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Abstract

The aim of this paper is to study wavelet frame packets in which there are many frames. It is a ge-
neralization of wavelet packets. We derive few results on wavelet frame packets and have ob-
tained the corresponding frame bounds.

Keywords

Wavelet, Wavelet Packets, Frame Packets

1. Introduction

Let us consider an orthonormal wavelet of L*(R). The orthonormal wavelet bases {1//“( j,keZ} have a
frequency localization which is proportional to 2' at the resolution level j. If we consider a bandlimited
wavelet w (i.e. v is compactly supported), the measure of supp ((/7“() is 2’ times the measure of supp

(¥), since
(l,;j,k)(a,):zi/z,p(ziw)e‘i[zi}, ikez,

where y;, = 21'/21//(21' x—k). The wavelet bases have poor frequency localization when j is large. For some
applications, it is more convenient to have orthonormal bases with better frequency localization. This will be
provided by the wavelet packets.

The wavelet packets introduced by Coifman, Meyer and Wickerhauser [1] [2] played an important role in the
applications of wavelet analysis. But the theory itself is worthy for further study. Some developments in the
wavelet packet theory should be mentioned, for instance Shen [3] generalized the notion of univariate orthogon-
al wavelet packets to the case of multivariate wavelet packets. Chui and Li [4] generalized the concept of ortho-
gonal wavelet packets to the case of nonorthogonal wavelet packets. Yang [5] constructed a-scale orthogonal
multiwavelet packets which were more flexible in applications. In [6], Chen and Cheng studied compactly sup-
ported orthogonal vector-valued wavelets and wavelet packets. Other notable generalizations are biorthogonal
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wavelet packets [7] and non-orthogonal wavelet packets with r-scaling functions [8]. For a nice exposition of
wavelet packets of L (R), see [9].

The main tool used in the construction of wavelet packets is the splitting trick [10]. Let {VJ. fje Z} be an
MRA of L? (R) with the corresponding scaling function ¢ and the wavelet y . Let W, be the correspond-
ing wavelet subspaces W, = span {y/jvk ke Z} . In the construction of a wavelet from an MRA, the space V, is
split into two orthogonal components V, and W,, where V, is the closure of the linear span of the func-

tions {2Y?¢(2x—k):kez! and V, and W, are the closure of the span of {g(x—k):keZ! and
0 0

{w(x—k):k ez} respectively. Since ¢(2x—k):¢(2(x—gn, we see that the above procedure splits the
half integer translates of a function into the integer translates of two functions.
We can also choose to split W; which is the span of {1//(2‘ x—k) ke Z} = {w(zi (x—%D ke Z}. We

then have two functions whose 2709k translates will span the same space W, . Repeating the splitting pro-
cedure j times, we get 2’ functions whose integer translates alone span the space W; . If we apply this to
each W;, then the resulting basis of L (R) will give us a better frequency localization. This basis is called
“wavelet packet basis”.

There are many orthonormal bases in the wavelet packets. Efficient algorithms for finding the best possible
basis do exist; however for certain wavelet applications in signal analysis, frames are more suitable than ortho-
normal bases, due to the redundancy in frames. Therefore, it is worthwhile to generalize the construction of
wavelet packets to wavelet frame packets in which there are many frames. The wavelet frame packets on R
was studied in [11], and the frame packets on R® were studied by Long and Chen in [12] [13]. Also, multi-
wavelet packets and frame packets of L?(R®) were discussed in [14].

