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Abstract

In this paper, we consider cooperative hyperbolic systems involving Schréodinger operator defined
on R". First we prove the existence and uniqueness of the state for these systems. Then we find
the necessary and sufficient conditions of optimal control for such systems of the boundary type.
We also find the necessary and sufficient conditions of optimal control for same systems when the
observation is on the boundary.
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1. Introduction

The optimal control problems of distributed systems involving Schrédinger operator have been widely discussed
in many papers. One of the first studies was introduced by Serag [1], which discusses 2 x 2 cooperative systems
of elliptic operator. Further research in this area developed the problem by studying different operator types (el-
liptic, parabolic, or hyperboalic) or higher system degree as in [2]-[6]. Many boundary control problems have
been introduced in [7]-[10].

In [3], we discussed distributed control problem for 2 x 2 cooperative hyperbolic systems involving Schro-
dinger operator.

Here, using the theory of [11], we consider the following 2 x 2 cooperative hyperbolic systems involving Schro-
dinger operator:
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with y,, y, e L (O,T,Vq(R )) El’ Eze 2(Q).
where a, b, ¢ and d aregiven numberssuchthat b, ¢>0,
i.e. the system (1) is called cooperative 2
q(x) isa positive function and tending to oo at infinity, 3)

and Q=R"x]0,T[ with boundary £=Ix]0,T[.
The model of the system (1) is given by:

B(03(3) - B0) (5 (05, 09) | T+ Cava)y -y -y T a )y, -on -, |

ot?

H ! n 2
since A(t)y(x)=((-A+q)y,—ay, —by,.(-A+q)y, —cy, —dy,), A(t)ye (Vq (R )) .
We first prove the existence and uniqueness of the state for these systems, then we introduce the optimality
conditions of boundary control, we also discuss them when the observation is on the boundary.
2. Some Concepts and Results
Here we shall consider some results about the following eigenvalue problem which introduced in [1] and [12]:
(-A+0)p=A4(q)¢ inR"
#(x)>0 as [x—>oo, ¢>0

(4)

The associated space is V, (R” ) with respect to the norm;

12
I, - [ i[iwf +q|y|1dxj -

RI‘I
Since the imbedding of Vq(R”) into LZ(R") is compact, then the operator (—A+q) considered as an

Operator in L* (R") is positive self-adjoint with compact inverse. Hence its spectrum consists of an infinite se-
quence of positive eigenvalues, tending to infinity; moreover the smallest one which is called the principal ei-
genvalue denoted by A(q) is simple and is associated with an eigenfunction which does not change sign in
R". It is characterized by:

ﬂ(q).[|y|2dxs I[|Vy|2+q|y|2]dx Verq(R”) (6)

We have:
Vo (R v R )= LR e L2(R™ )= vg R” v R)
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which is continuous and compact.
Let us introduce the space LZ(O,T;Vq (R“)) of measurable function t — f(t) which is defined on open

interval (0,T) and the variable te(0,T), T <o denotes the time.
On (O,T) with Lebesgue measure dt we have the norm:

12
O LOL )|| F O ) dtJ <
and the scalar product

(f (t)’ g(t))LZ(O,T:Vq(R")) = I (f (t)' g (t))"q(Rn) at,

(1)
the space L* (O,T;Vq (R“ )) with the scalar product and the norm above is a Hilbert space.

Analogously, we can define the spaces L (O,T; L2 (R“)) =1*(Q),

with the scalar product:

then we have:

L2 (0.T:V, (R))x L (0.T3v, (R")) = L (Q)x L2 (Q) = L (0,T3vy (R") )< L* (0,T3v, (R"))

3. The Existence and Uniqueness for the State of the System (1)

We have the bilinear form:

1 1 d
”(t; Y, l//) = B j [Vylv 2 qyll//l]dx ""E I [VY2v v, + QY2V/2]dX - I Y ,dx _E J. Yo ,0x
R" R" R" R"

a
_E J' Yy dx — .[ Y 10X, )
R" R"
2

Y=YuYsr w=(vv:)e(Ve(R")) .

Forall v, 1//e(Vq(R”))2 the function t— 7 (t;y,y) is measurableon (0,T).

