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Abstract 
This paper presents a fully automatic segmentation algorithm based on geometrical and local at-
tributes of color images. This method incorporates a hierarchical assessment scheme into any 
general segmentation algorithm for which the segmentation sensitivity can be changed through 
parameters. The parameters are varied to create different segmentation levels in the hierarchy. 
The algorithm examines the consistency of segments based on local features and their relation- 
ships with each other, and selects segments at different levels to generate a final segmentation. 
This adaptive parameter variation scheme provides an automatic way to set segmentation sensiti- 
vity parameters locally according to each region's characteristics instead of the entire image. The 
algorithm does not require any training dataset. The geometrical attributes can be defined by a 
shape prior for specific applications, i.e. targeting objects of interest, or by one or more general 
constraint(s) such as boundaries between regions for non-specific applications. Using mean shift 
as the general segmentation algorithm, we show that our hierarchical approach generates seg-
ments that satisfy geometrical properties while conforming with local properties. In the case of 
using a shape prior, the algorithm can cope with partial occlusions. Evaluation is carried out on 
the Berkeley Segmentation Dataset and Benchmark (BSDS300) (general natural images) and on 
geo-spatial images (with specific shapes of interest). The F-measure for our proposed algorithm, 
i.e. the harmonic mean between precision and recall rates, is 64.2% on BSDS300, outperforming 
the same segmentation algorithm in its standard non-hierarchical variant. 
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1. Introduction 
Image segmentation is one of the most commonly used processes in applications of computer vision. It is also 
one of the most challenging problems and has a wide range of computer vision and machine learning applica- 
tions in areas such as geo-spatial, biomedical, security, surveillance, and inspection. These applications general- 
ly require matching, correspondence establishing, and identification of image regions. Segmentation algorithms 
that deliver robust and consistent results under different conditions such as scene and viewpoint variations, 
shading, specularities and illumination change have key roles in the success of their machine vision applications. 
The task of segmentation is often complicated by various factors such as unclear boundaries, color/intensity si- 
milarities of adjacent structures, and variations in shape or other characteristics of image segments. In the past 
few decades numerous algorithms have been developed to address the need for robust and reliable segmenta- 
tions. Due to issues such as complexity and diversity of data and image sources, the quest for a good segmenta- 
tion algorithm that performs equally well for different images and applications is somehow still not fully satis- 
fied. 

This work presents a computational approach to the problem of image segmentation. Our proposed method 
can be broadly used in applications for indoor and outdoor scenes as well as for regions with specific shapes. 
The paper is structured in the following way. Related work regarding image segmentation is reviewed next, fol- 
lowed by the contributions of the proposed approach. Section 2 details the methodology, while Section 3 de- 
scribes how to modify it to accommodate shape-specific segmentation. Experimental results on varied imageries 
(state-of-the-art color dataset and benchmark, geo-spatial), as well as their qualitative and quantitative evalua- 
tions are provided in Section 4. Finally, Section 5 presents conclusions and future works. 

1.1. Related Work 
1.1.1. Feature Based Segmentation 
Early works in image segmentation were based on featural and low level information such as intensity value, 
color, texture, edge, etc. Feature based methods cluster image pixels into homogeneous regions that have high 
probability of arising from a similar physical property. Chen et al. [1] proposed a color based image segmenta- 
tion algorithm using contrast information. They utilized four directional operators to extract directional color 
contrast information. A single-threshold scheme was used to detect directional boundaries. These directional 
boundaries were merged together via a verification process to form 2-D boundaries of segments. Felzenszwalb 
and Huttenlocher [2] utilized the intensity differences across the boundary of regions and the intensity differ- 
ences between neighboring pixels within a region to make a graph based representation of an image which was 
used in the segmentation process by finding the minimal spanning tree of the graph. In more recent work, Lo et 
al. [3] introduced a texture-based segmentation algorithm that performed feature extraction using the Dual-Tree 
Complex Wavelet Transform (DT-CWT). They first transferred all image pixels into a spatial-texture space and 
then used a clustering method to cluster pixel vectors (created for all pixels). Tan and Isa [4] used histograms for 
image segmentation. They presented a novel histogram thresholding algorithm also known as fuzzy C-means 
hybrid (HTFCM). Their method could obtain regions with uniform colors. 

Feature based methods are simple and intuitive to implement. However, most of them require tuning of sever- 
al control parameters, and generally the performance of these methods is subjected to proper setting of such pa-
rameters. Also, since these methods rely on texture, region homogeneity, intensity, etc. their performance could 
be highly affected by noise, illumination condition, variation in the view point and sometimes specific properties 
of objects. 

1.1.2. Model Based Segmentation 
In recent years, model based image segmentation algorithms have attracted more attention. Model based image 
segmentation aims to recover predefined shapes or structures from an image using shape properties and con- 
straints. States of the art on model based segmentation are mostly based on active shape and appearance models, 
active contours and deformable templates, and level set methods. 

Active shape and appearance models incorporate statistical or parametric models of shapes (using training 
data) in the segmentation process. Cootes et al. [5] described point distribution models based on Principal Com- 
ponent Analysis (PCA) to parameterize variations of active contours in a training dataset. They exploited a lin-
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ear formulation of the shape model (active shape model) to iteratively search for the shape in an image. Staib 
and Duncan [6] proposed a parametric model based on an elliptic Fourier decomposition of the shape boundaries. 
The segmentation problem was addressed as an optimization problem that found the best match between the 
model and the image gradient. Wang and Staib [7] used shape parameters derived from statistical variations of 
object boundary points in a training set to model an object. A Bayesian formulation, based on this model and the 
gradient of the image, was employed to identify the object’s boundaries in the image. 

In general, active shape model based approaches use an off-line learning process. Processing the training 
dataset is commonly performed via manual segmentation and the shape model cannot be extended as new seg- 
mentation results become available [8]. Perhaps the main disadvantage associated with these methods is the lack 
of robustness in the recognition and training phases. For instance, often there is a poor performance under partial 
occlusion and imperfect training datasets cannot be utilized. 

