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Abstract

By using the generalized Riccati transformation and the integral averaging technique, the paper
establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations
on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay
differential equation and the second-order nonlinear delay difference equation on time scales.
The Theorems in this paper are new even in the continuous and the discrete cases.
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1. Introduction

According to the important academic value and application background in Quantum Physics (especially in Nuc-
lear Physics), engineering mechanics and control theory, the oscillation theory of dynamic equations on time
scales has become one of the research hotspots. The paper will deal with the oscillatory behavior of all solutions
of second-order nonlinear delay dynamic equation

(a(t)(xA (1) )A +q(t) f(x(z(1))=0, teT, t=t, (1)

In order to obtain the main results, we give the following hypotheses:

(Hy) T is a time scale (i.e., a nonempty closed subset of the real numbers R) which is unbounded above,
and t, eT with t, >0.We define the time scale interval of the form [ty ). by [t,,0)_ =[t,,0)"T.

(H,) y =1 isthe ratio of two positive odd integers.
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(Ha1) a, g are positive real-valued right-dense continuous functions on an arbitrary time scale T.

(Hy) 7eCh([ty, )., T) is a strictly increasing function such that z(t)<t and r(t) > as t— oo
and T:=7(T)cT.

(Hs) f eC(R,R) isa continuous function, for some positive constant L which satisfies

@ZL forall x=0

According to the solution of (1), we mean a nontrivial real-valued function x satisfying (1) for teT. We re-
call that a solution x of Equation (1) is said to be oscillatory on [to,oo)T in case it is neither eventually positive
nor eventually negative; otherwise, the solution is said to be nonoscillatory. Equation (1) is said to be oscillatory
in case all of its solutions are oscillatory. Our attention is restricted on those solutions of (1) which are not
eventually identically zero. Since a(t)> 0, we shall consider both the cases

i) o

and

(1Y)
-[to [%J At < 0 (3)

It is easy to see that (1) can be transformed into a second-order nonlinear delay dynamic equation

(a(t)x* (1)) +a(t) f (x(z(1))=0, teT, t=t, @)
where y=1.In(1),if f(x)=x", z(t)=t, then (1) is simplified to an equation
(a(t)(xA(t))y)A+q(t)x7(t):0, teT, txt, (5)
In (4), if a(t)=1, then (4) is simplified to an equation
X* (t)+a(t) f(x((1)) =0, teT, t>t, (6)

In (6), if f(x)=x, then (6) is simplified to an equation
x* () +a(t)x(z(t))=0, teT, t=t, ©)

After the careful consideration of the linear delay dynamic equations by Agarwal, Bohner and Saker in 2005
[1] (7) and the nonlinear delay dynamic equations by Sahiner [2] (6), some sufficient conditions for oscillation
of (7) and (6) have been established. In 2007, Erbe, Peterson and Saker [3] considered the general nonlinear de-
lay dynamic equations (4) and obtained some new oscillation criteria, which improved the results given by Sa-
hiner [2]. Saker [4] in 2005 and Grace, Bohner and Agarwal [5] in 2009 considered the half-linear dynamic equ-
ations (5), and established some sufficient conditions for oscillation of (5). For other related results, we recom-
mend the references [6]-[10]. On the basis of these, by using the generalized Riccati transformation and integral
averaging technique, we continue to discuss the oscillation of solutions of (1) and obtain some new oscillatory
criteria of Philos-type for (1).

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since we are interested in
oscillatory behavior, we suppose that the time scale under consideration is not bounded above, i.e., sup T =o0.
On any time scale we define the forward and the backward jump operators by

o(t)=inf{seT:s>t} and p(t)=sup{seT:s<t}

A point teT is said to be left-dense if p(t)=t, right-dense if o(t)=t, left-scattered if p(t)<t and
right-scattered if o(t)>t. The graininess x of the time scale is defined by u(t)=o(t)-t. A function
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f:T— R issaid to be rd-continuous if it is continuous at each right-dense point and if there exists a finite left
limit at all left-dense points.

