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Abstract
In this paper, we studied the solution existence and uniqueness and the attractors of the 2D Max-

well-Navier-Stokes with extra force equations.
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1. Introduction

In recent years, the Maxwell-Navier-Stokes equations have been studied extensively, and the studies have
obtained many achievements [1] [2]. The Maxwell-Navier-Stokes equations are a coupled system of equations
consisting of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. The
coupling comes from the Lorentz force in the fluid equation and the electric current in the Maxwell equations. In
[1], the authors studied the non-resistive limit of the 2D Maxwell-Navier-Stokes equations and established the
convergence rate of the non-resistive limit for vanishing resistance by using the Fourier localization technique.
In [2], the author has proved the existence and uniqueness of global strong solutions to the non-resistive of the

2D Maxwell-Navier-Stokes equations for initial data (vo,EO,Bo)e(LZ(HZ))x(HS(RZ))2 with s>0. The

long time behaviors of the solutions of nonlinear partial differential equations also are seen in [3]-[10].
In this paper,we will study the 2D Maxwell-Navier-Stokes equations with extra force and dissipation in a
bounded area under homogeneous Dirichlet boundary condition problems:
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z—\:+vVv—yAv: jxB+f(x),Qx(0T),

dE .

E—curIB—gAE =—j+g(x),Qx(0,T),

dB

E+curIE—77AB:h(x),Qx(O,T), (1.1)
j=E+vxB,Qx(0,T),

divv =divB =0,Qx(0,T),

v(0,x) =V, (x); E(0,x)|= E4 (x); B(0,x) |= By (),

V(X't)|m = E(X’t)|m = B(X*t)|a:z =0,

here Q< R? is bounded set, 6Q isthe bound of Q, v is the velocity of the fluid, y is the viscosity, &
and » are resistive constants, j is the electric current which is given by Ohm’s law, E is the electric field,
B isthe magnetic field and jxB isthe Lorentz force.

Let [[=[llzqy and JIF=(F.F)=[,F* (x)ox

2. The Priori Estimate of Solution of Questions (1.1)

Lemma 1. Assume f,g,he L*(Q);|Vo] < 5. [|Eof < £0.|Bs | < 25 O the solution (v,E,B) of the Dirichlet
bound questions (1.1) satisfies

2 2 2
("VO"Z +||E0 "2 +|| BO||2)efat +w, (t > O)]
(24
2( £ + ol +In[°)
2
(24

here t, ax{o 1 [p"—}}
I£7 +[glf -+l

Proof. For the system (1.1) multiply the first equation by v with both sides and obtain

VI + €T +[8]" <

(t=t),

2dt”V” +y|vvf = (ixB,Vv)+(f(x).v). (2.1)
For the system (1.1) multiply the second equation by E with both sides and obtain
S EL +(-ourle, E)+ £ |VEF = (<1,E)+(a (). E). (2.2)
For the system (1.1) multiply the third equation by B with both sides and obtain
- [BF -+ (curtE B)+7|vB[" = (h(x).B). 2.3)
Because (curlE,B)=(curlB,E),so (2.1)+(2.2)+(2.3) is

20It(IIVII +HEI +18F )+ 7 Vv + £ |VEF +7]vBI°

(2.4)
=(1xB.V)+(f(x).v)+(=i.B)+(9(x),E)+(h(x).B).
According to Poincare’s inequality, we obtain
71V = 7C M eVEIF > €, [, VB[ 2 nc, B @5)