2
The coerciveness condition of the bilinear form (7) in (Vq (R”)) has been proved by Serag [1], by using the

conditions for having the maximum principle for cooperative system (1) which have been obtained by Fleckinger
[13], and take the form:

a<a(q), d=<2i(a), ©
(2(a)-2)(2(q)-d)>be
that means:
6y ) 2C(Iylf, +Ivali, ). ©-0 ©

Theorem (3.1):
Under the hypotheses (2) and (9), if f,, f, e LZ(O,T;Vq’(R”)), Yio(X), yz_o(x)evq(R”) and y;,(x),

2
Yo (X) e L(R”) , then there exists a unique solution: y={y,,y,} € (L2 (O,T;Vq (R” ))) for system (1).
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Proof:

Let w —> L(y) beacontinuous linear form defined on (Vq (R” ))2 by:

L(y) :%j fl(x,t)z//l(x)dxdt+%j f, (), () dxdt

1 oy, (x0) 1 v, (%,0) .10
o5 a0 00 L [0S0 (v (%)
then by Lax-Milgram lemma, there exists a unique element y = (yl, Y, ) c (Vq (R” ))2 cuch that:
w(tyw)=Lw), Yy =)V (R")) (11)

Now, let us multiply both sides of first equation of system (1) by %y/l(x), and the second equation by:

lx//z(x) then integration over Q, we have:
c

1] 2%y, (x 1
Bi[%+(—A+q) y, —ay, —byz:ly/ldxdt =B£ f,(x,t)y,dxdt
1] 0y, (x 1
EJ{%H‘AH}WZ —cy, —dyz:ly/zdxdt =EI f, (X,t)w,dxdt
Q Q
By applying Green’s formula:

%j ayl(x,O)ay/l(x,O)dXJrl

oy, 1 1 oy, [q a )
——LydX+= | Vy,Vi,dxdt —= A+ =y, ——vy, - dxdt
p p b!wl =V bg YALZ b'!%avA i A A

1
=B£ f, (x.t)y,dxdt,
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d
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By sum the two equations we get:

l_[ % (%.0) v (x.0) dx+l_[l//1%vd2—l_[l//1%d2+lj %, (x.0) a%(X'O)dx+lj‘l/lz%vdz
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1 oy, 1 oy, (x0) 1 0w, (x,0)
-~ |y,—=d == X)————=>dx+= X)———=dx,
Ci‘/’z ov, bF;[yl,l( ) at CF;[yM( ) at
by comparing the previous equation with (7), (10) and (11) we deduce that:
M| ¥,
ovly ov

=0
Y, (x0)

= yl,l(x)’ T: yz,l(x) inR"

oy, (x.0)
ot

then the proof is complete.
4. Formulation of the Control Problem

The space L*(Z)xL*(Z) is the space of controls. For a control u = (u,,u,) e (L, (2))2 , the state
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y(u)=(y,(u),y,(u))e (L2 (O,T;Vq (R" )))2 of the system is given by the solution of

0%y, (u)
ot?

823;2@)+(_A+q)yz(u)zcyl(u)+dy2(u)+fz in Q,

Vi ¥, >0 as  [x] oo,

+(-A+q)y, (u)=ay, (u)+by, (u)+f, inQ,

W | (42
ov |, v ov |, 2
Y1(X!Ovu):y1,0(x)n yz(x,O,u):yz,O(x) in R",
ay, (x,0,u) Y, (x,0,u) o
—a Vi1 (%), - Yoa(Xx) in R
H n ayl u ay u
with 'y, (u), y,(u)e LZ(O,T;Vq(R )) #%e L*(Q).
The observation equation is given by z(u)=(z(u),z, (u))=y(u)=(y,(u),y,(u)).
Foragiven z, =(z4,,24,)€ (L2 (Q))2 , the cost function is given by:
I(V) =] v: (v)- zd1||i2(Q) +[y, (v) -2, ||i2(Q) +( Nv,v)(Lz(E))z . (13)
where N e L((L2 (2))2 ,(L2 (Z))Z) is hermitian positive definite operator:
(NU,U)(LZ(Z))Z > 7/||u||(L2(z))2 , 7=0 (14)

The control problem then is to find u={u,,u,} €U, suchthat J(u)<J(v), where U, isa closed con-
vex subset of (LZ(Z))Z.