Throughout the paper, the space of all square integrable functions on the real line will be denoted by L? (R)
and the inner product and Fourier transform of functions in L2 (R) isgiven by

(1.9)= ] (88
and
f(a)) = _[: f(x)e™*dx

respectively. Also the norm of any f in L*(R) will be denoted by |f|=(f, f)l/2 and the relationship be-
tween functions and their Fourier transform is defined by 2n(f,g>=<f,g>. For f el (R)nL*(R), the

Fourier transform f of f isin L*(R) and satisfies the Parseval identity ”f“z=2n||f||§.Also, let L*(R)

be the collection of almost everywhere (a.e.) bounded functions, i.e., functions bounded everywhere except on
sets of (Lebesgue) measure zero and equipped with the norm

Il = ess_jyer f (x)|

2. Wavelet Packets and Wavelet Frame Packets

Definition 1. A multiresolution analysis (MRA) consists of a sequence of closed subspaces V;, jeZ of
L*(R) and a function ¢ eV,, such that the following conditions hold:
1) -V,cV, V-

2) UV, =L%(R) and NV, =1{0}.

jeZ JeZ
3) f(x)eV, = f(2x)eV,,, VjeZ.
4) feVy,=>TfeV,, VkeZ
5) {T.#},., isanorthonormal basis for V.
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The function ¢ is called the scaling function of the given MRA.

Suppose that ¢ generates a multiresolution analysis and that there exists some function y in LZ(IR{)
such that W, = span {y/(x—k):k eZ} is the orthogonal complement of V, in V,. Then y is called a basic
wavelet relative to ¢ .

If w is a basic wavelet relative to ¢, then it is clear that the wavelet spaces W, generated by y , satisfy
the following properties:

6) V.=V, ®W;, VjeZ.

W LW, Vk=j.

8) L'(R)=®W,.

Since both the scaling function ¢eV, and the wavelet y €W, are in V, and V, is generated by
d. (x)=2¢(2x~k) , there exists two sequences {p,} and {g} in ¢* such that

¢(x):k%pk@,k(x)=ﬁk%pk¢(2x—k), 1)
w(x)=kzzqk¢1,k(x)=ﬁkzzqk¢(2x—k), @)

forall xeR. For the Haar basis, we have
1 1

Po =7 P 5 3
1 1
Jo —Ev G —_E- (4)

Therefore, for the Haar basis, the scaling function and the wavelet function satisfy the following recurrence
equation

#(x)=¢(2x)+¢(2x-1) (5)
v (x)=¢(2x)-p(2x-1). (6)
Due to Coifman, Meyer and Wickerhauser [1] [2], we have the following sequences of functions
W (X) =42 8 W, (2x k) )
Wi (X) = V2 I (2xK), (®)

keZ

where n=0,12,--- and a={a} is the filter which satisfies the following properties

Zan—Zk ",y = 5k,|v Zan = \/E,

nez nez

where ¢, isthe Kronecker delta defined by

5 :{0 if k=l
L if k=1,
and
bkz(_l)k a
For n=0 in(7)and (8), we get
W, (X) =Wy (2x)+ W (2x—1) 9)
W (x) =W (2x) - (2x-1). (10)

W, (x) corresponds to our scaling function ¢ and )V (x) corresponds to the wavelet y . If we increase
n, we get the following structures
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and so on. The functions W, , m=2nor2n+1,n=0,1, 2, - are called “wavelet packets” relative to the
scaling function W) =¢. Thus, the family {}V } is a generalization of the wavelet W\ = .

Definition 2. The family {ZWWn (ij—k)}, n jeZ, , keZ is called a wavelet basis packet, where n

is the oscillation parameter, j the scaling parameter and k the translation parameter.

We can also write W, =2"°W) (2'x—k). The family {,} constitutes wavelet frame packets if there
are constants K and E 0<K<L<oo suchthat

K[t <ZZ\ )| SLIFF. Vil (r). (12)
3. Main Results

Define ar(a)):zn:iw (2’ ) (21(w+2rn)), weR, reZ and

(2’%0)‘2 , wel.

H(w)= 23 W,

n jeZ

Consider
H,, = eSSLTﬂ;H(a))’ H, =esssupH ()

welR

and

Sy (r)=esssup ).

weR ke7

a, (2k a))‘
Theorem 1. Let {W} be the basic wavelet packets such that

K=HMy— 2 \ow(u)dy(-1)>0

He2Z+1
and
L=Hy+ >, 6, (1)d,(—u) <=
ue2Z+1

Then Pt constitutes wavelet frame packets with frame bounds K and L.
Proof. Let D be the class of all those functions f e L*(R) such that fe L”(R) and f is compactly
supported in R\0 . By using the Parseval identity, we have

(E) = (PR ) == [ F (@) () do

| @

Vi (@) =272 (Z‘ja))e[zj) , we have

Since, W..