Accordingto j=E+vxB,we obtain
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(ixB,v)+(~i,E)=(i,BxVv)~(},E)=—(i,vxB)~(j.E)=—(j,E+vxB)=—|j|. (2.6)
According to Young’s inequality, we obtain
7C
v) <[ Ol = =M + || f 7
(9(x).E)<[a (€] <—1||E|| ||9|| 28)
h(x),B)<[h(x B|<” 2B h{". 2.9
(n(x).8) <[ (o) IB < = Bl + 2,ﬁzu || @9)
From (2.4) (2.5) (2.6) (2 7) (2.8) (2.9), we obtain
> o (IIVII +[Ef +IIBII ) IIVII +—HEF =Bl [l
< h
< 2yco ||9|| || I
)
eC nC
2dt(uvu HEF + [ )+ S + e + 2B
< f ? hf.
sl g clol + 5l
Let o= min{yC ,éC,,nC, }, according that we obtain
1
o (I +EF +elF)+ S +1EF 1B ) < (I +lalf + I ).
S0
d 1
S M+ IEL [ )+ (I I+ )<= (11" +[of + Il ).
Using the Gronwall’s inequality, the Lemma 1 is proved.
Lemma 2. Under the condition of Lemma 1, and f,g,he H'(Q); v,,E,,B, e H'(Q); 7/2%,77 2%,
so the solution (v,E,B) of the Dirichlet bound questions (1.1) satisfies
k
(IIVvoll HIVE[ +[VBo[fJe ™ + 2 (£20),
[Vl +IVE[ +[vB| <
E’ (t 2 to)*
here t, = max{o,ln{p"kc }}
Proof. For the system (1.1) multiply the first equation by —Av with both sides and obtain
%%”Vv"z +(vWv,—Av) + 7 |Av] = (jxB,—Av) +(f(x),—Av). (2.10)
For the system (1. 1) muItipIy the second equation by —AE with both sides and obtain
||VE|| (curlB,~AE)+ & |AE[" = (~j,~AE)+(g(x),-AE). (2.11)

For the system (1.1) multlply the third equation by —AB with both sides and obtain
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||VB|| +(curlg,—AB) +7|AB|" = (h(x),-AB). (2.12)
According (curIB,—AE)=—(curIB,AE)=—(curIE,AB) and (2.10) (2.11) (2.12) we obtain

——(IIVVII +[VE[ +IVBJ* )~ (vwv. av) + yAv]" + & |AE[] +aB|f

(2.13)
=(jxB,—AV)+( f (x),~Av)+(-],~AE)+(g(x),-AE)+(h(x),-AB),
here
(VWv,Av) = —((Vv)2 + VAV, Vv) = —((Vv)2 ,Vv) —(VVv,Av),
)
1 2 1 3
(VWv,Av) = _E((VV) ,Vv) < E||Vv||L3 .
According to the Sobolev’s interpolation inequalities
1 3 2oty 2
SIvvlis <Csflavfs vz < Slavl” + 1 .
3| 7 :
2C,
)
(VWWv,Av) < Z||Av||2 + - ||v||2 : (2.14)
6 3
3l
2C,
|(j><B,—Av)|:|(E>< B+(vxB)x B,—Av)|
(2.15)
<|(ExB,-Av)|+|((vxB)x B, ~Av)| < |AV] €]« |B].« +‘((Bv)- B-B”v, —Av)‘.
According to the Sobolev’s interpolation inequalities and Young’s inequalities
SN ST SR 1o oy 3C, kot
[AVNIE]L: 1Bl <[avi|Ag]< ] a8« Bl <C.|avlaE]« [aBfl < lavl”+Z 4 [AB]z a8
4
YAz L € 2 3 3CZ )3 2 216
<ZJavlf + ZJaE + ) ;( 47j B[ (2.16)
3
2
2| 3 sczY
<Ll + S ol + Tl + 2| —2 (4_] |
ey
3
According to the Holder’s inequalities and inequalities
‘((Bv). B-B’ .v,—Av)‘ <2 jQ|B|2 |v]|Av|dx < 2|v], jQ|B|2 |av|dx < 2|v], |av]|B].
10008, 3 103 C?
< 2C5 Mz vl [B]2 a8l < favi] [Bff + =B W (2.17)

< 22|l + a8 <Ll +Zjagf,
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and
(- 3,~AE)|=|(E. AE) + (vx B, AE)| < [VE[ + | |v||B|AE|dxX

1 1
<IVE[ + 18], [AE[IMI < VEI" + Cs [BJz a8z [AE]Iv]

3C.