Combining prior shape information with active contours and deformable templates is also used in model 
based segmentation. In these approaches, the active contour’s energy function is modified such that it incorpo- 
rates a representation of the reference shape within it. Therefore, the contour converges to the boundaries that 
are more similar to the prior shape boundary. Tsai et al. [9] [10] proposed a model based curve evolution tech- 
nique using a parametric model of the segmenting curve by applying principal analysis component to a collec- 
tion of signed distance representations of the training data. Foulonneau et al. [11] presented a new way of con- 
straining the evolution of a region based active contour with respect to a reference shape. Minimizing a shape 
prior was achieved through a distance between shape descriptors based on the Legendre moments of the charac- 
teristic function. Using the level set method for finding specific shapes in an image has also been reported by 
many researchers. Chen et al. [12] modified the energy function so that it depends on the image gradient and the 
prior shape. In this approach the level set formulation could find boundaries that were similar in shape to the 
prior, even under partial occlusions. Leventon et al. [13] incorporated prior shape information into the geodesic 
active contour method by introducing model representation of deformable shapes and probability distribution 
over the variances of a set of training shapes. The segmentation process embedded an initial curve as the zero 
level set of a higher dimensional surface, and evolved the surface such that the zero level set converged on the 
boundaries of the object to be segmented. The main advantage of the Leventon method was on intrinsically rep-
resenting active contours by the level set function. This feature made it possible to construct a parameterization 
free shape model. Rousson and Paragios [14] proposed a level set based approach for shape-driven object ex-
traction using a voxel-wise probabilistic level set formulation. Constraints on the segmentation process were 
imposed by seeking a projection of the prior model onto the image plane using a similarity transformation. Rik- 
lin-Raviv et al. [15] introduced a variational approach for model based segmentation, using a single reference 
object. They proposed a shape-similarity measure by generalizing the Chan-Vese [16] level set framework and 
embedding the projective homography between the prior shape and the image to segment. 

The advantage of methods based on active contours and level sets is that they can handle topological changes 
of the contour in a natural way. For instance, the contour may split and/or merge during evolution without any 
special considerations. For shape modeling, this property allows constructing shape similarity measures that can 
handle variant shape topologies. But like many other level set based methods, these methods can suffer from 
numerical instabilities and sensitivity to noise. They are also prone to getting caught in local minima. 

1.1.3. Hierarchical Segmentation 
Recently, many hierarchical approaches have been proposed for image segmentation purposes. Sharon et al. [17] 
presented a fast segmentation by a weighted aggregation (SWA) method that determined salient regions of an 
image and built them into a hierarchical structure. Their algorithm consisted of an adaptive process in which 
pixels were recursively aggregated into increasingly large-scale aggregates of coherent properties: intensity, 
texture and boundary integrity. Paris and Durand [18] presented a hierarchical segmentation approach using 
mean shift segments [19] for segmenting color images and videos. They used Mores theory to topologically de- 
compose mean shift segments into density modes. Their method is fast and requires no training. They reported 
an F-measure, i.e. the harmonic mean between precision and recall rates, of 0.61 on average on the Berkeley 
Segmentation Dataset and Benchmark (BSDS300). Alpert et al. [20] presented a probabilistic aggregation based 
method that utilized local intensity, texture of regions along with the length of common boundaries between 
neighboring regions to segment grayscale images. In their method they merged pixels according to the above 
cues to generate larger regions as the aggregation advances. They trained their system parameters using a large 
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number of patches and hold those parameters unchanged for the entire tested image subjects. To verify their al- 
gorithm they had chosen a set of images with clear distinction between the object in the foreground from back- 
ground. They compared their results against manually created ground truth and showed an F-measure of 0.87. 
Such high F-measure was due to the fact that the image test subjects were handpicked with the above criteria 
making comparison of this method with other methods, where the input data is not biased, impossible. Corso et 
al. [21] introduced an image labeling method based on a graph-shift algorithm (an energy minimization algo- 
rithm) for natural image labeling. They decomposed the image into multiple layers and adaptively manipulated 
(shifted) the parent-child relationship. They efficiently computed all possible shifts (which lead to the change of 
energy) for all of the nodes in the image graph and assessed the energy function. Using the energy value, they 
coarsened the image adaptively. While they showed some visual labeling results, they have presented no F- 
measure for their method. 

Here, we propose a fully automatic, non-training-based segmentation method for color images based on geo- 
metrical and local features. First, we create a hierarchical composition of all potential segments of the image us- 
ing a multi-layer approach in which segments can partially or fully overlap with other segments at different lay- 
ers. In this approach, a general segmentation method (such as mean shift [19], graph-based [2], etc.) is utilized. 
The segmentation algorithm is run using a range of parameter settings that leads to results from under to over 
segmentation outcomes. Then, starting both from the finest level (most over-segmented layer) and the coarsest 
level (most under-segmented layer), the algorithm examines various local properties of the segments and com- 
pare those properties between parent and children segments along the hierarchical direction. These properties 
include color, texture and distinctiveness of the boundaries. The proposed algorithm is a general approach; 
however we show that with the addition of complementary shape constraints, it can be used to bias the detection 
of objects with specific shapes. 

1.2. Contributions 
The main contributions of this paper are as following: 

1) A new adaptive parameter manipulation that in general can be incorporated with any algorithm where the 
quality of results on different input images is dependent on adjusting some control parameters. The adaptive pa-
rameter variation scheme provides an automatic way to set control parameters locally according to each sub-re- 
gion’s quality instead of the entire image.  

2) A novel segmentation algorithm based on local image features and geometrical properties of regions. 
Through a hierarchical approach, mean shift segmentation is applied on the image several times using different 
settings that drive segmentation results from under to over segmentation. By inspecting the relationship between 
parents-children in two directions of bottom-up and top-down, segments conforming best with local and geo-
metrical constraints are chosen from different levels of the hierarchy. 

2. Methodology 
This section describes the proposed approach to image segmentation. General segmentation problems are first 
illustrated, followed by the description of the proposed hierarchical feature-based segmentation method, divided 
into several processes: general hierarchical segmentation, definition of region comparison constraints, segment 
tree creation, search and identification of segments, and segment post-processing. Shape-specific geometrical 
aspects are presented in Section 3. 

