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Abstract 
We modeled binary count data with categorical predictors, using logistic regression to develop a 
statistical method. We found that ANOVA-type analyses often performed unsatisfactorily, even 
when using different transformations. The logistic transformation of fraction data could be an al-
ternative, but it is not desirable in the statistical sense. We concluded that such methods are not 
appropriate, especially in cases where the fractions were close to 0 or 1. The major purpose of this 
paper is to demonstrate that logistic regression with an ANOVA-model like parameterization aids 
our understanding and provides a somewhat different, but sound, statistical background. We ex-
amined a simple real world example to show that we can efficiently test the significance of regres-
sion parameters, look for interactions, estimate related confidence intervals, and calculate the 
difference between the mean values of the referent and experimental subgroups. This paper de-
monstrates that precise confidence interval estimates can be obtained using the proposed ANOVA- 
model like approach. The method discussed here can be extended to any type of experimental 
fraction data analysis, particularly for experimental design. 
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1. Introduction 
When manufacturing high-end goods, there is a trade-off between a high yield rate or lower fraction of noncon-
forming goods. A slight change in the process can drastically affect the yield rate or fraction of defective prod-
ucts, which results in a considerable increase or decrease in product turnover.  

To develop a better process, purposeful changes should be made to the input variables of a process or produc-

 

 

*Effect modeling means “incremental effect parameterization”. 
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tion system, so that we can identify the reasons for changes in either the continuous or categorical outcomes and 
improve the manufacturing conditions. For this reason, it is commonplace in industry to analyze fraction data 
such as yield rates, percentages, and units of conforming or nonconforming product. When the input variables or 
regression predictors are all qualitative and the responses are countable, the data are often called categorical 
outcomes. Analysis of variance (ANOVA) has long been a favorite technique for investigating this type of data, 
as discussed in Rao [1], Wiener et al. [2] and Toutenburg and Shalabh [3]. 

Unfortunately, however, there are many cases where the fraction of nonconforming units of a product is close 
to zero or the yield rate of conforming units is close to one. In these cases, conventional analysis techniques of-
ten result in yield rate estimates exceeding 100%, or negative defective fraction estimates, as noted by many au-
thors. 

The drawbacks of using ANOVA for fraction data were noted by Cochran [4]. According to him, even the 
square-root or arcsine-square-root transformations of ANOVA-type data do not work properly. As Taguchi 
noted in Ross [5], the additive property of fraction data does not hold, especially when the fraction is lower than 
20% or higher than 80%. He made use of what he called the omega (Ω) transformation for data conversion. Al-
though the omega transformation has its merits, it is not satisfactory in the statistical sense. Jaeger [6] investi-
gated the problem from the point of view of psychological or behavioral sciences, and found that ANOVA can 
yield spurious results even after applying the arcsine-square-root transformation to proportional data. ANOVAs 
over proportions can result in hard-to-interpret results, because the confidence intervals can extend beyond the 
interpretable values (0 and 1). As an alternative, he recommended logistic regression models, which he called 
the ordinary logit and/or mixed logit models. 

In order to avoid above mentioned phenomena, we had better consider the logistic transformation. Dyke and 
Patterson [7] appear to be the first to use a logistic transformation to analyze ANOVA-type factorial data. Many 
theoretical backgrounds of logistic regression for categorical data analysis (CDA) are available. Montgomery [8], 
Kleinbaum and Klein [9], and Agresti [10] discussed the theoretical background in some detail. Some dicho-
tomous response data were touched on in Dobson and Barnett [11] and Sloan et al. [12] in relation to contin-
gency table analysis, while some polytomous response data were dealt with in Strokes et al. [13] and Dobson 
and Barnett [11]. 

