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Abstract 
The aim of this paper is to study wavelet frame packets in which there are many frames. It is a ge-
neralization of wavelet packets. We derive few results on wavelet frame packets and have ob-
tained the corresponding frame bounds. 
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1. Introduction 
Let us consider an orthonormal wavelet of ( )2L  . The orthonormal wavelet bases { }, : ,j k j kψ ∈  have a 
frequency localization which is proportional to 2 j  at the resolution level j . If we consider a bandlimited 
wavelet ψ  (i.e. ψ̂  is compactly supported), the measure of supp ( ),ˆ j kψ  is 2 j  times the measure of supp 
( )ψ̂ , since  

( )( ) ( )
 

2 2
,ˆ ˆ2 2 e ,    , ,ji k

j j
j k j k

ω

ψ ω ψ ω
 

−  
− −  = ∈  

where ( )2
, 2 2j j

j k x kψ ψ= − . The wavelet bases have poor frequency localization when j  is large. For some 
applications, it is more convenient to have orthonormal bases with better frequency localization. This will be 
provided by the wavelet packets. 

The wavelet packets introduced by Coifman, Meyer and Wickerhauser [1] [2] played an important role in the 
applications of wavelet analysis. But the theory itself is worthy for further study. Some developments in the 
wavelet packet theory should be mentioned, for instance Shen [3] generalized the notion of univariate orthogon-
al wavelet packets to the case of multivariate wavelet packets. Chui and Li [4] generalized the concept of ortho-
gonal wavelet packets to the case of nonorthogonal wavelet packets. Yang [5] constructed a-scale orthogonal 
multiwavelet packets which were more flexible in applications. In [6], Chen and Cheng studied compactly sup-
ported orthogonal vector-valued wavelets and wavelet packets. Other notable generalizations are biorthogonal 
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wavelet packets [7] and non-orthogonal wavelet packets with r-scaling functions [8]. For a nice exposition of 
wavelet packets of ( )2L  , see [9]. 

The main tool used in the construction of wavelet packets is the splitting trick [10]. Let { }:jV j∈  be an 
MRA of ( )2L   with the corresponding scaling function φ  and the wavelet ψ . Let jW  be the correspond-
ing wavelet subspaces { },= span :j j kW kψ ∈ . In the construction of a wavelet from an MRA, the space 1V  is 
split into two orthogonal components 0V  and 0W , where 1V  is the closure of the linear span of the func- 
tions ( ){ }1 22 2 :x k kφ − ∈  and 0V  and 0W  are the closure of the span of ( ){ }:x k kφ − ∈  and 

( ){ }:x k kψ − ∈  respectively. Since ( )2 2
2
kx k xφ φ   − = −  

  
, we see that the above procedure splits the 

half integer translates of a function into the integer translates of two functions. 

We can also choose to split jW  which is the span of ( ){ }2 : 2 :
2

j j
j

kx k k x kψ ψ
   − ∈ = − ∈   

   
  . We  

then have two functions whose ( )12 j k− −  translates will span the same space jW . Repeating the splitting pro-
cedure j  times, we get 2 j  functions whose integer translates alone span the space jW . If we apply this to 
each jW , then the resulting basis of ( )2L   will give us a better frequency localization. This basis is called 
“wavelet packet basis”. 

There are many orthonormal bases in the wavelet packets. Efficient algorithms for finding the best possible 
basis do exist; however for certain wavelet applications in signal analysis, frames are more suitable than ortho-
normal bases, due to the redundancy in frames. Therefore, it is worthwhile to generalize the construction of 
wavelet packets to wavelet frame packets in which there are many frames. The wavelet frame packets on   
was studied in [11], and the frame packets on d

  were studied by Long and Chen in [12] [13]. Also, multi-
wavelet packets and frame packets of ( )2 dL 

 were discussed in [14]. 
Throughout the paper, the space of all square integrable functions on the real line will be denoted by ( )2L   

and the inner product and Fourier transform of functions in ( )2L   is given by  

( ) ( ),  d ,f g f x g x x
∞

−∞

= ∫  

and  

( ) ( )ˆ :  e di xf f x xωω
∞ −

−∞
= ∫  

respectively. Also the norm of any f  in ( )2L   will be denoted by 1 2,f f f=  and the relationship be- 
tween functions and their Fourier transform is defined by ˆ ˆ2π , ,f g f g= . For ( ) ( )1 2f L L∈ ∩  , the  