Since the cost function (14) can be written as (see [11]):
2
J(v)=a(v,v)-2L(v)+|y(0)-z ||(L2(Q))z

where a(v,v) is a continuous coercive bilinear form and L(v) is a continuous linear form on (LZ(Z))Z.
Then there exists a unique optimal control ueU,, such that J(u)=infJ(v) for all veU,, by using the
general theory of Lions [11]. Moreover, we have the following theorem which gives the necessary and sufficient
conditions of optimality:

Theorem (4.1):

Assume that (9) and (14) hold. If the cost function is given by (13), the optimal control u = (u,,u,)e (Lz (E))
is then characterized by the following equations and inequalities:

2

o’p.(u .
PU) (ava) () -amu () ona ()= 3 (0) 2 0 Q
°p,(u .
P 0). () ()b ()09, ()= Yo ()20 10
PP, >0 as [X oo,
15
op, (u) -0, op, (u) =0, (15)
ov | ov |;
p (X T,u)=p,(xT,u)=0 in R",
6pl(x,T,u):6p2(x,T,u):O —
ot ot
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with p, (u), p, (u) e *(0.T:V, (R")), apgiu), apiT(u)e L*(Q)

(p(u)+ Nu,v—u)(Lz(z))z 20, Wv=(v,v,)eU, (16)

together with (12) , where p(u)=(p,(u), p,(u)) is the adjoint state.
Proof:

The optimal control u = (u,,u,) e (L, (2))2 is characterized by [11]
J'(u)(v-u)=0, WveU,,
Which is equivalent to:

(y(u)-z4,y(v)- Y(U))(LZ(Q))Z +(Nu,v—u)(L2(z))z >0

SAORAAGE (u))LZ(Q) VAR AGEY (u))LZ(Q) +(Nu,v—u)(L2(2))2 20 (17

this inequality can be written as:
T

I[( Vi (U) =240, Y1 (V)= ¥ (u))LZ(Rn) +(Y2 (U) =245, Y5 (V) s (u))LZ(Rn)}dt +(Nu’v_u)(|_z(z))2 20 (18)

0

Now, since:

Sy

{m(u),azyl(”)+<—A+q>y1<u>—ay1<u>—byz<u>] «

(PBY)zo)f =

o ?(r")
+T£(pz (U)'azéiz(U)+(_A+q)yz (u)—cy, (u)—dy, (U)L(Rn)dt_
where
By(u) = B(yl(u)*yz (u))
:(5 ;iz(u)+(—A+q)yl(U)—ayl(U)—byz(U),a éiz(u)+(_A+q)yz(u)—cyl(U)—dyz(u)J.

by using Green formula and (12), we have:

(p, BY)(LZ(Q)f =l{%+(m+q) pl(u)—apl(u)—cpz(u),yl(u)] , n)dt
+](022§2(U)+(_A+q) P, (u)—bp(u)—dpz (u),y2 (u)} dt
° ()
=(B*p,y)(L2(Q))z.
then
Bp(u)=B"(py(u). p, (u))
:{62;§U)+(—A+Q)pl(u)—apl(u)—cpz(u),62;2(U)+(_A+q) D, (u)—bpl(u)—dpz(u)}

and A'p(u)=(p,(u),p,(u))=((~A+a)p.(u)-ap,(u)~cp, (u).,(~A+q) p, (u)~bp, (u)~dp, (u))



A. H. Qamlo

*p(u)

since the adjoint equation takes the form [11]: pe +A"p(u)=y(u)-z

and from theorem (3.1), we have a unique solution p(u)e(Lz(O,T;Vq(R")))Z which satisfies pl(u),

2 n op(u)  dp,(u 2
p, (u) e *(0,T3V, (R")), %, #EL Q).
This proves system (15).

Now, we transform (18) by using (15) as follows:

i[az p.(u) +(=A+q) p,(u)—ap, (u)=cp, (u), y: (v)- Y1(U)J 2(R") ’

+]‘[M+(_A+q) P, (u)—bp, (u)—dp, (u),y,(v)- Y, (U)J dt

()

+(Nu,v—u)(

Using Green formula, we obtain:

[[ a0 S ar0)uor-n)

! n)dt+l—a(pl(u),yl(v)—yl(u))Lz(Rn)dt
+i—0(pz(U),yl(V)—vl(U))Lz(Rn)dt+l(pz(U),[§t—22+(—A+Q)jyz (V)—yz(U)] . n)dt
B0 (0, (9o (0) s+ [ (B 4,8, ()3, (0 (M=) 20,

Using (12), we have:

(p(u)+ Nu,v—u)(Lz(E))z >0.

Thus the proof is complete.

5. Formulation of the Problem When the Observation Is on the Boundary

The observation equation is given by:
2(0)=(2(), 2 () =M (y (), ) =M (3 ()], ) (32 (] )
M e |_((|_2 =) ,(LZ(Z))Z).