In most cases, they dealt with quantitative explanatory variables. However, there are many cases when qualit-
ative predictors are appropriate for modeling and analyses. Even in the comprehensive book by Agresti [10], lo-
gistic models with categorical predictors were not fully discussed. He did mention that logistic regression should 
include qualitative explanatory variables, often called categorical factors. In Agresti [10], the author touched on 
the ANOVA-type representation of factors and use of the logistic regression model. But the suggested model is 
quite limited to the case of one factor, and hence is not informative enough for practitioners who want to extend 
it to models of multiple factors. In Strokes et al. [13], the authors briefly introduced model fitting for logistic re-
gression with two quantitative explanatory variables. In our opinion, however, their parameterization is a little 
confusing, and the ANOVA-model like parameterization is preferable. 

Fortunately, modern statistics has presented many ways of extending logistic models. In this study, we con-
sider a binary response variable (i.e., countable or categorical) and explanatory variables or predictors with three 
or more levels that are qualitative or categorical. The response variable may, for example, represent the units of 
a product manufactured under a certain condition. When trying to determine an appropriate statistical method 
for analyzing countable data within categorical settings, we have excluded the ANOVA-type analyses. However, 
we have used an ANOVA-model like parameterization with logistic regression and qualitative predictors. First, 
we examined the limitations of ANOVA-type analysis in connection to the defective rate or percentage data. 
Second, we considered logistic regression modeling of two-way binary count data with categorical variables. 
Then, we examined the behavior of the logistic regression model when fitted to the two-way count data within 
the logistic regression framework. We investigated this as an alternative to the ANOVA-type model, in an effort 
to combine logistic regression and qualitative predictors.  

When implementing an experiment and analyzing the results, the optimal condition is sought for by testing 
the significance of regression parameters, evaluating the existence of interactions, estimating related confidence 
intervals (CIs), assessing the difference of mean values, and so on. The significance of model parameters and 
fraction estimates are used by the experimenter to identify and interpret the model. 

The objectives of this study can be summarized as follows: 
● To extend the ANOVA models with qualitative factors to logistic models with qualitative predictors. 
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● To estimate the main effects and/or interactions of ANOVA-model like parameterization.  
● To estimate the confidence intervals (CIs) for model parameters and fractions. 
● To ensure that the CIs for fractions are appropriate (between 0 and 1). 
● To discuss the interpretation of the analysis results. 

We have used a simple, but real, illustrative example to explain how to test the significance of model parame-
ters, ascertain the existence of interactions, estimate the confidence intervals, and find the difference of the mean 
values. We have used the SAS in Allison [14] and MINITAB [15] logistic regression program to examine the 
efficiency of models and demonstrate the usefulness of logistic regression with ANOVA-model like paramete-
rization. 

2. Logistic Model with Categorical Predictors 
2.1. Logistic Transformation 
Let π  be a fraction representing the probability of the event occurring, then ( )1π π−  the “odds”. The natu-
rally logged odds ( )ln 1π π−    are defined as the logistic transformation and also called “logit” link function. 
The logit link function converts fractions ( )sπ ′  between 0 and 1 to values between minus and plus infinity. For 
example, if we let ( )~ ,Y Bin n π , then the random variable ˆ Y nπ =  has its own probability mass function, 
which is discrete, non-negative, and asymmetric. The normal approximation of this random variable might cause 
aforementioned problems, especially when 5nπ <  or ( )1 5n π− < , due to the lack of normality as explained 
in Montgomery et al. [8]. If we take the sample log-odds ( )ˆ ˆlog 1π π−   , then the shape of the distribution be-
comes the logistic function, which is close to the normal distribution function. The cumulative distribution func-
tion is a monotonically increasing function. For another example, Ross [5] introduced Taguchi’s omega (Ω) 
transformation formula in calculating db (decibel) value, which is similar to log-odds. The omega transforma-
tion formula is ( ) ( )10log 1db π πΩ = −   , 0 1π< < . In this study, however, only the “logit” conversion is 
going to be considered.  

On the other hand, the logistic model is set up to ensure that whatever estimate for success or failure we have, 
it will always be some number between 0 and 1. Thus, we can never get a success or failure estimate either 
above 1 or below 0. For the variable x , the standard logistic response function, called ( ) ( )x F xπ π= = , is 
given by e  to the x  over 1 plus e  to the x  or, alternatively, 1 over 1 plus e  to minus x . 