2.1. General Segmentation Problems 
The performance of image segmentation algorithms often depends on various elements such as the skill of the 
user (if manual or semi-automatic), the compatibility of the method with the nature of the application, and the 
image quality. There is no algorithm that has established itself as the definitive solution to the image segmen- 
tation problem. 

Often segmentation algorithms are parameter dependent which adds to the applicability of such algorithms. 
Examples of such cases can be seen for mean shift segmentation algorithm [19], fuzzy c -means clustering [22], 
and Gaussian mixture model [23]. For instance, fuzzy c -means clustering requires that three parameters (num-
ber of iterations, termination threshold, and number of clusters) be set according to the application. As another 
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example, the quality of segmentation in mean shift is controlled by three parameters: the spatial resolution sh , 
the range (or color) resolution ch , and the minimum segment size M . These parameters are usually set manu-
ally and often a single setting will not be sufficient for a complete segmentation. Figure 1 depicts an example of 
a segmentation process using the mean shift algorithm where ch  was set to two different values. In these two 
examples, a variation in ch  has caused the segmentation results to be improved for some regions but deterio-
rated for others. It is a challenge (if ever possible) to find one value for ch  to segment all building regions cor-
rectly, which is why we propose a local adaptive parameter manipulation scheme. 

2.2. Proposed Hierarchical Feature-Based Segmentation 
In this paper we propose a segmentation algorithm for segmenting color images based on distinctiveness in color 
and region boundaries. The algorithm includes four main processes as depicted in Figure 2. Details of each 
process along with quality assessment constraints are described in this section. 

2.2.1. General Hierarchical Segmentation 
In this section, we define a general hierarchical segmentation process to generate a large number of potential 
segmentation outcomes. Here, any common segmentation algorithm could be utilized as long as the quality con-
trol parameters are identified and changed in between the layers. The results of these segmentations must cover 
all potential outcomes from under to over segmentation. 

In this work, we have used the mean shift segmentation method [19]. The idea behind the mean shift algo-
rithm is, for a set of discrete data, to locate the stationary points of the underlying density function, allowing the 
detection of the modes of the density. For an image segmentation application, the input space is defined by a 
joint domain (location and color of pixels), with each pixel iteratively associated with a significant mode of the 
density, located in its neighborhood, thus delineating clusters in the joint domain. An image region (segment) is 
therefore defined by all the pixels associated with the same mode in the joint domain. From our experiments, the 
main control parameter for this method is the range resolution ( )ch . The input image ( )I  is segmented multi-
ple times for the range resolutions of: 

( )( ), , , 2 ,c l l l hh T T T T K T T= + ∆ + − ∆  

For each value of 1, ,i K=   where ( )( )1h lK T T T= − + , a segmented image iS  is generated that in-
cludes regions ijR : 

and     1, ,    i ij iS R j N=∪=                                 (1) 

 

 
Figure 1. Mean shift algorithm on aerial imagery. (a) Low ran- 
ge resolution (hc) value; (b) High range resolution (hc) value.     

 

 
Figure 2. Algorithm’s main components.                                
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Here iN  is the number of regions in iS . Parameters lT  and hT  have a large difference in value so that all 
possible regions in the image are covered. The value of hT  should be set in a way that segmentation results at 
the highest level ( )KS  include only coarse segments. Parameter T  controls the number of segmentation lay-
ers and it affects the precision, computational complexity, as well as quality of the segmentation. The spatial 
resolution sh  and the minimum segment size M  for mean shift segmentation are adjusted according to the 
application and potential dimensions of the objective regions. For instance for the application of rooftop detec- 
tion (for aerial images) M  is set to 200 and sh  is set to 3. They also could be estimated automatically in a  
similar manner to ch  by varying them to obtain additional segmentation layers but this is out of the scope of  
this paper. An additional segmented image 1KS +  is also required by segmenting the entire image into one  
single region. 

This hierarchical segmentation scheme generates a large number of segments based on a range of various pa-
rameter settings. Clearly the collections of these segments include redundant, overlapping, divided and merged 
segments and only a few of these segments will conform to valid/intended segments. The tendency of each seg-
mented region for splitting or merging based on the color range (in the consecutive layers) are measured using 
two constraints that are explained next. 

2.2.2. Region Comparison Constraints 
For non-specific applications (generic segmentation), the proposed algorithm is based on two sets of constraints 
that measure the quality of potential segments. When segmenting an image based on its pixels’ colors, the color 
resolution can affect the sensitivity of the segmentation results. Therefore, since the hierarchical multi-layer 
segmentation generates region components by varying the range (color) resolution, the neighboring segments in 
one level might be merged together in the next level, if their color values fall into one color range interval. A 
similar reasoning can be done if using another segmentation algorithm. 

The color constraint in this section implies selecting regions according to their color stability across hierar-
chical segmentation layers. Here we define the color stability of a region by its reluctantness in splitting into two 
or more regions or merging with its neighboring regions. Therefore, we are after the most distinctive regions 
across all hierarchical segmentation levels. In the hierarchical segmentation process, the highest level is the least 
sensitive layer (includes the lowest number of segments) and the lowest level (with minimum range resolution 
value) is the most sensitive layer (includes the highest number of segments). Here we introduce two constraints: 
Dividability and Distinctiveness.  

1) Dividability: Dividability indicates the tendency of a region to break into two or more parts color-wise. It is 
a reflection of the entropy computed from the distribution of the regions’ colors. Many color based segmentation 
approaches use a color reduction process in which the amount of the information presented by color is reduced 
drastically. An example of a reduction process is the color quantization in which only a certain number of colors 
are used to represent an image. The association of each color with the representative quantized color is usually 
based on the minimum distance constraint. The HSV color model has been used in many applications. Since the 
hue component of this model holds the color information, this model is very useful for processing color images. 
Unfortunately, the hue component is unstable near the chromatic axis. That is, with low saturation, the error 
within hue measurements is high. As saturation is a radial dimension, it has a linear relationship with the cer-
tainty in the hue measurement. Also, when it comes to natural scenes, often regions that are identified by a hu-
man as being similar in color indeed have different hue values. For the two above reasons we created a color 
reduction scheme in which 219 colors are grouped into 22 groups. Each group includes similar colors that cover 
various shades and tones of that color. The similarity of each pixel is measured with all individual colors of each 
group. For each pixel, both the reduced color value (the most similar color using Euclidean distance) as well as 
its group will be maintained. The concept of grouping colors allows us to correctly associate together those 
neighboring regions that include various shades of the same color usually due to illumination or reflection varia-
tion. Figure 3 represents five groups of the above 22 groups of colors.  