Throughout this paper, we will make use of the following product and quotient rules for the derivative of the
product fg and the quotient /g of two differentiable functions f and g

(f)" (1)=f* (g (t)+ f(e()g* ()= f () g* )+ F* ()9 (o (1)) ®)

) FOg()- (Bt (1)
5o 309 (o (1) ©

For b, ceT and adifferentiable function f, the Cauchy integral of f* is defined by

{2 (t)at=f(c)(b)

The integration by parts formula reads
jbc f4(t)g(t)at=f(c)g(c)-f (b)g(b)—j: fo(t)g" (t)At (10)
and infinite integrals are defined by

J? f(s)As=lim ; f(s)As

t—o

For more details, see [11] [12].

2. Main Results

In order to obtain the main results, the following lemmas are first introduced. y
Lemma 1 (Han etal. [[10], Lemma 2.2]) Assume that z:T — R is strictly increasing and T := r(T) cTis
a time scale, r(o(t))=o(z(t)). Let x:T—>R. If z°(t), and let x*(z(t)) exist for teT", then
A .
(x(z(1)))  exist, and
A
(x(z(0)) =x*(z(©)=* (1) (11)

Lemma 2 (Bohner et al. [[11], Theorem 1.90]) Assume that x(t) is A-differentiable and eventually positive
or eventually negative, then

(<) )" =f (o) + @-n)x(0)] ¢ ()an )

Lemma 3 (Sun et al. [[13], Lemma 2.1]) Assume that the conditions (H;)-(Hs) and (2) hold, and let x(t) be
an eventually position solution of (1), then there exists t, e [to,oo)T such that

A

X (t)> 0, (a(t)(xA(t))y) <0, teft,), (13)

Next, we will provide a new sufficient condition for oscillation of all solutions of (1), which can be consi-
dered as the extension of the result of Philos [14] for oscillation of second-order differential equations.

Theorem 1 Assume that the conditions (H;) - (Hs), (2) holdand 7 (o (t))=o(z(t)). Let
H:D, = {(t,s):tz s>ty,t,se [to,oo)T} — R be a rd-continuous function such that

H(t,t)=0 for t>t,, H(t,s)>0 for t>s>t, t,se[t,,»)_

and H has a non-positive continuous A-partial derivative H* (t,s) with respect to the second variable. Fur-
thermore, let h: D, —» R be a rd-continuous function, and satisfies

—H% (t,s)=h(t,s)/H(t,s) forall (t,s)eD;

Assume that there exists a positive nondecreasing A-differentiable function & C;, ([to,oo)T ,R) such that for
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every positive constant M,

1

limsup LH (t,5)5(s)a(s)— (a(r(s)))V

LCTon a(MY7 5(s)e>(s)

(6 ()YH(t5)~3(s)h(t.5)) |as=o (14)

for t>s>t, t, se[ty,)_ . Then (1) is oscillatory on [t,,c0), .

Proof. Suppose that x(t) is a nonoscillatory solution of (1) on [to,oo)T. Without loss of generality, we
assume that x(t)>0 and x(z(t))>0 forall te[t, ) , t &[ty,o), ,and we shall only consider this case.
When x(t) is eventually negative, the proof is similar. By Lemma 3, we have (23). Define the function W (t)

by

W(t):&(t)%, telt,o). (15)
Thenon [t,)_, we have W (t)>0,and by (8)-(9), we obtain
" . L x(z(1)8 (1) -5()(x(c (1))
WA(t):XfT(Et)))(a(t)(xA 1)) +ale®)(x (=) ( ()X)(T(t();x<r((3<(t)() )