( ) e 1 0 1
1 e 1 e

x

x xx xπ π π−= = = −∞ < < ∞ < <
+ +

                      (1) 

For linear variety, 0 1xβ β+ , the logistic response function is: 

( ) ( )

0 1

0 1 0 1

e 1 0 1
1 e 1 e

x

x x
x x

β β

β β β β
π π π

+

+ − +
= = = −∞ < < ∞ < <

+ +
                 (2) 

Let us think of a simple regression analysis where there exist several types of responses such as observations, 
regression line, confidence interval, and prediction interval. The logistic response function transforms the res-
ponses into some number between 0 and 1, which results in S-shaped curves. 

Generally, for a linear predictor ′x β , the logistic response function ( )π π= x  is given as: 

( ) e 1 0 1
1 e 1 e

π π π
′

′ ′−= = = −∞ < < ∞ < <
+ +

x

x xx x
β

β β                  (3) 

Typical response functions with and without interaction term can be depicted as in (b) and (a) of Figure 1. 
The logit link function called “log-odds” and logistic response function are reciprocal to each other. The logistic 
model is widely used for binomial data and is implemented in many statistical programs, such as SAS and 
MINITAB. 

2.2. Models for Two-Way Responses 
Let us consider two-way l m×  layout data with ijn  observations within each subgroup. A typical ANOVA 
model looks like what follows. 

( )logit 1, 2, , 1, 2, ,j ijij i i l j mπ α β γ δ= + + + = =                     (4) 
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(a)                                                      (b) 

Figure 1. Response of (a) ( )1 1 exp 6 0.7 0.5x vπ =  + − + +    and (b) ( )1 1 exp 6 0.7 0.5 0.2x v xvπ =  + − + + +   .           

 
where iβ  is the effect of the ith level of the row factor and jγ  the effect of the jth level of the column factor, 
respectively. The term ijδ  represents the effect of the interaction between iβ  and jγ . Normally, this model 
is subject to the following constraints. 

1 1 1 1 0i j i
l m l m
i j i jj ijβ γ δ δ
= = = =

= = = =∑ ∑ ∑ ∑                           (5) 

Such an ANOVA model can be transformed into a regression model. One way of defining the regression 
model corresponding to this model is as follows: 

( )
1 1 1 1

logit
l m l m

i j i
ij i i j ij

j
j i jx v x vπ α β γ δ

= = = =

′= + + + =∑ ∑ ∑∑ x β                      (6) 

1, 1,
0, , 1, 2, , 0, , 1, 2, ,s t

s i t j
x v

s i s l t j t m
= = 

= = ≠ = ≠ =  

 

This model is also subject to the constraints in Equation (5). This type of modeling is often called “effect 
modeling” or “incremental effect parameterization”. 

2.3. Odds Ratio Assessment 
The odds ratio (OR) is defined as the ratio of any odds of experimental subgroup to that of the referent one.  

( ) ( )
( )1 111

1

1
ij ij

i jijOR OR A B
π π

π π

−
= =

−
                              (7) 

In this study, we found that if the odds ratio is less than or equal to one; i.e., 1ijOR ≤ , then the following 
holds: 

( ) ( )11

11 11 1

1

1

1

11

1 1ij ij

ij ij ij

ij

π π π π

π π π π π π

π π

− ≤ −

− ≤ −

≤

                                (8) 

If we are sure that the upper and lower limits of 1ijOR ≤  with ( )100 1 %α−  confidence, then the upper 
limit of two-sided ( )100 1 %α−  CI corresponds to that of one-sided ( )100 1 2 %α−  confidence interval. 

2.4. Interaction Assessment 
As defined in Kleinbaum and Klein [9], an equation for assessing interaction can be identified as follows. We 

( )1 1 exp 6 0.7 0.5x y + − + ∗ + ∗  
0.8
0.6
0.4
0.21

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

( )1 1 exp 6 0.7 0.5 0.2x y x y + − + ∗ + ∗ + ∗ ∗  
0.8
0.6
0.4
0.21

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
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begin with the null hypothesis that: 

0 1 1: ln 0ij ij i jH OR OR ORδ  = × =                              (9) 

It is interesting to note that the interaction effects can be expressed to be multiplicative. One way to state this 
null hypothesis, in terms of odds ratios, is that ijOR  equals the product of 1iOR  and 1 jOR . 