Fourier transform f̂  of f  is in ( )2L   and satisfies the Parseval identity 
2 2

22
ˆ 2πf f= . Also, let ( )L∞    

be the collection of almost everywhere (a.e.) bounded functions, i.e., functions bounded everywhere except on 
sets of (Lebesgue) measure zero and equipped with the norm  

( )ess .sup
x

f f x
∞

−∞< <∞
=  

2. Wavelet Packets and Wavelet Frame Packets 
Definition 1. A multiresolution analysis (MRA) consists of a sequence of closed subspaces jV , j∈  of 

( )2L   and a function 0Vφ ∈ , such that the following conditions hold:  
1) 1 0 1 .V V V− ⊂ ⊂    

2) ( )2 j
j

V L
∈

=






 and { }0j
j

V
∈

=




.  

3) ( ) ( ) 12 ,     j jf x V f x V j+∈ ⇔ ∈ ∀ ∈ .  
4) 0 0 ,     .kf V T f V k∈ ⇒ ∈ ∀ ∈   
5) { }k k

T φ
∈

 is an orthonormal basis for 0V .  
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The function φ  is called the scaling function of the given MRA.  
Suppose that φ  generates a multiresolution analysis and that there exists some function ψ  in ( )2L   

such that ( ){ }0 span :W x k kψ= − ∈  is the orthogonal complement of 0V  in 1V . Then ψ  is called a basic 
wavelet relative to φ . 

If ψ  is a basic wavelet relative to φ , then it is clear that the wavelet spaces jW  generated by ψ , satisfy 
the following properties: 

6) 1 ,      j j jV V W j+ = ⊕ ∀ ∈ .  
7) ,      j kW W k j⊥ ∀ ≠ .  
8) ( )2

jj
L W

∈
= ⊕



 .  
Since both the scaling function 0Vφ ∈  and the wavelet 0Wψ ∈  are in 1V  and 1V  is generated by 
( ) ( )1, 2 2k x x kφ φ= − , there exists two sequences { }kp  and { }kq  in 2

  such that 

( ) ( ) ( )1, 2 2 ,k k k
k k

x p x p x kφ φ φ
∈ ∈

= = −∑ ∑
 

                           (1) 

( ) ( ) ( )1, 2 2 ,k k k
k k

x q x q x kψ φ φ
∈ ∈

= = −∑ ∑
 

                           (2) 

for all x∈ . For the Haar basis, we have 

0 1
1 1,     
2 2

p p= =                                     (3) 

0 1
1 1,    .
2 2

q q= = −                                    (4) 

Therefore, for the Haar basis, the scaling function and the wavelet function satisfy the following recurrence 
equation  

( ) ( ) ( )2 2 1x x xφ φ φ= + −                                  (5) 

( ) ( ) ( )2 2 1 .x x xψ φ φ= − −                                  (6) 

Due to Coifman, Meyer and Wickerhauser [1] [2], we have the following sequences of functions  

( ) ( )2 2 2n k n
k

x a x k
∈

= −∑


                                 (7) 

( ) ( )2 1 2 2 ,n k n
k

x b x k+
∈

= −∑


                                (8) 

where 0,1,2,n =   and { }ka a=  is the filter which satisfies the following properties  

2 2 , ,    2,n k n l k l n
n n

a a aδ− −
∈ ∈

⋅ = =∑ ∑
 

 

where ,k lδ  is the Kronecker delta defined by  

,

0 if  
1 if  ,k l

k l
k l

δ
≠

=  =
 

and  

( ) 11 .k
k kb a −= −  

For 0n =  in (7) and (8), we get  

( ) ( ) ( )0 0 02 2 1x x x= + −                                 (9) 

( ) ( ) ( )1 0 02 2 1 .x x x= − −                                (10) 

( )0 x  corresponds to our scaling function φ  and ( )1 x  corresponds to the wavelet ψ . If we increase 
n , we get the following structures  
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 1 1

