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Abstract 
Fractional differential equations have recently been applied in various areas of engineering, 
science, finance, applied mathematics, bio-engineering and others. However, many researchers 
remain unaware of this field. In this paper, an efficient numerical method for solving the fractional 
Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the 
Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev 
polynomials are used to reduce ADE to a system of ordinary differential equations, which are 
solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper 
bound of the error for the derived formula are given. Numerical solutions of ADE are presented 
and the results are compared with the exact solution. 
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1. Introduction 
Ordinary and partial fractional differential equations (FDEs) have been the focus of many studies due to their 
frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics and engineering 
[1] [2]. Consequently, considerable attention has been given to the solutions of FDEs of physical interest. Most 
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FDEs do not have exact solutions, so approximate and numerical techniques [3] [4], must be used. Recently, 
several numerical methods to solve FDEs have been given such as variational iteration method [5], homotopy 
perturbation method [3] [6], Adomian decomposition method [7] [8], homotopy analysis method [9], collocation 
method [10] [11] and finite difference method [12]-[17]. 

We introduce some necessary definitions and mathematical preliminaries of the fractional calculus theory that 
will be required in the present paper.  

Definition 1 
The Caputo fractional derivative operator Dα  of order α  is defined in the following form  

( ) ( )
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where 1m mα− < ≤ , m∈ , ( ).Γ  is the gamma function. 
Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation  

( ) ( )( ) ( ) ( ) ,D f x g x D f x D g xα α αλ µ λ µ+ = +  

where λ  and µ  are constants. For the Caputo’s derivative we have [2]  
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We use the ceiling function α    to denote the smallest integer greater than or equal to α  and 
{ }0 0,1, 2,=  . Recall that for α ∈ , the Caputo differential operator coincides with the usual differential 

operator of integer order. 
For more details on fractional derivatives definitions and its properties see [2]. 
Anomalous, or non-Fickian, dispersion has been an active area of research in the physics community since the 

introduction of continuous time random walks (CTRW) by Montroll and Weiss [1965]. These random walks 
extended the predictive capability of models built on the stochastic process of Brownian motion, which is the 
basis for the classical advectiondispersion equation (ADE).  

A fractional ADE. is a generalization of the classical ADE in which the second-order derivative is replaced 
with a fractional-order derivative. In contrast to the classical ADE, the fractional ADE has solutions that 
resemble the highly skewed and heavy-tailed breakthrough curves observed in field and laboratory studies.  

When a fractional Fick’s law replaces the classical Fick’s law in an Eulerian evaluation of solute transport in a 
porous medium, the result is a fractional ADE.  

It describes the spread of solute mass over large distances via a convolutional fractional derivative. 
We consider the initial-boundary value problem of the fractional Advection-dispersion equation which is 

usually written in the following form  

( ) ( ) ( ) ( ), , , , ,     0 1,    0 ,tu x t D u x t D u x t s x t x t Tα βµ= − + < < ≤ ≤                  (3) 

where 0 2α< ≤ , 0 1β< ≤ , ( ),s x t  is the source term, µ  is a constant and Dγ  is the Caputo fractional 
derivative with respect to x  and of order γ , where ,  γ α β= . 

Under the zero boundary conditions  

( ) ( )0, 1, 0,u t u t= =                                     (4) 

and the following initial condition  

( ) ( ),0 .u x g x=                                      (5) 

In the last few years appeared many papers to study this model (3)-(5) [1] [18]-[22], the most of these papers 
study the ordinary case of such problem but in this paper we study the fractional case. 

Our idea is to apply the Chebyshev collocation method to discretize (3) to get a linear system of ODEs thus 
greatly simplifying the problem, and use FDM [12] to solve the resulting system. 
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The organization of this paper is as follows. In the next section, we obtain the approximation of fractional 
derivative ( )D y xα . In Section 3, we prove the error analysis of the proposed formula. In Section 4, we 
implement chebyshev collocation method to the solution of (3). As a result a system of ordinary differential 
equations is formed and the solution of the considered problem is introduced. In Section 5, we give some 
numerical results to clarify the proposed method. Also a conclusion is given in Section 6. 

2. Derivation of the Approximate Formula  
The well known Chebyshev polynomials are defined on the interval [ ]1,1−  and can be determined with the aid 
of the following recurrence formula [23]  

( ) ( ) ( ) ( ) ( )1 1 0 12 ,     1,    ,    1, 2,n n nT z zT z T z T z T z z n+ −= − = = =  . 