10 1: ij i jH OR OR OR= ×                                 (10) 

If the equation of this null hypothesis is satisfied, we say that there is “no interaction on a multiplicative scale.” 
In contrast, if this expression does not hold, we say that there is “evidence of interaction on a multiplicative 
scale.” 

We can make use of this formula to test the null hypothesis ( )0H  of no interaction on a multiplicative scale. 
If null hypothesis is true, then we can interpret the hypothesis in either way. 

0 01 1: : 0ij i ij jH OR OR OR H δ= × ⇔ =                           (11) 

2.5. Estimation of Regression Parameters 
We consider generalized linear models in which the outcome variables are measured on a binary scale, as ex-
plained in Dobson and Barnett [11]. For example, the responses may be “success” or “failure” or non-conform- 
ing or conforming. “S” and “F” denoted by 1 or 0 are used as generic terms of the two categories. First, the bi-
nary random variable is defined. 

1 if the outcome is a success

0 if the outcome is a failure
U =





                          (12) 

with probabilities ( )Pr 1U π= =  and ( )Pr 0 1U π= = − , which is the Bernoulli distribution. Suppose there 

are n  such random variables 1, , nU U  which are independent of each other with ( )Pr 1j jU π= = . In the 

case where the jπ ’s are all equal, we can define a new random variable 1
n
j jY U
=

= ∑  so that Y  is the num-

ber of successes in n  trials. The random variable Y  has the binomial distribution: 

( ) ( )1 , 0,1,2, ,n yyn
p y y n

y
π π − 

= − = 
 

                         (13) 

In Dobson and Barnett [11], the one factor case of N  independent random variables 1 2, , , NY Y Y  corres-
ponding to the number of successes in N  different subgroups. If ( ),~i i iY Bin n π , the log-likelihood function 
is 

( ) ( ) ( )
1

1 1, , ; , , ln 1 ln 1 ln i
N N i i i i

i

N

i
i

n
l y y y n

y
π π π π π

=

  
 = − + − +   

  
∑               (14) 

In this study, we intend to extend this one-way single factor case to two-way two factor case.  
We consider the case of N l m= ×  independent random variables 11 12, , , lmY Y Y  corresponding to the num-

bers of successes in N l m= ×  two-way subgroups as in Table 1. 
If we define ( )Pr 1ij ijU π= = , then the likelihood function can be given by: 

( ) ( ) ( )1

1 1 1 11 1
1 exp ln 1 ln 1ijij

l m l m l muu
ij ij

i j i j
ij ij ij

j
ij

i
uπ π π π π

−

= = = == =

  − = − + −   
∑∑ ∑∑∏∏             (15) 

Since ( )~ ,ij ij ijY Bin n π , the log-likelihood function becomes: 

( ) ( ) ( )1
1

11 1
1

, , ; , , ln 1 ln 1 ln ij
lm lm ij ij ij ij

i

l m

j
ij

i j

n
l y y y n

y
π π π π π

= =

   = − + − +      
∑∑            (16) 
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Table 1. Frequencies of l m×  binomial distributions.                                                           

Factors 
B  

1 2 
 m  

A  

1 
Successes 11Y  12Y  


 1mY  

Number of Trials 11n  12n  


 1mn  

2 
Successes 21Y  22Y  


 2mY  

Number of Trials 21n  22n  


 2mn  

            

l  
Successes 1lY  2lY  


 lmY  

Number of Trials 1ln  2ln  


 lmn  

 
As defined in Equation (7), ( ) ( )exp 1 expij j ijiπ  ′ ′= + x xβ β . It follows that ( )1 1 1 exp iij jπ  ′− = + x β  and 