B

(W) =2 2 Foizo) e do

—0

=%2’j/2£;2j fA(Z’a))V{)n () e dw
ZLZJ/ZJ.OO fA(ZJa))VVn (0) e“°do.

2n 0

Hence,
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;éJ(nV\A;.Q\ Gy )2 > 52

Let Fj(a)): f(zjw)VVn(w) for j,neZ. Each F; is compactly supported in R\0 and belongs to
L*(R).If F issucha function,

(21 ) (w)e 'k“’da)r . (12)

Y F(w+2kn),
keZ
which is 2z -periodic and whose Fourier coefficients are ilE (k) , keZ, then by Poisson sum formula we
Y[
have,
D F(w+2kn) = ZF( )e™.
keZ TckEZ
Hence,
L[ F(@)ZF (K)e"do = [ F (@) XF (0+2kn)do, (13)
2n 'R keZ kezZ
But the left side of (13) equals
1 ~ 2
F —Ikmd F(k)l . 14
(k) [,F( =5 Z[F (k) (14)
It follows that
o keZ‘F ‘ =jRF(a))k§F(a)+2kn)dw. (15)

Applying (15) when F =F; in (12) we obtain

IS n,k\=izzzjjkf‘(zia)y (0) 27 (21 (+ 2x)) W), (0 + 2ke) doo

n jkeZ eZ

=

R RICT (w){f(ziw)wn(wyzf(zi(mzkn))wn(mzkn)}dw

2n n jez k=0
1 ~ 2 A2
=l (o) Zn:jEZWn(Z ‘a)) do+1,

where,

ZZZJJ HEAC )Zf(2J(w+2kn))v§/n(w+2kn)dw.

27[ n jez

In the expression for 1, the parameter k is a non-zero integer. For each such k there is a unique non-
negative integer | and a unique odd integer q such that k = 2'q. Therefore, we have

2nl = zzjf (2 *Jw)zf‘(mzizkn)wn(2*ia)+2kn) do

= Zn‘,]z;i.[ f (2 Ja))lz(;qdzz:ﬂf (a)+ 2”IZQ7I)1/{/n (2' (2”—’I a)+2q1t)) dw

[ f(0) X I3 (0+2°20n)) (227 o)W (2 (27 0+20r)) do

qe2Z+11=0peZ n

j ( )Y Zf(a)+2p2qn) (270)do.

qe2Z+1peZ

Thus,
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3 (10 )f = gl o) SEPR (o) d0r 5[ Tl0) T 3 (042220, (27 0)do

n jkez n qe2Z+1peZ

()22 (27 )rda)+%77(f),

27'5 n jez

(16)
forall f D . By using Schwarz’s inequality we have

P(Hl= ¥ 31 r\aq(z-pn)\dnj’”.(yR\f(mmqn)maq(z—pn)\dqj“_

qe2Z+1peZ

By changing variables in the second integral and using the fact that «, (@ —2qn)=a_, (), and applying
Schwarz’s inequality for series we have

P(1) < QW(ZH”"H“ (21 \dn] (;ZJR\f(n>\2\aq(z—pn)\dn]uz

pez
< ¥ [6u(@o ()| [
qe2Z+1
Hence,
12 1/2
- 3 [w@ay T [T <P(0)< 3 [as@su(-a)] |,
qe2Z+1 €27Z+1
These inequalities together with (16) give us
’C||f||2<2 2 \ )| <ElffE vieD.
Since D isdensein L*(R), the above inequality holds for all f < L*(R).
Theorem 2. The system {Wn;,-,k} , N, jeZ,, keZ isorthonormal if and only if
(aH—an)‘ -1 for ae weR (17)
n keZ
and
SSW, (Zj (0+ 2kn))W, (w+2kn)=0 for ae. weR, j>1 (18)

n keZ

Proof. By using the Plancherel theorem we have

S0 = szwn (x—k) dx

CU ‘ eikwda)

a))‘z e“’dw

1 & 204 -
:_ZIZM ZVVH(

2n

Zn[
n lez

n leZ

(u+ 2|Tl',)‘ e*“du

W, (u+ 2|7‘C)‘ j e"“du.