te[t, ). . Based on (1) and (15), we can obtain

W2 (t)<-Lq(t)s(t)+

S )< 5% (t) s(t)a(a(t))(x* (e(1)) x* (z(t))* (t)
w (t)_—Lq(t)5(t)+5(0(t))w(a(t))— (O (r(o V) (16)
By (a(t)(xA(t))y)A<0 and x*(t)>0, we have
a(e(0) (x* (z(1))) Za(eO)(x" (1)) and x(z (1) <x(z(o(1))) an
Substituting (17) in (16), we obtain
A 5 () (1)) 50 (Dalo(t)(x (=)
WE(t)<-La(t)s(t)+~— W(U(t))—[a . j 2
(e(t) (=(1)) | (x(v( (1)) -
SRR ) R LR
M0 5oy 70 [a(f(t)) a(o(1)(5(a (1)) o) (x* (o))"

te[t, ). . Now, due to the fact that a(t)(x" (t))y is positive and nonincreasing, there exists an T e[t,,»)_
fi

sufficiently large such that a(t)(xA (t))7 <

a(o(0)( (1)) <10 that

or some positive constant M and te[T,oo)T, and we have
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> (Ma(o(t)) 7 (19)

(e w) olt0) -
—La(t)s(t)+ 5?0_((1)))W(0'(t))—5 t)((V;I((:((:))))))Z
where (§(t)=(M)77_1 sy (tz . Thus, forevery t, T e[t,,0), with t>T >t by (10), we obtain
(a(=(1)
'[Tl LH (t,s)5(s)a(s)As
SH(LT)W (T)= [ (-H™ (t,5))W (o(s)) As+ [ H (t,5) 5?0((55)))w (o(s))as
[H(ts)5 (s)((vg((:((:))))))z As
=H(tL,T)W (T)+jt 7 (s)yH (ts) ~o(s)h(ts)yH S)W(a(s))As— H(t 5)5(5)(W (a(s)»z As
- T 5(o(s)) (6(a(s)))
(s ,8)=5(s s _ o(s)) @Y
cHeTw () [ Hg(a)(s)é( J8) s (o (s))as— [ (1 5)5(5)((\,;/((0((5))))))2 As

s(a(s) 25 (s)

By (21), we obtain

j{m (t,5)5(s)q(s)- —

SH(LT)W(T)<H (t,t, )W (T).

From the above inequality, denoting T =T,, we obtain
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[ s s)ats) —— (5 ()W (05)-5(5)h(1.5)) [as

<H (L){[Lo(s)als) as+w (T,)f.

The above inequality implies that

iimsup—— [ LH (t,5)5(s)a () - (ay(f(s))y (6 (s)JH (t:5)-5(s)n(t.s)) [as
e H(t) a(M)7 5(s)e (s)

To
< jto LS(s)a(s)As+W (T,).
So we have a contradiction to the condition (14). This completes the proof.

Remark 1 From Theorem 1, we can obtain different conditions for oscillation of all solutions of (1) with

different choices of &(t) and H(t,s).Forexample, H(t,;s)=(t—s)" or H(ts)= (Iniﬂ '
S+

Now, let us consider the function H (t,s) defined by

H(t,s)=(t-s)", m=1 t=s>t, t,se[t,0)_.

Then H(t,t)=0 for t>t,, and H(t,s)>0, H*(t;s)<0 for t>s>t,, t,s e[ty, ), . Furthermore,
m-2
the function h with h(t,s)=m(t-s) 2 for t>s>t,, t,se[t,, ). . Hence we have the following results.

Corollary 1 Assume that the conditions (Hy) - (Hs), (2) hold and 7(co(t))=c(z(t)). Furthermore, assume
that there exists a positive nondecreasing A-differentiable function & e C, ([to,oo)T ,R) such that for every
positive constant Mand m>1,

1
. a(z(s))) 5(s)Y
limsup = [* (t-5)"| L& (s)a(s)- ( ( (s)) (m (s)_mﬂ] AS= oo 22)
e T 4(M)7 8(s)z*(s) t=s
for t>s>t,, t;sefty,)_ . Then (1) isoscillatory on [t,,c0), .
Now, when (3) holds, we give the oscillatory criteria of Philos-type for (1).