The analytic form of the Chebyshev polynomials ( )nT z  of degree n  is given by  
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where [ ]2n  denotes the integer part of 2n . The orthogonality condition is  
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In order to use these polynomials on the interval [ ]0,1  we define the so called shifted Chebyshev 
polynomials by introducing the change of variable 2 1z x= − . So, the shifted Chebyshev polynomials are 
defined as ( ) ( ) ( )22 1n n nT x T x T x∗ = − = . 

The analytic form of the shifted Chebyshev polynomials ( )nT x∗  of degree n  is given by  
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The function ( )u x , which belongs to the space of square integrable in [ ]0,1 , may be expressed in terms of 
shifted Chebyshev polynomials as  
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where the coefficients ic  are given by  
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In practice, only the first ( )1m + -terms of shifted Chebyshev polynomials are considered. Then we have  

( ) ( )
0

.
m

m i i
i

u x c T x∗

=

= ∑                                   (10) 

Khader [24] introduced a new approximate formula of the fractional derivative and used it to solve 
numerically the fractional diffusion equation. 

The main approximate formula of the fractional derivative of ( )mu x  is given in the following theorem.  
Theorem 1 [24] 
Let ( )u x  be approximated by Chebyshev polynomials as in (10) and also suppose 0α >  then  
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where ( )
,i kw α  is given by  
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Also, in this section, special attention is given to study the convergence analysis and evaluate an upper bound 
of the error of the proposed approximate formula.  

Theorem 2 (Chebyshev truncation theorem) [23] 
The error in approximating ( )u x  by the sum of its first m  terms is bounded by the sum of the absolute 

values of all the neglected coefficients. If  
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for all ( )u x , all m , and all [ ]1,1t∈ − .  
Theorem 3 [25] 
The Caputo fractional derivative of order α  for the shifted Chebyshev polynomials can be expressed in 

terms of the shifted Chebyshev polynomials themselves in the following form  
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Theorem 4 [11]  
The error ( ) ( ) ( )T mE m D u x D u xα α= −  in approximating ( )D u xα  by ( )mD u xα  is bounded by  
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3. Procedure Solution of the Fractional Advection-Dispersion Equation 
Consider the fractional Advection-dispersion equation of type given in Equation (3). In order to use Chebyshev 
collocation method, we first approximate ( ),u x t  as  
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= ∑ .                                (17) 

From Equations (3), (17) and Theorem 1 we have  
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We now collocate Equation (18) at ( )1m α+ −     points px , 0,1, ,p m α= −     as  
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For suitable collocation points we use roots of shifted chebyshev polynomial ( )1mT xα
∗
+ −  

. 



N. H. Sweilam et al. 
 

 
3244 

Also, by substituting Equations (17) in the boundary conditions (4) we can obtain α    equations as follows  

( ) ( ) ( )
0 0

1 0,      0
m mi

i i
i i

u t u t
= =

− = =∑ ∑ .                            (20) 

Equation (19), together with α    equations of the boundary conditions (20), give ( )1m +  of ordinary 
differential equations which can be solved, for the unknowns iu , 0,1, ,i m=  , using the finite difference 
method, as described in the following section. 

4. Numerical Results  
In this section, we present a numerical example to illustrate the efficiency and the validation of the proposed 
numerical method when applied to solve numerically the fractional Advection-dispersion equation. Consider the 
ADE (3) with 1µ =  and the following source term  

( ) ( ) ( )
( )

2 1
, e 2 ! !

1
ts x t x x xβ α α βα

α β
α β

− − Γ +
= − − + −  Γ − + 

,                     (21) 

and the boundary conditions ( ) ( )0, 1, 0u t u t= = , with the initial condition ( ),0u x x xα β= − . 
The exact solution of Equation (3) in this case is  

( ) ( )2, e tu x t x xα β−= − .                                 (22) 

We apply the proposed method with 3m = , and approximate the solution as follows  
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, i i
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= ∑ .                                 (23) 

Using Equation (19) we have  
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where px  are roots of shifted Chebyshev polynomial ( )2T x∗ , i.e.  