&
<IVE| + G aE] + =2 [B]llas{Iv

2709

1Bl M

According to the (2.13) (2 14) (2.15) (2.16) (2.17) (2.18), we obtain

&
<|VEIf +Zagf +7 IIABII

Y ¢ n
(IIVVII +|VE[ +[VBIF )+ Zflav] + Z|aE]f + T jasf

(f(x),-Av)+(g(x),~AE)+(h(x),-AB)+|VE| +Cy,

2
<

here

N | w

v

2 3 3C, 27C;
oz Lol | (S o2
3

w =

2C,
According to the Poincare’s inequalities

2

2l = Zeu s SIaElf > ZCu IVE[; TiaBlf > 7. [8]

According to the Young’s inequalities
1
(f(x),—Av)=(Vf(x),Vv)< ||Vf (x)||||Vv|| sg"Vv”Z +§||Vf (x)"2
In a similar way,we can obtain
1
(9(x),-a€) < £Vl + v (1)
n 1 2
(n(x).~8) < ZVB[* + [ ()

From (2.19)-(2.23), we have

1d 2
——(||vv||2+||VE||2+||vs||2)+§<cn—1>||vv||2+§(cu—1—;j||VE||2+§<cB

1
||Vf ) + 5=V (o) P MUC IS

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

-)|vef

Let k= min{y(cll —1),5[C12 —1—3}77(@3 —1)} ,because f,g,heH'(Q),soexisting C satisfied
&

1.1 1 1
Lo L9t (o + 2lvatf oo +c
So

d
S+ IVE +|vBff )+ k(|ovf’ + IV +|vB[)<c
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According to the Gronwall’s inequality,we can get the Lemma 2.

3. Solution’s Existence and Uniqueness and Attractor of Questions (1.1)

Theorem 1. Assume that f,g,he? (R+; Hl(Q)), and Vy,E,B, e H'(Q), so questions (1.1) exist a unique
solution w(v,E,B)e L”(R";H*(Q)).
Proof. By the method of Galerkin and Lemma 1 - Lemma 2, we can easily obtain the existence of solutions.

Next, we prove the uniqueness of solutions in detail.
Assume W, (v, E;,B,),w,(v,,E,,B,) are two solutions of questions (1.1), let

w(v,E,B)=w,(v,E;,B)-w,(v,,E,,B,). Here v=Vv,-Vv,,E=E -E;,,B=B -B,,j=j —J,, so the diffe-
rence of the two solution satisfies

%-leVVI—J/AVl = xB +f (X)’QX(O’T)'

%—curlBl—gAEl =—Jl+9(x)'QX(O’T)'

%-FCUHE:L —nAB, =h(x),Qx(0,T).

j,=E +v,xB,Qx(0,T).

divy, =divB, =0,Qx(0,T).

Vi (0,x) = vy (x); E; (0, x) |t0_E10( )iB1(0,X) = By ().
V(% t)] o0 = B (X |BQ_B (%,t)]q =0.

(thz+v2vV2 —¥AV, = [, xB, + T(x),Qx(0,T).
dE, i
T—curlBZ—gAE2 =-l,+9(x).Qx(0,T).

dd%JrCurlEz—ﬂABz:h(x)’QX(O'T)'

i, =E, +V2><BZ,Q><(O T)

diw, =divB, =0,Qx(0,T).

VZ(O,X)_VZO( )’ ( ):E (
X, t

VZ(X,'[) 0 = EZ(X7 ) =B, (

);B ( X) =By ().

o

The two above formulae subtract and obtain

3_\t/+V2VV+VVVl_7/AV: jle+jXBz,QX(O,T).

Z_E_CUHB eAE = —j,Qx(O,T).

dB

E+CUI‘|E—77AB =0,Q><(O,T). (3.1)
j=E+v;xB+vxB,,Qx(0,T).

divv =divB=0,Qx(0,T).

v(0,x) =V, (x);E(0,x)=E,(x);B(0,x) =By (x).

V(X 1) a0 = E(X )]s = B(X,t)] o =0.

For the system (3.1) multiply the first equation by v with both sides and obtain



C.C.Tianetal

——||v|| (V,VV+VVv,, v +;/||Vv|| (i, xB+ jxB,,v).
For the system (3.1) multiply the second equation by E with both sides and obtain
1 d 2 2 -
EEHE" +(—curlB,E)+¢|VE|" =(-},E).
For the system (3.1) multiply the third equation by B with both sides and obtain
1d
Ea||B||2 +(curlg, B)+7,|VB| =0.
According to (3.2) + (3 3) + (3.4), we obtain
2 St (M +[EIF +18F )+ (99 9,0+ £ |90 + | VEFF +]v[F
=(jyxB+ jxB,,v)+(-]j,E),
here (v,VV+vVv,,v)=(V,Vv,v)+(VVWy,,v),and (v,VV,v)= —(sz,vz)—(sz,vz), S0