Theorem 2 Assume that the conditions (H,) - (Hs), (3) hold and 7(o(t))=o(z(t)), and letH,hand &5 be
defined as in Theorem 1 and the condition (14) holds. Furthermore, assume that for every t, e [to,oo)T ,

1

1

J:{EL:@(U)Q(U)AUT As = oo (23)

where

(1)
o0-F {5t
Then (1) is oscillatory on [t,,c0)_

Proof. Suppose that x(t) is a nonoscillatory solution of (1) on [to,oo)T . Without loss of generality, we as-
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sume that x(t)>0 and x(z(t))>0 forall te[t,») , t€[t,»)., and we shall only consider this case.
When x(t) is eventually negative, the proof is similar. Since a(t)(xA (t)) is decreasing, it is eventually of
one sign and hence x* (t) is eventually of one sign. Thus, we shall distinguish the following two cases:

(1) x*(t)>0 for t>t,;and

(2) x*(t)<0 for t=>t,.

Case (1). The proof when x* (t) is an eventually positive is similar to that of the proof of Theorem 1 and it
hence is omitted.

Case (2). For s>t>t, we have

and hence

() {ﬂ}l (¢ (1) (24)

Integrating (24) from t>t, to u>t and letting u— o yields

X |

x(t)= f{%}“ (a(t)) (—XA(t))=—9(t)ai(t)XA(t) for teft, ),

and thus

(x(1)) ==(0(1)) a(t)(x" (1)) ==(6(t)) a(t,)(x* () =b"(6(t))" for te[t, o), (25)

where b= —a% (t)x*(t,) > 0. Using (25) in Equation (1), we find
_(a(t)(XA (t))’ )A > Lq(t)x(z(t))= La(t)x(t) = bLO(t)q(t) for te[t,, o), (26)
Integrating (26) from t, to t, we have
—a(t)(x* (1)) 2-a(t)(x" (t)) +bL[0(s)a(s)as =bL[O(s)a(s)As

so that

—xA (t)z{b_the(s)q(s)AsT (27)
Integrating (27) from t; to t, we obtain

t

bL s 4
l:a(s)jtle(u)q(u)Au} AS —> 0 as t — o
by (23), which is a contradiction. This completes the proof. d
Remark 2 In the past, the usual result is that the condition (3) was established, then every solution of the
Equation (1) is either oscillatory or converges to zero. But now Theorem 2 in our paper prove that if the condi-
tion (3) is satisfied, every solution of the Equation (1) is oscillatory.
Similar to the Corollary 1, by applying Theorem 2 with

o > x(tl)Z—x(t)+x(t1)2I

L}

H(t-s)=(t-s)", m>1 t>s>t, t,se[t,o).

we have the following results.

Corollary 2 Assume that the conditions (Hy) - (Hs), (3), (22), (23) hold and z(o(t))=o(z(t)), then (1) is
oscillatory on [tO'OO)T'

Next, we give a result of a succinctness and convenient to application.

3480
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Theorem 3 Assume that the conditions (H;) - (Hs), (2) holdand 7(o(t))=o(7(t)), and let
H:D, = {(t, s)it=s>t,t,se [to,oo)T} — R be a rd-continuous function such that

H(t,t)=0 for t>t,, H(t,;s)>0 for t>s>t,, t,se[t,»)

and H has a non-positive continuous A-partial derivative H " (t,s) with respect to the second variable. Fur-
thermore, assume that there exists a positive A-differentiable function & e C}, ([to,oo)T ,R) such that for every
positive constant M,

Iimsup;f;H (t,3)|:LQ(S)§(5) (a(T(S)j); (5“ (5)) ]AS — (28)

oo H(tt)

for t>s>t,, t, se[ty,)_ . Then (1) is oscillatory on [t,,c0), .