Thus, {W,,,} is orthonormal i

(,u+2|1t)‘ =1 a.e. The converse is immediate.

Performing a change of variables, we see that <W1;j,k'W1;j,l>:<W1;0,k’W1;0,I>; this tells us that the system
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{Wn;j,k} is orthonormal for each fixed j when (17) is satisfied. The proof of condition (18) is similar.

O
Lemma 1. 1f {W, .} isan orthonormal system, then
YW (2"w)= ZZZW(Z”‘(aHan)) 1 (27 (0+ 2kn)) W) (2 0)  ae. (19)
n n j=lkeZ

forall m>1.
Proof. Let A () be the R.H.S of (19). We have to show that A (@)= SW, (2”1 a)) forae. weR.We

first show that A, (@)= A, (20) and then that A (o)= an (2w); this will clearly give us (19). Using (18),

with j replaced by m, we have

A, (@)= ZZW(Zm(a)+2kn))ZW(2‘(0)+2kn)) 1(2o)

= S 302 (04 2k) A, (0 Zkn R () + E I, (2m(w+2kn))2W(2i(w+2kn))Vi/n(ziw)
:;kezzwn(zm(mzkn))gm(zl(mzm) 2(210).

Replacing k by 2I, we have

Ay (@)= XX (27 (+ 41m)) S (2 (0 din)) W (20 0)

n leZ j=0
:zzwn(zm” Zi2n ji n[zﬁl +2lnnv{zﬂ(2m§)
n leZ j=0
=SSW (2“ 212 jiw [ +2|nD W, (21 %)
n leZ j=1

AL [gj

This shows that A, (@)= A, (2w) ae. Now, we calculate A () and show that A (w)=)] W (20).
Changing variables in the sum over j, we have n

Al(w):%éufvn( (a)+2kn))ZW(2‘(a)+2kn)) ) (2 o)

= 3 YW, (20+4kn) Y W (2! (20+4kn)) W, (2'20)

n keZ

= ZZW (20)+ 2kn)

n keZ

2 22

W, (2 (20+ 2km)) W) (2'20)

1l
o

= ZZVVH (2 + 2kn)

n keZ

By using (17) and (18), we have

W, (20 + 2kn) W, (za))@wn (2' 20+ 2kn)) W, (21260)}.

—

A (@) = 2, (20).
Theorem 3. Let {W,} be a sequence of wavelet frame packets with bounds I and L. Define {y,} by

Ym = AeWW,, mMeN. (20)

n=1
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If the numbers {4} satisfy the two conditions

m,neN

L= SUPD "D Ay Anp| < 01 (21)
n p=ljm=1
i o - 2 [Sa ] -0 @)
p=n|{m=1

then {y,} , defined by (20) is a wavelet frame packet with bounds kK and 1L .

Proof. Let f e L2 (R) . Then
2
zmw»>=zz%oww
=1 m n

22| ol 000 ) 4 23S 2y (0, (. 0) @)
R,

2

m=1n=1p=n

By Cauchy-Schwarz inequality, we get

IR, ( ZZ\Wf fW>

n=1p=n

f.

[ZZ|W f|

T [zzw

mn mp mn mp
n=1p=#n n=1lp=n
On solving the second term in the last product, we have
Z;Z‘ f W ‘ ‘z mn mp ZZ‘ f W ‘ ‘z mn mp mn mp
n #N = p:tn
Thus,
R()]2 st
n=! 1p¢n
By (23), we have
00 2 o0 o0
mz:l|<7/m’f>| mz:gJ mn| < | ;; mn mp

Sk O[Sl - [ ]
>k3 [, 1

>

=1

Thus,
LY
Similarly, one can prove the upper frame condition.
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