3 1 1

4 1 1 1 1

2 2 1 ,

2 2 1 ,

4 4 1 4 2 4 3 ,

x x x

x x x

x x x x x

= + −

= − −

= + − + − + −

  

  

    

 

and so on. The functions m , m = 2n or 2n + 1, n = 0, 1, 2,   are called “wavelet packets” relative to the 
scaling function 0 φ= . Thus, the family { }m  is a generalization of the wavelet 1 .ψ=  

Definition 2. The family ( ){ }22 2j j
n x k− , ,  ,  n j k+∈ ∈   is called a wavelet basis packet, where n  

is the oscillation parameter, j  the scaling parameter and k  the translation parameter.  
We can also write ( )2

; , 2 2j j
n j k n x k= −  . The family { }; ,n j k  constitutes wavelet frame packets if there 

are constants   and  , 0 < ≤ < ∞   such that  

( )
22 2 2

; ,
,

  ,   ,     .n j k
n j k

f f f f L
∈

≤ ≤ ∀ ∈∑ ∑


                        (11) 

3. Main Results 

Define ( ) ( ) ( )( )
0

ˆ ˆ2 2 2 πj j
r n n

n j
rα ω ω ω

∞

=

= +∑∑  , ω∈ , r∈  and  

( ) ( ) 2ˆ 2 ,    .j
n

n j
ω ω ω−

∈

= ∈∑∑


   

Consider  

( ) ( )ess inf ,     esssupH
ω ω

ω ω− +

∈ ∈
= =





     

and  

( ) ( )esssup 2 .k
r

k
r

ω
δ α ω

∈ ∈

= ∑




  

Theorem 1. Let { }n  be the basic wavelet packets such that  
( ) ( )

2 1
0,

µ
δ µ δ µ−

∈ +

= − − >∑


     

and  
( ) ( )

2 1
.

µ
δ µ δ µ+

∈ +

= + − < ∞∑


     

Then { }; ,n j k  constitutes wavelet frame packets with frame bounds   and  .  
Proof. Let   be the class of all those functions ( )2f L∈   such that ( )f̂ L∞∈   and f̂  is compactly 

supported in \ 0 . By using the Parseval identity, we have  

( ) ( ); , ; , ; ,
1 1ˆ ˆˆ ˆ, ,   d .
2π 2πn j k n j k n j kf f f ω ω ω

∞

−∞
= = ∫    

Since, ( ) ( )2 2
; ,

ˆ ˆ2 2 e ji k
j j

n j k n

ω

ω ω
 

−  
− −  =  , we have 

( ) ( )

( ) ( )

( ) ( )

2 2
; ,

2

2

1 ˆ ˆ, 2  2  e d
2π
1 ˆ ˆ                 2 2 2  e d
2π
1 ˆ ˆ                 2  2  e d .
2π

ji k
j j

n j k n

j j j ik
n

j j ik
n

f f

f

f

ω

ω

ω

ω ω ω

ω ω ω

ω ω ω

 
 ∞− −  

−∞

∞−

−∞

∞

−∞

=

=

=

∫

∫

∫

 





 

Hence,  
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( )
( ) ( )

22

; , 2
,

1 ˆ ˆ,  2 2  e d .
2π

j j ik
n j k n

n j k n j k
f f ωω ω ω

∈ ∈ ∈

=∑ ∑ ∑∑ ∑ ∫


  

                 (12) 

Let ( ) ( ) ( )ˆ ˆ2 j
j nF fω ω ω=   for ,  j n∈ . Each jF  is compactly supported in \ 0  and belongs to 

( )2L  . If F  is such a function,  

( )2 π ,
k

F kω
∈

+∑


 

which is 2π -periodic and whose Fourier coefficients are ( )1 ˆ
2π

F k , k ∈ , then by Poisson sum formula we 

have,  

( ) ( )1 ˆ2 π e .
2π

ik

k k
F k F k ωω

∈ ∈

+ =∑ ∑
 

 

Hence,  

( ) ( ) ( ) ( )1 ˆ e d 2 π d .
2π

ik

k k
F F k F F kωω ω ω ω ω

∈ ∈

= +∑ ∑∫ ∫
 

 

                    (13) 

But the left side of (13) equals  

( ) ( ) ( )
21 1ˆ ˆe d .

