

γ

γ
γ

τ δ
δ

δ τ

δ

∆
∆

−
∆

∆

 
 

− ∆ ≤ − ∆ 
 
 

= − + ∆ ≤ ≤

∫ ∫

∫

 

and hence, for all 1>t s t≥ , 

( ) ( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )
{ } ( ) ( ) ( )

( )( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ){ }

1

0 0 1

1

0

1 12 2

1 1

0 1

, ,
4 4

, .

t t t

t t t

t

t

a s s a s s
H t s Lq s s s H t s Lq s s s

M s s M s s

H t t Lq s s s W t

γ γ

γ γ
γ γ

τ δ τ δ
δ δ

δ τ δ τ

δ

∆ ∆

− −
∆ ∆

    
   

− ∆ = + − ∆   
   

    

≤ ∆ +

∫ ∫ ∫

∫

 

Thus 
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( ) ( ) ( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0

1

0

1 2

1
0

1

1 ,limsup
, 4

t

tt

t

t

a s s
H t s Lq s s s

H t t M s s

Lq s s s W t

γ

γ
γ

τ δ
δ

δ τ

δ

∆

−
→∞ ∆

 
 

− ∆ 
 
 

≤ ∆ + < ∞

∫

∫

 

which is contradicted with (28). This completes the proof.                                           
Now, applying Theorem 3 with 

( ) ( ) [ )0 0, , 1, , , ,mH t s t s m t s t t s t= − ≥ ≥ ≥ ∈ ∞ 
 

we have the following results. 
Corollary 3 Assume that the conditions (H1) - (H5), (2) hold and ( )( ) ( )( )t tτ σ σ τ= . If there exists a 

positive Δ-differentiable function [ )( )1
0 , ,rdC tδ ∈ ∞ 

 such that for every positive constant M and 1m ≥ , 

( ) ( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )0

1 2

1

1
limsup

4

t m
m tt

a s s
t s Lq s s s

t M s s

γ

γ
γ

τ δ
δ

δ τ

∆

−
→∞ ∆

 
 

− − ∆ = ∞ 
 
 

∫ ,               (30) 

for 0t s t> ≥ , [ )0,  ,t s t∈ ∞ 
. Then (1) is oscillatory on [ )0 ,t ∞ 

. 
Using the same ideas as in the proof of Theorem 2, when (3) holds, we can now obtain the following result. 
Theorem 4 Assume that the conditions (H1) - (H5), (3), (23) hold and ( )( ) ( )( )t tτ σ σ τ= . Furthermore, let 

H and δ  define the same as Theorem 3 and the condition (28) holds. Then (1) is oscillatory on [ )0 ,t ∞ 
 

Now, let 

( ) ( ) [ )0 0, , 1, , , ,mH t s t s m t s t t s t= − ≥ ≥ ≥ ∈ ∞ 
 

we have the following results. 
Corollary 4 Assume that the conditions (H1) - (H5), (3), (23), (30) hold and ( )( ) ( )( )t tτ σ σ τ= , then (1) is 

oscillatory on [ )0 ,t ∞ 
. 

Remark 3 Our results in this paper unify the oscillation of the second-order nonlinear delay differential equ-
ation and the second-order nonlinear delay difference equation. As an example, when =  , the (1) becomes 

( )( ) ( ) 0, 0,1, 2,n n n na x q f x nγ
σ−∆ ∆ + = =   

and the condition (30) becomes 

( ) ( ) ( )

( )0

1 2

1
1limsup

4

n m l l
l lm

n l n
l

a
n l Lq

n M

γ
σ

γ
γ

δ
δ

δ

−
−

→∞ =

 ∆ − − = ∞ 
  

∑  

then Corollary 3 extends Theorem 2.1 in [15] and Theorem 1 generalizes Theorem 2.1 in [15]. The Theorem 2 - 
4 in this paper are new even for the cases =   and =  . 

Example 1 Consider the second-order nonlinear delay 2-difference equations 

( ) 2
02

1 1 1 0,   2 ,   : 2
2 2 2

t t tx t x x t t t
t t

∆
∆+       + + = ∈ ≥ =      +      

                  (31) 

Here 

( ) ( ) ( ) ( ) ( )2 21 ,   ,   1 ,   ,   1.
2 2

t ta t q t t f x x x t
t

τ γ−+
= = = + = =

+
 

The conditions (H1) - (H4) and (2) are clearly satisfied, (H5) holds with L = 1. Now let ( )t tδ =  for all 2t ≥ , 
then 
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( ) ( )
( )( )( ) ( )( )

( ) ( ) ( )

( ) ( )

1 2

2
2 12

2
2

2 22 2

1 ( )
4

1 1 1 2 1    as   .
2 4 2

t

t t

a s s
t s Lq s s s

t M s s

t sst s s s t
s s s st t

γ

γ
γ

τ δ
δ

δ τ

∆

−
∆

 
 

− − ∆ 
 
 

−+ = − − ∆ ≥ ∆ →∞ →∞ + 

∫

∫ ∫

 

so that (30) is satisfied as well. Altogether, by Corollary 3, the equation (31) is oscillatory. 
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