(V,VV,v) = —%(sz,vz). From that, we have

|(v2Vv + vVvl,v)| < |(vVvl,v)| +

—%(sz,vz)

1
<[Vl + I viis

IA

¥ 1
<oVl + 3 CalM

jixB+jxB,,v)+(-j,E)

(3., Bxv)+(],B,xVv)+(-J,E)

(j1 va) (jva) (j leB)—(j,E)+(j,v1><B)
(,BxV)+(j,v,xB) ||

il [0 I+ L MIBLe s T3
N 1 . 1 oot o
< Call 2 8] 193 1VBI2 11+ Co Ll I8l e 9 ~ i

1 1 . . 1,. 1 .
<2+ SCE LIBIINLIIN]+ S +33 IelIvliulivel- i
<2 +3( Ziver + S cilil I8 vl
1,.
3 Vel i i vl |51

1 1 1,.
ST+ 24ver - a8 -5 i

(

IA

Notice that
7Vl 2 7Co M. eI VE 2 <G, [EI, #[[VB[ 2 nC, B[
From the (3.5), (3.6), (3.7) and (3.8), we can obtain

C, Cc, C 1,.
oo +1Ef +18I) (2522 + o EF 2~ 22 Jof <313

()

1 ¥ 1 1 2
(191l eI 15 [+ 51wl | o

3.2

3.3)

(3.4)

3.5)

(3.6)

3.7)

(3.8)
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Let
_m: max{y_co_l,gcl,ﬁ_%},
2 2n
S0, we have
d
(M +1EF <8I ) < m(IvIF + 1€ +18]°)
According to the consistent Gronwall inequality, the uniqueness is proved.
Theorem 2. [8] Let X be a Banach space, and {S(t)} (t>0) are the semigroup operators on X .

S(t): X —> X,S(t)-S(z)=S(t+7),S(0)=1, here I is a unit operator. Set S(t) satisfy the follow
conditions.
1) S(t) isbounded. Namely WR >0, <R, itexistsaconstant C(R),so that

Is 6)ul, <C(R)(t<[o. o))
2) It exists a bounded absorbing set M, X, namely VM c X, itexistsa constant t,, so that
S()M =M, (t>1t));
3)When t>0,S(t) isacompletely continuous operator A.

Therefor, the semigroup operators S (t) exist a compact global attractor.
Theorem 3. Under the assume of Theorem 1, questions (1.1) have global attractor

A=w(M,)=US(t)M,, M, isthe bounded absorbing set of H'(Q) and satisfies

s>0t>s

1) S(t)A=At>0;
2) limdist(S(t)M, A)=0, here WM < L’(®2) and itis abounded set, dist(X,Y)=supinf [x—y.,,-

Proof. Under the conditions of Theorem 1 and Theorem 2, it exists the solution semigroup S(t) of ques-
tions (1.1), S(t):H(Q)—>H(Q).

From Lemmal-Lemma2,to VM < H'(Q) isa bounded set that includes in the ball
Vs +1EDs + 1Bl <R}
I ()vo[l +[ (V) Eolls +18 (V) Bo[l =M + [EL + B
< ol + 1Bl + 1Bl + oI+l [ )+,
<R*+C', (t20,v,E,, By eM).
This shows {S(t)} (t>0) is uniformly bounded in H*(<).
Furthermore, when t>t, =t (R, f|+]g]+[h]). thereis

f 2 2 h 2 k
s 0wl +ISOEE +ls ([, =B +IEE +lBE < z[—" Flof - +EJ,

therefore,

C

f 2 2 h 2
L +£J}CMO,

is the bounded absorbing set of semigroup S(t).
Since H'(Q)— H(Q) is tightly embedded, which is that the bounded set in H (Q) is the tight set in
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H*(Q), so the semigroup operator S(t):H () — H(Q) to t>0 iscompletely continuous.

4. Discussion

If we want to estimate the Hausdorff and fractal dimension of the attractor A of question (1.1), we need proof of
the solution of question (1.1) that is differentiable. We are studying the solution’s differentiability hardly and
positively. Over a time, we will get some results.
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