The dividability of a region is high when its tendency to break into different colors is high, which is reflected  
by high entropy. The dividability measure ( )ijD R  of a region ijR  is defined by: 

( ) ( ) ( )( )( )
,

, log ,
t ij

ij ij t ij t
t CG R

D R P R CG P R CG
∩∀ ≠∅

= − ×∑                      (2) 
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Figure 3. Five representative groups of colors along with their 
colors.                                                

 

( ) ( )
( )

Area
,

Area
ij t

ij t
ij

R CG
P R CG

R
=

∩
                                 (3) 

Here, tCG  represents all the pixels on the image that fall into the color group t . A region composed of only 
one color group will have a minimal dividability of 0, whereas a region composed of all the color groups in 
equal parts will have a maximal dividability. A region with low dividability is more stable thus more desirable. 

2) Distinctiveness: The distinctiveness of a region is measured according to the quality of its boundary points. 
Distinctive regions tend to have clear and solid boundaries. For this, the input image is first edge detected 
(Canny) and then the edges are linked together, as the Canny edge detector rarely produces closed boundaries. 
The linking is achieved by analyzing pixels in a 9 × 9 pixel neighborhood at each edge point. For each edge 
point two measures are calculated:  
• Magnitude of the gradient vector ( )( ),I x y∇ , and  

• Direction of the gradient vector ( )( ),x yα .  

Using the two above measures, points with similarities in both magnitude and direction will be added to the 
edge point and the algorithm progresses until there is no point in the neighborhood that can be added to the cur-
rent edge point. The similarity constraints are defined by: 

a) An edge pixel with coordinates ( )0 0,x y  is similar in magnitude to point ( ),x y  in its neighborhood if:  

( ) ( )0 0, ,  10I x y I x y∇ −∇ < .  

b) An edge pixel with coordinates ( )0 0,x y  is similar in direction to point ( ),x y  in its neighborhood if:  

( ) ( )0 0, , 45x y x yα α− <  .  

Once all edge points are linked, a minimum length constraint of 20 pixels is applied and any edge with a 
length smaller than that will be removed from the edge map. The final edge map is referred by ME . For each 
region of every layer the following measure is computed: 

( ) ( )
( )

( )
( )

Boundary Area

AreaBoundary
M ij ij

D ij
ij

E R R
E R

IR
= ×

∩
                         (4) 

where ( ) ,
Area d d

ij
ij x y R

R x y
∈

= ∫ ∫ , ( )Area I  represents the image area, and ( )Boundary ijR  includes all the  

boundary pixels of region ijR . The second fraction is designed to give priority to larger segments with similar 
boundary edge coverages. The two above constraints are equally weighted when examining a segment region. 
These constraints are used to assess the different hierarchical segmentation levels (Section 2.2.4). 

2.2.3. Segment Tree Creation 
Tree , ,V E Root  is defined from regions in segmented images as follows: 
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{ }    for   1, , 1    and   1, ,ij ij i iV R R S i K j N= ∀ ∈ = + =                    (5) 

( )


( )1, 1, 1, 1,

1,1

, ,  max    

for 1, , 1   and   1  , , and 

ij i x ij i i x i x ij i u
u

i K

E R R R S R S R R

i K j N Root R

+ + + +

+

 
= ∀ ∈ ∃ ∈ = 


∩


= + = = 

              (6) 

In this tree, a node (region) ijR  at level i  is the child of node 1,i xR +  at level 1i + , only if 1,i xR +  has the 
highest area overlap (among all neighboring nodes) with ijR . Figure 4(c) shows a visual representation of the 
segment tree with four levels ( K  to 3K − ) plus the root ( )1K + . 

2.2.4. Tree Search (Segment Selection) 
To extract all regions that best conform to the geometrical and color constraints, an iterative algorithm is de-
signed. Two different searches are performed: a bottom-up search and a top-down search. 

The bottom-up search starts at the lowest level of the tree (leaves of the tree) and goes up iteratively, always 
assessing two consecutive levels against each other (Figure 4(b)). The assessment is invoked by comparing 
each child with its parent. If a child is found to be better than its parent, the selected child is added to the set 

BUR  and the area it covers is removed from the higher level for the next iteration. Function RS  is defined by 
both color and geometrical properties through: 

( ) ( ) ( )( ) ( ) ( )( )1, 1,
1,

True,  and 
,

False ,                                     otherwise
ij i x D ij D i x

ij i x

D R D R E R E R
RS R R + +

+

 < >= 


             (7) 

A child ijR  is better than its parent 1,i xR +  ( )trueRS =  if its dividability is lower and its edge distinctive-
ness is higher. In other words, a child is better if it is less prone to be divided into several regions of different 
colors than its parent (more stability) and if its boundaries conform better to discontinuities in the image than its 
parent’s. The operators < and > are defined in a way that if the difference for one of the conditions is minimal 
between the child and its parent (for instance less than 5%), then it is too close to call a winner and that condi-
tion is discarded from the assessment. 

In Figure 4, the lowest level ( )3KS −  comprises seven children, which are all compared against their respec-
tive parent on the level above ( )2KS − . Once all children have been assessed, the areas covered by the three se-
lected children (shown with star pattern in Figure 4(b)) are subtracted from the parent level (shown as dark re-
gions in Figure 4(b)), and the parent segments are updated and relabeled ( )2KS −′  to reflect the most recent 
changes. At the next iteration, the children come from the updated segments ( )2KS −′  and the parents from the 
original segmentation ( )1KS − . Parents are always derived from the original mean shift segments, whereas chil-
dren are always derived from the updated mean shift segments except at the leaf level ( )3 3K KS S− −′ = . The 
search is stopped when the root level is reached ( )1K +  or when the selected segments cover the entire image. 
The union of all segments in the set BUR  creates the segmented version of the input image (Figure 4(d)) for 
this direction of traversal. 