Proof. Suppose that x(t) is a nonoscillatory solution of (1) on [t,,)_. Without loss of generality, assume
that x(t)>0 and x(r(t))>0 forall teft, ), t e[ty,), , whichwe shall only consider this case. When
x(t) is eventually negative, the proof is similar. Proceeding as in the proof of Theorem 1, we obtain (20), thus

W* (1)< -La(t) (1) + 5?;((?))W(cr(t))—(M)7yl T (o)
(a(=)) (5(=(v)
:_Lq(t)é‘(t)_i_(a(r(ty)_l)y(5A t)) _ \/(M)T_ 5(t)TA (t) W(G(t))— (a(ry(tl)))Vé‘A (t) (29)
4(M) 7 S(t)z" (1) 5(U(t))\/(a(f(t)))y 2\/(M)75(t)rA(t)

aMY7 s(t) () |

<{Lq(t)5(t) =

forall te [ti,oo)T . Then from (29), we have

Lq(s)&(s)—(a(r(i)?)y (5 (S)) S_WA(S)
4(M)7 8(s)z*(s)

forall seft, )., and therefore, forall t>s>t,,

J';H (t, s){Lq(s)é(s) (a(r(sy)z)f (5A (S))Z }As < —J'[H (t,s)W*(s)As

SR (9] [ (W (S(5) A5 H (LW ()< H (LW ()

q f

and hence, forall t>s>t,

(0] atepo(o)- O C O |y, 1y ey LD )
' 4(M)7 ()" (s)

’ 4(M)7 ()" (s)

<H(L){[La(s)5(s)as+W (1)].
Thus
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PR M) 597 (5)

< J‘:qu(s)é(s)As +W () <o
which is contradicted with (28). This completes the proof. O
Now, applying Theorem 3 with
H(t,s)=(t=s)", m21 t>s>t, t,se[t;,o),

we have the following results.
Corollary 3 Assume that the conditions (H;) - (Hs), (2) hold and 7(co(t))=o(z(t)). If there exists a

positive A-differentiable function §<C;, ([to,oo)T ,R) such that for every positive constant M and m>1,

Iimsuptimj;(t_s)m La(s)s(s)— = AS=o0, (30)

t—>o

for t>s>t, t, se[ty,0)_ . Then (1) is oscillatory on [t,,c0), .
Using the same ideas as in the proof of Theorem 2, when (3) holds, we can now obtain the following result.
Theorem 4 Assume that the conditions (H;) - (Hs), (3), (23) hold and 7 (o (t))=o(z(t)). Furthermore, let
Hand & define the same as Theorem 3 and the condition (28) holds. Then (1) is oscillatory on [t,,0)
Now, let

T

H(t,s)=(t=s)", m21 t>s>t, t,se[t;,x),

we have the following results.

Corollary 4 Assume that the conditions (Hy) - (Hs), (3), (23), (30) hold and z(o(t))=0o(z(t)), then (1) is
oscillatory on [to,oo)T

Remark 3 Our results in this paper unify the oscillation of the second-order nonlinear delay differential equ-
ation and the second-order nonlinear delay difference equation. As an example, when T =7, the (1) becomes

A(an(Axn)’)+qnf (%.,)=0, n=0,1,2,

and the condition (30) becomes

1

Iimsupimzn:(n—l)m Lg,5, (&) (a5)° =00

y-1

nseo N Sy 4(M)75|

then Corollary 3 extends Theorem 2.1 in [15] and Theorem 1 generalizes Theorem 2.1 in [15]. The Theorem 2 -
4 in this paper are new even for the cases T=R and T=7%.
Example 1 Consider the second-order nonlinear delay 2-difference equations

t+1 , ...\ 1 ('t t) = _
[H—zx (t)j +t—2£1+x (EJJX(EJ—O, te2 y tZtO =2 (31)
Here
a(t) =2, q(t)=t2 F(x)=x(14x), 7(t)=<, y-1
t+2 2

The conditions (H;) - (Hs) and (2) are clearly satisfied, (Hs) holds with L = 1. Now let §(t)=t forall t>2,

then
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Fhisy Lq{s)é(s)—(a(r(sy)_z)y(5A(5)) AS
4(M) 7 5(S)TA(5)
! 2 S+ (t=s 2
s~

so that (30) is satisfied as well. Altogether, by Corollary 3, the equation (31) is oscillatory.
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