2π 2π
ik

k k
F k F F kωω ω−

∈ ∈

=∑ ∑∫


 

                        (14) 

It follows that  

( ) ( ) ( )
21 ˆ 2 π d .

2π k k
F k F F kω ω ω

∈ ∈

= +∑ ∑∫


 

                       (15) 

Applying (15) when jF F=  in (12) we obtain  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( )

2

; ,
,

0

2

1 ˆ ˆˆ ˆ, 2 2 2 2 π 2 π  d
2π

1 ˆ ˆ ˆˆ ˆ ˆ                               2 2 2 2 2 π 2 π d
2π
1 ˆ                               
2π

j j j
n j k n n

n j k n j k

j j j j
n n n

n j k

n

f f f k k

f f f k k

f

ω ω ω ω ω

ω ω ω ω ω ω ω

ω

∈ ∈ ∈

∈ ≠

= + +

 = + + + 
 

=

∑ ∑ ∑∑ ∑∫

∑∑ ∑∫

∑∫



  







  

  

( ) 2ˆ 2 d ,j
n

j
Iω ω−

∈

+∑




 

where,  

( ) ( ) ( )( ) ( )
0

1 ˆ ˆˆ ˆ2 2 2 2 π 2 π  d .
2π

j j j
n n

n j k
I f f k kω ω ω ω ω

∈ ≠

= + +∑∑ ∑∫




   

In the expression for I , the parameter k  is a non-zero integer. For each such k  there is a unique non- 
negative integer l  and a unique odd integer q  such that 2lk q= . Therefore, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )

0

0 2 1

2 1 0

2 1

ˆ ˆˆ ˆ2π 2 2 2 π 2 2 π  d

ˆ ˆˆ ˆ      2 2 2 π 2 2 2 π  d

ˆ ˆ ˆ ˆ      2 2 π 2 2 2 2 2 π  d

ˆ      

j j j
n n

n j k

j j l l j l
n n

n j l q

p l p l p
n n

q l p n

q p

I f f k k

f f q q

f f q q

f

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω

− −

∈ ≠

∞
− + − −

∈ = ∈ +

∞
− −

∈ + = ∈

∈ + ∈

= + +

= + +

= + +

=

∑∑ ∑∫

∑∑ ∑ ∑∫

∑ ∑∑∑∫

∑∫







 



 





 

 

 

( ) ( )ˆ 2 2 π 2 d .p p
qf qω α ω ω−+∑



 

Thus,  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 22

; ,
, 2 1

2 2

1 1ˆ ˆ ˆˆ, 2 d 2 2 π 2 d
2π 2π
1 1ˆ ˆ                              2 d ,

2π 2π

j p p
n j k n q

n j k n j q p

j
n

n j

f f f f q

f f

ω ω ω ω ω α ω ω

ω ω ω

− −

∈ ∈ ∈ + ∈

−

∈

= + +

= +

∑ ∑ ∑∑ ∑ ∑∫ ∫

∑∑∫

 

   





 

 
  

(16) 
for all f ∈ . By using Schwarz’s inequality we have  

( ) ( ) ( ) ( ) ( )
1 2 1 22 2

2 1

ˆ ˆ2 d 2 2 π 2 d .p p p
q q

q p
f f f qη α η η η α η η− −

∈ + ∈

   ≤ ⋅ +   
   ∑ ∑ ∫ ∫
 

 

  

By changing variables in the second integral and using the fact that ( ) ( )2 πq qqα ω α ω−− = , and applying 
Schwarz’s inequality for series we have  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2
2 2

2 1

21 2

22 1

ˆ ˆ2 d 2 d

ˆ           .

p p
q q

q p p

q

f f f

q q f

η α η η η α η η

δ δ

− −
−

∈ + ∈ ∈

∈ +

   
≤ ⋅   

   

≤ −  

∑ ∑ ∑∫ ∫

∑

 

  



 


 

Hence,  

( ) ( ) ( ) ( ) ( )
2 21 2 1 2

2 22 1 2 1

ˆ ˆ .
q q

q q f f q q fδ δ δ δ
∈ + ∈ +

− − ≤ ≤ −      ∑ ∑
 

     

These inequalities together with (16) give us  
22 2

; ,2 2
,

  ,   ,     n j k
n j k

f f f f
∈

≤ ≤ ∀ ∈∑ ∑


   . 