The top-down approach is similar to the bottom-up one in the sense that two consecutive levels are assessed 
against each other, comparing children and parent. However it differs twofold, in the order in which the levels 
are visited (from the root of the tree going down to the leaves), and in the segments that are selected to put in the 
set TDR  (coming from the parent level instead of the child level). Figure 4(c) illustrates the top-down search 
scheme using the same mean shift segments as for the bottom-up (Figure 4(a)). The parents are compared 
against all their children using RS and are selected if better than their children. If a parent has several children 
and some of them are assessed as better and some as worse, every child that is better ( )trueRS =  is removed 
from the parent and the parent’s features are recomputed considering its new boundaries. For instance, in Figure 4(c), 
when assessing the parent level 1KS −′  against the children level 2KS − , the parent 1,3KR −′  is compared against 

2,3KR −  and 2,4KR − . Because the child 2,4KR −  is found as better, it is removed from the parent 1,3KR −′  and the 
parent is updated to 1,3kR −′′  (shown as hatched in Figure 4(c)). The children that were found as worse are reas-
sessed against the updated parent ( 2,3KR −  against 1,3kR −′′ ), and removed from the parent if they are found as 
better. These evaluation/update steps are carried out until no more children are found as better than the parent. 
After all parents have been assessed on a given level, the areas of their updated versions (only the parts that were 
better than all their children) are selected (shown as regions with a star pattern in Figure 4(c)), put in  
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Figure 4. Graphical presentation of the search segmentation tree.                                                  
 
the set TDR  and removed from the lower level for the next iteration (shown as dark regions in Figure 4(c)). 
Children are always derived from the original mean shift segments, whereas parents are always derived from the 
updated mean shift segments except at the root level ( )1 1K KS S+ +′ = . The search is stopped when the lowest 
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level is reached or when the selected segments cover the entire image. The union of all segments in the set TDR  
creates the segmented version of the input image (Figure 4(e)) for this direction of traversal. 

Results from the bottom-up and the top-down searches typically differ from each other, thus sets BUR  and 
TDR  are later combined ( )BU-TDR  to prevent missing real boundaries that might have been discarded in one of 

the two searches. In Figure 4(f), even though the segments from BUR  and TDR  were different, the resulting 
boundaries are the same, which strengthens the segmentation. 

2.2.5. Post-Processing of Segments 
A post-processing merging algorithm may be applied on the segments of sets BUR  and TDR  that attempts to 
further merge neighboring segments according to their color similarity, texture similarity and presence of edges 
at their common boundaries. As the mean shift algorithm is based on color distinctiveness, it finds segments that 
may or may not conform to real edges in an image, which might also be a problem for other general segmenta- 
tion methods that could be used in the hierarchical scheme. This post-processing merging step prevents from 
announcing boundaries in the middle of a smooth and rather uniform region that could have escaped the segment 
selection constraints because of non-ideal hierarchical segmentation layers. 

The idea is to merge in passes, starting with the most similar pairs of neighboring segments and updating the 
segments before the next pass, stopping when no more pairs can be merged. The algorithm works as follows: 

1) Put all the segments in the initial set Regions (Regions = BUR  or TDR ).  
2) Create a new empty set of segments ( )New Regions = ∅ .  
3) For every segment iR  in the set Regions, compute its features and find the labels of its immediate touch-

ing neighbors. The features are:  
a) Color: normalized color group histogram ( )NCGHist i  using the definitions presented in Section 2.2.2;  
b) Texture: gradient magnitude mean and standard deviation values. 

( ) ( )( )GradMag 1 mean, GradMag 2 standard deviationi i= =    

4) For every segment iR , compute its merging score ( )MScoreij  with every neighbor jR , which depends 
on color similarity and texture similariy:  

( )MScore ColSim TS NoEdgeij ij ij= + ×                            (8) 

( )( )ColSim 2 HS 0.85ij ij= × >                                (9) 

( ) ( )
1

HS NCGHist NCGHisti j

n

ij
k

k k
=

= ×∑                          (10) 

The color similarity ColSimij  of neighboring segments is computed from the Bhattacharyya coefficient 
( )HSij , which determines the relative closeness of two statistical samples, here the normalized histograms of 
the n  color groups of each segment. HSij  is a summation over the n  color groups and ranges from 0 to 1, 1 
corresponding to the most similarity. The threshold of 0.85 has been selected as to generally prevent the false 
merging of neighboring segments derived from the mean shift algorithm that are in fact different objects. This 
value was found using 100 test images of natural scenes. 

( ) ( )( ) ( ) ( )( )TS GM 1 GM 1 2.5% GM 2 GM 2 2.5%ij i j i j= − < + − <             (11) 

The texture similarity TSij  of neighboring segments relies on the difference of the mean and standard devia-
tion of the gradient magnitude values over each segment. The gradient is first computed horizontally and verti-
cally for each pixel of the image to find its dominant angle. The magnitude is then computed at that angle, which 
is approximated by one of the eight following values: 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4. It is finally normal-
ized between 0 and 1 over the entire image to facilitate its use as a comparison tool. The mean and standard de-
viation values of the gradient magnitude provide us with an approximation of the textureness of a segment rela-
tive to the content of the image, allowing the distinction between two neighbors of different materials. The 
thresholds of 2.5% have been set to prevent the false merging of the majority of neighboring segments derived 
from the mean shift algorithm that are in fact different in texture, over 100 test images of natural scenes. 
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( )
( )

Area CB EM
1,     0.75

NoEdge Area CB

0,     otherwise

ij

ij


 <= 

∩




                     （12） 

The flag NoEdge is utilized in a way that if the common boundary between two neighboring segments 
( )CBij  covers at least 75% of the edge map EM, no merging should occur. The edge map used here is derived 
from the linked Canny edges presented in Section 2.2.2, dilated by a small structural element (square 3 × 3) to 
allow for small discontinuities and distortions. The merging score MScoreij  has a value ranging from 0 to 4, 
with 4 signifying the highest similarity. The color similarity is multiplied by a factor 2 to give it an equal weight 
to the texture similarity. 