This is interpreted as follows [11]: we take the trace of y(u) on X, which is particular in (L2 (2))2. Let

this be denoted by y (u)|

o

Foragiven z, =(z4,24,)€ (L2 (2))2 , the cost function is given by:

(19)

I =) =2l e ), 2,

t(z)

+( Nv,v)(Lz(Z))z )

where N e L((L2 (2))2 ,(L2 (2))2) is defined as in (14).

The control problem then is to find u=(u;,u,)eU,, suchthat J(u)<J(v), where U, isa closed con-
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vex subset of (LZ(Z))Z.
Since the cost function (19) can be written as [11]:
2
3(v) =a(vv)-2L(v) [y (0) -2 [
where a(v,v) is a continuous coercive bilinear form and L(v) is a continuous linear form on (LZ(Z))Z.
Then using the general theory of Lions [11], there exists a unique optimal control ueU,_, such that

J (u) =infJ(v) forall veU,,. Moreover, we have the following theorem which gives the necessary and suf-
ficient conditions of optimality:

Theorem (5.1):
Assume that (9) and (14) hold. If the cost function is given by (19), the optimal control u =(u,,u,)e (L2 (2))2
is then characterized by the following equations and inequalities:

o’p.(u .
2;2( )+(—A+q)pl(u)—apl(u)—cpz(u):o in Q,
’p,(u .
2:2( )+(—A+q)pz(u)—bpl(u)—dpz(u)=0 in Q,
PP, >0 as [X o
(20)
op, (u ap, (u
%Zzyl(u)k_zdl' ;‘(/ )Ezyz(u)k_zdz’
p (X T, u)=p,(x,T,u)=0 in R",
ap, (x,T,u) _ op, (x,T,u) 0 —
ot ot
with p,(u), p,(u)e LZ(O,T;Vq(R")), apgiu)l apzT(U)E L*(Q) together with (16) and (12).
Proof:
The optimal control u = (u,,u,) e (L, (2))2 is characterized by [11]:
J'(u)(v-u)=0, YveU,
Which is equivalent to:
(y(u)-z, y(c)—y(u))(Lz(Z))z +(Nu,v—u)(L2(z))z >0
i.e.
(yl (u)_ Za Y (V)_ Y1 (u))l_z(r) +(yz (V)_ Zg2) Y2 (V)_ Y (u))LZ(r) "’(NU’V_LI)(LZ(Z))2 20 (21)

this inequality can be written as:
T

I[(yl (W)=-2zg. % (V) Y, (u))Lz(r) +(¥2 (V)= 2420 V2 (V) - ¥, (u))LZ(FJdt +(Nu,v—u)(L2(2))z >0 (22)
0
since the adjoint system takes the form [11]:

2
ap—gu)+A*p(u)=O in Q
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and from theorem (3.1), we get a unique solution p(u) € (L2 (O,T;Vq (R" )))2 which satisfies:

0 0
p,(u), p,(u)e LZ(O,T;Vq(R")), % %e 1(Q).
This proves system (20).

Now, we transform (22) by using (20) as follows:

(25 0-nw] (B 00|

0 Lz(r) 0

>0

dt+(Nu,v—u)(L2(z))z

Using Green formula, we obtain:

}(pl(u),ayl_(v)_ah_(u)j dt+][p2(u)’ay2(V)_ayz(U)J dt+(Nu,v—u)(L2(z))2 >0
o0 2(r)

0 ov ov ov ov

Using (12), we have:

T

.
j(pl(u),vl—ul)Lz(r) dt+[(p,(u).v, _UZ)LZ(I') dt+(Nu,v—u)(L2(Z))z >0,
0

0

which is equivalent to:
(p(u)+ Nu,v—u)(Lz(E))z >0.
Thus the proof is complete.

6. Conclusions

In this paper, we have some important results. First of all we proved the existence and uniqueness of the state for
system (1), which is (2 x 2) cooperative hyperbolic system involving Schrodinger operator defined on R"
(Theorem 3.1). Then we found the necessary and sufficient conditions of optimality for system (1), that give the
characterization of optimal control (Theorem 4.1). Finally, we also find the necessary and sufficient conditions

of optimal control when the observation is on the boundary (Theorem 5.1).
Also it is evident that by modifying:
-the nature of the control (distributed, boundary),
-the nature of the observation (distributed, boundary),
-the initial differential system,
-the type of equation (elliptic, parabolic and hyperbolic),
-the type of system (non-cooperative, cooperative),
-the order of equation,
many of variations on the above problem are possible to study with the help of Lions formalism.
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