0 10.146447,     0.8872983.x x= =  

By using Equations (20) and (24) we can obtain the following system of ODEs  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 3 1 1 2 2 3 3 0u t k u t k u t R u t R u t R u t s t+ + = + + +   ,                 (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 3 1 1 2 2 3 3 1u t l u t l u t Q u t Q u t Q u t s t+ + = + + +   ,                  (26) 

( ) ( ) ( ) ( )0 1 2 3 0u t u t u t u t− + − = ,                           (27) 

( ) ( ) ( ) ( )0 1 2 3 0u t u t u t u t+ + + = ,                           (28) 

where  
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Now, to use FDM for solving the system (25)-(28), we will use the following notations: it iτ=  to be the 
integration time 0 it T≤ ≤  T Nτ =  for 0,1, ,i N=  . Define ( )n

i i nu u t= , ( )n
i i ns s t= . Then the system 

(25)-(28), is discretized in time and takes the following form  
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1 11
1 1 1 10 0 3 31 1

1 2 1 1 2 2 3 3 1

n n n nn n
n n n nu u u uu uk k R u R u R u s

τ τ τ

+ ++
+ + + +− −−

+ + = + + + ,                (29) 

1 11
1 1 1 10 0 3 31 1

1 2 1 1 2 2 3 3 1

n n n nn n
n n n nu u u uu u Q u Q u Q u s

τ τ τ

+ ++
+ + + +− −−

+ + = + + +  ,                (30) 

1 1 1 1
0 1 2 3 0n n n nu u u u+ + + +− + − = ,                              (31) 

1 1 1 1
0 1 2 3 0n n n nu u u u+ + + ++ + + = .                              (32) 

We can write the above system (29)-(32) in the following matrix form as follows  
1 1

0 01 1 2 2 3 1 2 0

1 11 1 2 2 3 1 2 1

2 2

3 3

1 1 0
1 1 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0

n n nu uk R R k R k k s
u uQ Q Q s
u u
u u

τ τ τ
τ τ τ

τ

+ +− − −         
        − − −         = +
        − −
        

        

   

.             (33) 

We use the notation for the above system  
1 1 1 1 1 1,     or    n n n n n nAU BU S U A BU A S+ + + − − += + = + ,                     (34) 

where ( )T

0 1 2 3, , ,n n n n nU u u u u=  and ( )T

0 1, ,0,0n n nS s sτ τ=   

The obtained numerical results by means of the proposed method are shown in Table 1 and Figures 1-4. In 
Table 1, the absolute error between the exact solution exu  and the approximate solution approxu  at 3m =  and 

5m =  with the final time 2T =  are given. Also, in Figure 1 and Figure 2, comparison between the exact 
solution and the approximate solution at 0.5T =  with time step 0.0025τ = , 3m =  and 5m = , are presented, 
respectively. Also, in Figure 3 and Figure 4, the behavior of the approximate solution at 0.5T =  and 5m =  
with different values of α  and β  are presented, respectively. From, these figures, we can see that the 
behavior of the approximate solution depends on the order of the fractional derivative. 

5. Conclusion and Remarks  
The properties of the Chebyshev polynomials are used to reduce the fractional Advection-dispersion equation to 
the solution of system of ODEs which solved by using FDM. The fractional derivative is considered in the  
 

Table 1. The absolute error between the exact solution and the 
approximate solution at 3m = , 5m =  and 2T = .                 

x  approxexu u−  at 3m =  approxexu u−  at 5m =  

0.0 4.483787e 03−  2.726496e 05−  

0.1 4.479660e 03−  3.455890e 05−  

0.2 4.201329e 03−  3.809670e 05−  

0.3 3.695172e 03−  3.809103e 05−  

0.4 3.007566e 03−  3.514280e 05−  

0.5 2.184889e 03−  3.009263e 05−  

0.6 1.273510e 03−  2.387121e 05−  

0.7 0.319831e 03−  1.735125e 05−  

0.8 0.629793e 03−  1.119821e 05−  

0.9 1.528978e 03−  0.572150e 05−  

1.0 2.331347e 03−  0.072566e 05−  
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Figure 1. Comparison between the exact solution and the ap-
proximate solution at T = 0.5 with   = 0.0025; m = 3.            

 

 
Figure 2. Comparison between the exact solution and the ap-
proximate solution at T = 0.5 with   = 0.0025; m = 5.              

 

 
Figure 3. The behavior of the approximate solution at different 
values of α at β = 0.8.                                        
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Figure 4. The behavior of the approximate solution at different 
values of β at α = 1.8.                                        

 
Caputo sense. In this article, special attention is given to studying the convergence analysis and estimating an 
upper bound of the error for the proposed approximate formula of the fractional derivative. The solution 
obtained using the suggested method is in excellent agreement with the already existing ones and shows that this 
approach can be solved the problem effectively. From the resulted numerical solution, we can conclude that the 
used techniques in this work can be applied to many other problems. It is evident that the overall errors can be 
made smaller by adding new terms from the series (23). Comparisons are made between the approximate 
solution and the exact solution to illustrate the validity and the great potential of the technique. All computations 
in this paper are done using Matlab 8. 
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