5) For every segment iR , find the most similar neighbor jR  (highest score) and merge them if MScoreij ≧  3, 
i.e. a majority of the similarity criteria has to be reached. If there is a tie among two or more neighbors, then the 
neighbor having the highest values for the individual criteria is selected as best candidate for merging. Create a 
new segment from the union of the two neighbors and update the new set:  

( )New Regions New Regions i jR R= ∪ ∪  

6) Once all segments have been assessed for merging, replace the working set Regions by the updated one:  
Regions New Regions=  

7) Repeat steps 3 to 6 until no pair of neighboring segments can be merged (the set New Regions remains 
equal to the set Regions).  

8) Replace all the segments from New Regions in the initial set ( BUR  or TD New RegionsR = ). This  
post-processing merging algorithm can be repeated once more on the combined segments ( )BU-TDR .  

3. Shape Specific Segmentation 
For specific applications, a geometrical constraint via a shape prior can be added to the system to bias the seg-
mentation towards a particular shape. This section shows how to integrate such a constraint into the proposed 
methodology (see Section 2) with minimal modifications. 

Here we assume that the knowledge of the prior shape is provided via vector PV . This vector is computed for 
a binary mask of the prior model. PV  can be defined (in general) by any scale and rotation invariant shape de-
scriptor. 

( )descPV f S=                                    (13) 

descf  is a scale and rotation invariant shape descriptor function and S  is the prior shape region for which vec-
tor PV  is computed. In general descf  can be chosen according to the application and the complexity of the 
prior shape. In this work, we use a set of seven normalized central moments introduced by Hu [24]. Hu defines 
order three normalized central moments by: 

1 20 02M η η= +                                   (14) 

( )2 2
2 20 02 114M η η η= − +                                (15) 

( ) ( )2 2
3 30 12 21 033 3M η η η η= − + −                             (16) 

( ) ( )2 2
4 30 12 21 03M η η η η= + + +                              (17) 

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
5 30 12 30 12 30 12 21 03

2 2
21 03 21 03 30 12 21 03

3 3

            3 3 3

M η η η η η η η η

η η η η η η η η

 = − + + − + 
 + − + + − + 

                (18) 

( ) ( ) ( ) ( )( )2 2
6 20 02 30 12 21 03 11 30 12 21 034M η η η η η η η η η η η = − + − + + + +               (19) 
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( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
7 21 30 30 12 30 12 21 03

2 2
12 30 21 03 30 12 21 03

3 3

           3 3

M η η η η η η η η

η η η η η η η η

 = − + + − + 
 + − + + − + 

                 (20) 

where 

00

,      1
2

pq
pq

p q
γ

µ
η γ

µ
+

= = +  

and, 

( ) ( ) ( ),p q
pq

x y
x x y y f x yµ = − −∑∑  

( ),f x y  represents the binary values of each image region (in the form of a mask). At each shape matching at-
tempt, function descf  returns the values of 1M  to 7M  for region ijR . 

( ) [ ]desc 1 2 7, , ,R ijV f R M M M ′= =                              (21) 

The shape similarity of a region ijR  with that of the prior shape ( )S  is measured by: 

( ),ij R PSh R S V V= −                                   (22) 

Clearly the shape similarity of the regions ijR  and S  is maximum when the value of Sh  is minimum. 
Function RS  is redefined as the following to take the shape similarity into account: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1, 1,
1,

True,   and     and   , ,
,

False,                                otherwise
ij i x D ij D i x ij i x

ij i x

D R D R E R E R Sh R S Sh R S
RS R R + + +

+

 < > <= 


 (23) 

We will present the results of the addition of the shape constraint in the next section for geo-spatial aerial im-
ages. 

4. Experimental Results 
In this section, experimental results for various image types are presented: firstly for the general segmentation 
problem using the Berkeley Segmentation Dataset and Benchmark (BSDS300), and secondly for the specific 
application of geo-spatial aerial imagery segmentation and rooftop detection. We also demonstrate that our hier-
archical segmentation scheme is applicable to other general segmentation methods. 

4.1. Berkeley Dataset (BSDS300) 
We tested our proposed algorithm on the publicly available Berkeley Segmentation Dataset and Benchmark 
(BSDS300) [25], which consists of human segmented natural images and a benchmark that assesses the quality 
of a boundary detection or segmentation algorithm based on the F-measure (harmonic mean between precision 
and recall rates). 

4.1.1. Parameter Setting 
The range resolution ( )ch  for the entire dataset was defined as 4lT = , 16hT = , and 2T∆ = . These values 
were selected in a way that the mean shift segments would cover from under to over segmentation for 90% of 
the dataset. Figure 5 shows the mean shift segments of a typical image for all values of ch . 

4.1.2. Benchmark Results 
Figure 6 presents typical results for the BSDS300 dataset. Our method successfully finds most of the objects in 
a given image. However, using the mean shift algorithm for the initial hierarchical segmentation has some 
shortcomings when it comes to natural scenes. Because it relies on color information and the distance relation-
ship of pixels of similar color only, the segments may not correspond to what humans would define as different 
objects, different textures, or parts of the same object or same texture. Incorporating cues from edge distinctive-
ness improves the segment selection but cannot make up for real missed edges by the mean shift algorithm. 
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Figure 5. Mean shift segments of a typical BSDS300 image for a range resolution (hc) of Tl = 4, Th = 16 and 
∆T = 2. Original image shown top left.                                                            

 

 
Figure 6. Sample images from BSDS300 dataset along with segmentation results of the proposed algorithm.    