Since   is dense in ( )2L  , the above inequality holds for all ( )2f L∈  .  
Theorem 2. The system { }; ,n j k , ,  ,  n j k+∈ ∈   is orthonormal if and only if  

( )
2ˆ 2 π 1     . . n

n k
k for a eω ω

∈

+ = ∈∑∑


                          (17) 

and  

( )( ) ( )ˆ ˆ2 2 π 2 π 0     . . ,    1.j
n n

n k
k k for a e jω ω ω

∈

+ + = ∈ ≥∑∑


                 (18) 

Proof. By using the Plancherel theorem we have  

( ) ( )

( )

( ) ( )

( )

( )

,0

2

22 1 π

2 π

22π

0

22π

0

 d

1 ˆ      e d
2π
1 ˆ      e d

2π
1 ˆ      2 π e d

2π
1 ˆ      2 π e d .

2π

k n n
n

ik
n

n

l ik
nl

l n

ik
n

l n

ik
n

n l

x x k x

l

l

ω

ω

µ

µ

δ

ω ω

ω ω

µ µ

µ µ

∞ +

=−∞

∞

=−∞

∈

= −

=

=

= +

 = + 
 

∑∫

∑∫

∑ ∑∫

∑ ∑∫

∑∑∫







 









 

Thus, { };0,n k  is orthonormal if and only if ( )
2ˆ 2 π 1n

n l
lµ

∈

+ =∑∑


  a.e. The converse is immediate. 

Performing a change of variables, we see that ; , ; , ;0, ;0,, ,n j k n j l n k n l=    ; this tells us that the system 
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{ }; ,n j k  is orthonormal for each fixed j  when (17) is satisfied. The proof of condition (18) is similar.     

  
Lemma 1. If { }; ,n j k  is an orthonormal system, then  

( ) ( )( ) ( )( ) ( )
1

ˆ ˆ ˆ ˆ2 2 2 π 2 2 π  2     . .m m j j
n n n n

n n j k
k k a eω ω ω ω

∞

= ∈

= + +∑ ∑∑∑


                 (19) 

for all 1m ≥ .  
Proof. Let ( )mA ω  be the R.H.S of (19). We have to show that ( ) ( )ˆ 2m

m n
n

A ω ω= ∑  for a.e. ω∈ . We 

first show that ( ) ( )1 2m mA Aω ω−=  and then that ( ) ( )1
ˆ 2n

n
A ω ω= ∑ ; this will clearly give us (19). Using (18), 

with j  replaced by m , we have  

( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

1

1

0

ˆ ˆ ˆ2 2 π 2 2 π  2

ˆ ˆ ˆ ˆ ˆ ˆ           2 2 π 2 π 2 2 π 2 2 π  2

ˆ ˆ ˆ           2 2 π 2 2 π  2 .

m j j
m n n n

n k j

m m j j
n n n n n n

n k n k j

m j j
n n n

n k j

A k k

k k k k

k k

ω ω ω ω

ω ω ω ω ω ω

ω ω ω

∞

∈ =

∞

∈ ∈ =

∞

∈ =

= + +

= + + + + +

= + +

∑∑ ∑

∑∑ ∑∑ ∑

∑∑ ∑



 



  

     

  

 

Replacing k  by 2l , we have  

( ) ( )( ) ( )( ) ( )
0

1 1 1

0

1

1

ˆ ˆ ˆ2 4 π 2 4 π 2

ˆ ˆ ˆ            2 2 π 2 2 π 2
2 2 2

ˆ ˆ            2 2 π 2 2 π
2 2

m j j
m n n n

n l j

m j j
n n n

n l j

m j
n n

n l j

A l l

l l

l l

ω ω ω ω

ω ω ω

ω ω

∞

∈ =

∞
+ + +

∈ =

∞
+

∈ =

= + +

        = + +        
        

     = + +    
     

∑∑ ∑

∑∑ ∑

∑∑ ∑







  

  

 

1

ˆ 2
2

            .
2

j
n

mA

ω

ω
+

  
   

 
 =  
 



 

This shows that ( ) ( )1 2  a.e.m mA Aω ω−=  Now, we calculate ( )1A ω  and show that ( ) ( )1
ˆ 2n

n
A ω ω= ∑ . 