 
The algorithm has an overall F-measure of 0.642, which is similar to other recent algorithms as reported on 

the website of the benchmark (between 0.57 and 0.70). Methods that have achieved a higher score include an 
approximation of the weighted min-cover problem that extracts salient smooth curves [26], a method based on 
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local changes in brightness, color, and texture cues [27], and an improvement of [27] coupling the local cues 
with global information obtained from spectral partitioning [28]. However, these algorithms are in fact boundary 
detection algorithms, and as such do not necessarily find closed segments representing objects. Our method has 
the advantages of being automatic, producing closed segments (true segmentation), and not requiring any pa-
rameter tuning nor training phase. Moreover, the benchmark is designed to accommodate soft boundary maps, 
with higher values signifying greater confidence in the existence of the boundary. Our method is penalized for 
producing closed binary boundaries, which may be more common for computer vision applications. Another 
aspect affecting the performance of any algorithm on the benchmark is related to the lack of consistency in hu-
man segmentations: the reported level of details varies from one image to another. An example would be for 
distinctive clouds in a sky that are sometimes segmented as different objects, sometimes completely merged as 
one large object with the blue sky. 

4.1.3. Effect of the Different Stages 
In this section, we illustrate the effect of the different stages of the hierarchical segmentation algorithm. Figure 7 
shows, for a typical image, selected segments from the bottom-up and the top-down searches both before and 
after post-processing ( BUR  and TDR ), as well as their combination before and after post-processing ( )BU-TDR . 

The selected segments differ according to the direction of traversal of the tree and complement each other. 
For instance, the bottom-up search failed to find the proper boundaries of the animal’s tail end, which were bet-
ter defined through the top-down search. Combining the results allowed for a more accurate segmentation of the 
tail. The post-processing merging scheme was successful in removing some of the inaccurate boundaries, for in-
stance on the animal’s body. For the bottom-up search, the post-processing reduced the number of segments 
from 106 to 44, and from 68 to 37 for the top-down search (there were 136 mean shift segments at c lh T=  and 
17 at c hh T= ). 

Table 1 presents the overall F-measure, recall and precision rates of the entire dataset for the different stages. 
The best results come from the combination of bottom-up and top-down searches after post-processing 
(F-measure of 0.642), which justifies the usefulness of combining the two approaches. The bottom-up search has 
a higher recall rate than the top-down search, but a lower precision. This observation is consistent with the ex-
pectations as the bottom-up search, starting from the most sensitive level, has a tendency to find more segments, 
i.e. more true boundary pixels which increases the recall rate, but also more false boundary pixels at the same 
time, which decreases the precision rate. The top-down search, starting from the least sensitive level, has a ten-
dency to find less segments, i.e. less true boundary pixels, which decreases the recall rate, but less false bound-
ary pixels, which increases the precision rate. 

4.1.4. Comparison with Non-Hierarchical Version 
We also have compared our hierarchical segmentation approach, using mean shift as the general segmentation 
method, with the standard non-hierarchical mean shift segmentation algorithm. Table 2 presents the overall 
F-measure, recall and precision rates of the entire dataset for values of ch  ranging from lT  (4) to hT  (16) 
with a T∆  of 4. Our hierarchical segmentation approach outperforms the same segmentation algorithm run 
with a non-hierarchical approach over the same range of parameter values, having a higher F-measure. 

4.1.5. Applicability to Another General Segmentation Algorithm 
In order to show that our hierarchical segmentation scheme can be integrated with other general segmentation 
algorithms that can produce segmentation outcomes at different granularities (from under to over segmentation) 
by varying their parameters’ values, we substituted the mean shift segmentation algorithm [19] with the graph- 
based image segmentation algorithm [2]. This algorithm segments images based on a predicate that measures the 
evidence of a boundary between two regions using a graph-based representation of the image. Its main control 
parameter k sets the scale of observation. It was defined as Tl = 100, Th = 1300 and ∆T = 200 for the entire 
dataset. These values were selected in a way that the graph-based segments would cover from under to over 
segmentation for 90% of the dataset. Figure 8 shows the graph-based segments of a typical image (same as in 
Figure 5) for all values of k. 

Table 3 presents the overall F-measure, recall and precision rates of the entire dataset for the different stages, 
with the best results again coming from the combination of bottom-up and top-down searches after post-pro- 
cessing (F-measure of 0.628). 
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Figure 7. Results after different stages of the proposed algorithm for a typical BSDS300 image. Segments from bottom-up 
search (RBU) before (a) and after (b) post-processing, segments from top-down search (RTD) before (c) and after (d) post- 
processing, combination of the bottom-up and top-down results (RBU-TD) before (e) and after (f) post-processing.                    
 
Table 1. F-measure, recall and precision rates for the different stages of the proposed algorithm.                         

Metric 
Bottom-up Top-down Combination 

Before P-P After P-P Before P-P After P-P Before P-P After P-P 

F-measure 0.623 0.636 0.566 0.569 0.637 0.624 

Recall 0.734 0.689 0.521 0.508 0.717 0.682 

Precision 0.540 0.591 0.620 0.646 0.573 0.607 

 
Table 2. F-measure, recall and precision rates for non-hierarchical mean shift segmentations for different hc values and our 
proposed method.                                                                                       

Metric 
Mean shift, value of HC Our 

method 4 8 12 16 

F-measure 0.579 0.628 0.581 0.471 0.642 

Recall 0.837 0.685 0.508 0.345 0.682 

Precision 0.442 0.580 0.679 0.745 0.607 

 
Table 3. F-measure, recall and precision rates for the different algorithm’s stages using graph-based segmentation [2].       

Metric 
Bottom-up Top-down Combination 

Before P-P After P-P Before P-P After P-P Before P-P After P-P 

F-measure 0.601 0.610 0.503 0.500 0.623 0.628 

Recall 0.723 0.650 0.404 0.393 0.669 0.660 

Precision 0.515 0.574 0.666 0.681 0.562 0.600 
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4.2. Geo-Spatial Aerial Images 
To test the proposed algorithm in a practical and specific application, we utilized the proposed algorithm for the 
segmentation of aerial geo-spatial images (Pictometry Int. Corp.’s, resolution of 0.15 meter/pixel). The test im-
ages are from suburban regions of Vancouver, BC, Canada. The parent application for this case is a rooftop de-
tection system. Since we are interested in selecting segments from the hierarchical tree that conform better to a 
rooftop profile, a square model was added as the shape prior to the geometrical constraint (Equation (23)). 

As for the BSDS300, the range resolution ( )ch  for all aerial images was defined in a way that the mean shift 
segments would cover from under to over segmentation for 90% of the dataset images. The values used are 

2lT = , 12hT =  and 2T∆ = . Three typical output results are shown in Figure 9, which comprise several types 
of buildings (detached houses, condominium buildings, commercial buildings). On the second row are the seg-
mentation results and on the third row are the final results after applying a simple filtering process, aimed at 
discarding non-rooftop regions, consisting of the following steps: 

1) Light morphological cleaning (opening with a squared structural element of 9 × 9 pixels) is carried out on 
each segment to remove small protrusions and separate objects that could be linked by a small isthmus.  

2) All segments connected to the image border are discarded since we are looking only for rooftops that are 
fully contained within the image.  

3) Segments corresponding to vegetation are removed. An analysis of several hundred objects (rooftops and 
non-rooftops) has shown that green vegetation (be it grass or trees) can be distinguished from rooftops based on 
the saturation component of the HSV color space. A vegetation mask ( )vM  is created from pixels that have a 
saturation value over 0.3. To strengthen the approach due to the nonetheless existing overlap in saturation value, 
a second constraint related to hue is added: a tolerance spanning from yellow ( )0.1H =  to cyan ( )0.5H =  is 
allowed:  

( ) ( ) ( )1, , 0.3  and   0.1 , 0.5
,

0,                       otherwisev
S x y H x y

M x y
> < <

= 


                     (24) 

here, x  and y  denote pixel coordinates, and S  and H  the saturation and hue bands, respectively. 
4) Segments smaller than a specific size are removed. For aerial images the minimum size of a rooftop was 

defined at 1000 pixels (22.5 m2).  
Quantitative assessment of the results is done through four metrics which have become standard for the 

evaluation of man-made structure extraction [29]: shape accuracy, correctness, completeness and overall quality. 
The results are compared with manually delimitated ground truth data. The shape accuracy [30], based on the 
overlap between the segmented rooftop and its ground truth, is estimated by: 

GT GTShape Accuracy 1 SA A A= − −                            (25) 

( )Completeness TP TP FN= +                              (26) 

( )Correctness TP TP FP= +                                (27) 

TPQuality
TP FP FN

=
+ +

                                  (28) 

here GTA  and SA  denote a rooftop’s area from the ground truth and the segmentation process, respectively. 
As errors of pixel labeling are not taken into account in the shape accuracy, the metrics of correctness, com- 
pleteness, and overall quality are computed as well. Correctness measures the degree to which detected building 
pixels are indeed real building pixels, whereas completeness measures the degree to which real building pixels 
are detected by the system. Overall quality is the normalization between the previous two metrics. 

Here, TP represents true positives (correctly extracted building pixels), FP false positives (incorrectly ex-
tracted building pixels), and FN false negatives (missed building pixels). When computing these results, all 
missing and falsely detected rooftops in Figure 9 are accounted for. When one rooftop is detected as several 
segments, the system is penalized accordingly, considering only the largest segment as true positives. Optimal 
values for the four metrics are 1 (or 100%), and the overall quality cannot be higher than neither correctness nor 
completeness. The mean shape accuracy is computed rooftop-wise whereas the mean values of the other three 
metrics are computed pixel-wise across all images.  

The proposed method (Table 4) holds a shape accuracy of 84.6%, correctness of 84.2%, completeness of  
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Figure 8. Graph-based segments of a typical BSDS300 image for a scale of observation (k) of Tl = 100, Th = 
1300 and ∆T = 200. Original image shown on the top left.                                            

 

 
Figure 9. Examples of aerial images that are processed by the proposed algorithm to identify rooftops. 
Segmentation results are shown on the second row, and results after filtering on the third and the ground truth 
on the last row.                                                                               
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Table 4. Quantitative results for geo-spatial images.                                                            

 Shape accuracy 
[%] 

Correctness 
[%] 

Completeness 
[%] 

Overall quality 
[%] 

Without shape constraint 80.3 77.5 89.7 71.1 

With shape constraint 84.6 84.2 92.1 78.5 

 
92.1% and overall quality of 78.5%. Its shape accuracy is comparable to that reported in other works (81% in 
[31], 83.6% in [32]). It performs better with the shape constraint (Equation (23)) than without it. The number of 
buildings in the ground truth data for the first image (Figure 9, first column) was 44 out of which 43 were de-
tected by the proposed system. 10 false positives were also detected in this case. The second image (Figure 9, 
second column) included 11 rooftops, which were all detected. 33 false positives were also detected. The third 
image (Figure 9, third column) had 10 rooftops and all of them were identified correctly but the system also 
identified 15 false positives. The high completeness rate reflects that most of the rooftop pixels are detected as 
such. Because the method was developed mainly as a general segmentation approach, in its current state it de-
tects a substantial number of non-rooftop objects. 

A simple filtering scheme was applied to discard some of the background segments. One way to increase 
the performance and get higher correctness and overall quality would be to filter out segments with no evi-
dent shadows. By using the image acquisition parameters in estimating the direction of the sun and the ex-
pected shadows of each segment (rooftop candidate), flat ground structures such as roads and fields could be 
removed, impacting the quantitative assessment metrics significantly. 

5. Conclusion 
An automatic segmentation approach was introduced in this paper. The proposed approach uses a hierarchical 
multi-layer segmentation scheme with a tree-based search mechanism to inspect the consistency of segmented 
regions and their relationship with each other, providing automatic adaptive parameter selection. Performance of 
the algorithm was showcased by applying it on different types of images including natural scenes through the 
Berkeley Segmentation Dataset and Benchmark (BSDS300) and geo-spatial imageries. The proposed hierarchi-
cal scheme displayed comparable performance with recent algorithms on the BSDS300 dataset, and outper-
formed the original non-hierarchical segmentation algorithm for the same range of parameter values. While the 
mean shift algorithm was used as a general segmentation algorithm to demonstrate the feasibility and usefulness 
of our hierarchical segmentation scheme for most results, we have also shown the applicability of the approach 
to other general segmentation algorithms that can produce segmentations at several granularities, such as the 
graph-based image segmentation algorithm. Future works include the analysis of the applicability to soft and/or 
stochastic segmentation environments. 
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