Changing variables in the sum over j , we have  

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

1
1

0

0

1

ˆ ˆ ˆ2 2 π 2 2 π  2

ˆ ˆ ˆ          2 4 π 2 2 4 π  2 2

ˆ ˆ ˆ          2 2 π 2 2 2 π 2 2

ˆ ˆ ˆ ˆ          2 2 π 2 2 π 2 2 2 2 π

j j
n n n

n k j

j j
n n n

n k j

j j
n n n

n k j

j
n n n n

n k j

A k k

k k

k k

k k k

ω ω ω ω

ω ω ω

ω ω ω

ω ω ω ω

∞

∈ =

∞

∈ =

∞

∈ =

∞

∈ =

= + +

= + +

= + +

= + + + +

∑∑ ∑

∑∑ ∑

∑∑ ∑

∑∑ ∑









  

  

  

     ( )ˆ 2 2 .j
n ω

 
 
 



 

By using (17) and (18), we have  

( ) ( )1
ˆ 2 .n

n
A ω ω= ∑  

Theorem 3. Let { }n  be a sequence of wavelet frame packets with bounds   and  . Define { }mγ  by  

1
,    .m mn n

n
mγ λ

∞

=

= ∈∑                                  (20) 
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If the numbers { } ,mn m n
λ

∈
 satisfy the two conditions  

1 1
: ,sup mn mp

n p m
l λ λ

∞ ∞

= =

= < ∞∑ ∑                               (21) 

2

1 1
: inf 0,mn mn mpn m p n m

k λ λ λ
∞ ∞

= ≠ =

 
= − > 

 
∑ ∑ ∑                         (22) 

then { } 1m m
γ ∞

=
 defined by (20) is a wavelet frame packet with bounds k  and l .  

Proof. Let ( )2f L∈  . Then  

( ) ( )

2 2
2

1 1 1 1 1

22

1 1 1 1

1 2

, , ,

                   , , ,

                   .

m mn n mn n
m m n m n

mn n mn mp n p
m n m n p n

f f f

f f f

R f R f

γ λ λ

λ λ λ

∞ ∞ ∞ ∞ ∞

= = = = =

∞ ∞ ∞ ∞

= = = = ≠

= =

= +

= +

∑ ∑ ∑ ∑ ∑

∑∑ ∑∑∑

 

                 (23) 

By Cauchy-Schwarz inequality, we get  

( )2
1 1

1 2 1 2
22

1 1 1 1

, ,

            , , .

n p mn mp
n p n m

n mn mp p mn mp
n p n m n p n m

R f f f

f f

λ λ

λ λ λ λ

∞ ∞

= ≠ =

∞ ∞ ∞ ∞

= ≠ = = ≠ =

≤

   
≤ ⋅   
   

∑∑ ∑

∑∑ ∑ ∑∑ ∑

 

 

 

On solving the second term in the last product, we have  
2 2 2

1 1 1 1 1 1
, , ,p mn mp p mn mp n mn mp

n p n m p n p m n p n m
f f fλ λ λ λ λ λ

∞ ∞ ∞ ∞ ∞ ∞

= ≠ = = ≠ = = ≠ =

= =∑∑ ∑ ∑∑ ∑ ∑∑ ∑    

Thus,  

( ) 2
2

1 1
, .n mn mp

n p n m
R f f λ λ

∞ ∞

= ≠ =

≤ ∑∑ ∑  

By (23), we have  

2 2 22

1 1 1 1 1

2 2

1 1 1

2

1

, , ,

                   ,

                   , .

m mn n n mn mp
m m n n p n m

n mn mn mp
n m p n m

n
n

f f f

f

k f

γ λ λ λ

λ λ λ

∞ ∞ ∞ ∞ ∞

= = = = ≠ =

∞ ∞ ∞

= = ≠ =

∞

=

≥ −

 
= − 

 

≥

∑ ∑∑ ∑∑ ∑

∑ ∑ ∑ ∑

∑

 





 

Thus,  
22

1
, .m

m
k f fγ

∞

=

≤ ∑  

Similarly, one can prove the upper frame condition.  
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