( ) ( )ln 1 ln 1 exp ijijπ  ′− = − + x β . The log likelihood function takes the form of: 

( ) ( )11
1 1

; , , ln 1 exp ln
l

ij
lm

m

ij ij
i j

ij ij
ij

n
l y y y n

y= =

    ′ ′= − + +       
∑∑ x xβ β β                (17) 

The partial derivative and the Hessian of this likelihood function with respect to β  give the score vector and 
the information matrix ( )I β , respectively. As explained in Montgomery et al. [8], numerical search methods 
could be used to compute the maximum likelihood estimate (MLE) β̂  for β . Alternatively, one can use ite-
ratively reweighted least squares (IRLS) to actually find the MLEs. The MLE β̂  for β  can be obtained by 
the following recursive equation. 

( ) ( ) ( )( ) ( )111 1ˆ ˆ , 1, 2,3,kk k k k
−−− − = − = I u β β β                       (18) 

This is usually called generalized estimating equation (GEE). For more details, refer to Montgomery et al. [8]  
and Dobson and Barnett [11]. The information matrix corresponds to ( ) ′=I X VXβ . The inverse of information  
matrix ( ) 1−

  I β  is the estimated variance-covariance matrix for β̂ . If we let β̂  be the final estimate vector, 
then  

( ) ( ) ( ) ( ) 11ˆ ˆ ˆ,E Var
−−  ′= = =  X VX Iβ β β β                        (19) 

where the V  is an N N×  diagonal matrix containing the estimated variance on the main diagonal; that is, the 
ith diagonal element of V  is ( )ˆ ˆ1i i inπ π− . If the model is a good fit of the data, the deviance D  should ap-
proximately have the distribution ( )2 N rχ − , where N  is the different values of x  and r  is the number of 
parameters in the model. 

2.6. Interval Estimation of Fractions 

The odds can be estimated by ( )ˆexp ij′x β  and the odds ratio can be expressed by the antilog of the correspond-

ing parameter. The fitted fraction estimate for the logistic regression model is written by: 

( )
( ) ( )

ˆexp 1ˆ
ˆ ˆ1 exp 1 exp

ij
ij

ij ij

π
′

= =
′ ′+ + −

x

x x

β

β β
                           (20) 

This is the point estimate for the fraction of each subgroup of outcomes. To obtain the interval estimation, 
prediction vectors are needed. Let 0π  be the fraction to be estimated and 0′x  be a row vector of prediction.  

( )
( ) ( )0 0

0
0

ˆexp 1ˆ
ˆ ˆ1 exp 1 exp

π
′

= =
′ ′+ + −

x

x x

β

β β
                           (21) 
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The expectation and variance can be given by: 

( ) ( ) ( ) ( ) 1
0 0 0 0 0 0 0

ˆ ˆ ˆ, Var VarE −′ ′ ′ ′ ′ ′= = =x x β x x x x X VX xβ β β                  (22) 

The ( )100 1 %α−  lower and upper limit of ( )0logit π  at 0x  can be calculated as follows: 

( ) ( ) ( ) ( )1 1
0 0 1 2 0 0 0 0 1 2 0 0

ˆ ˆ,L z U zα α
− −

− −′ ′ ′ ′ ′ ′= − = +x x x X VX x x x β x X VX xβ           (23) 

By taking the reciprocals, ( )100 1 %α−  confidence interval for 0π  can be calculated by: 

( )
( )

( )
( ) ( ) ( )

0 0

0 0 0 0

exp exp 1 1, or ,
1 exp 1 exp 1 exp 1 exp

L U

L U L U

                    + + + − + −          

x x

x x x x
          (24) 

In the estimation process, the precision varies depending on the sample size of each subgroup. The bigger the 
sample size is, the more accurate the fraction estimates are. 

There exist excellent computer programs that implement maximum-likelihood estimation for logistic regres-
sion, such as SAS PROC LOGISTIC in Allison [14] and MINITAB [15]. We have only to apply ourselves to 
modeling and parameterization. 

3. Illustrative Example of Qualitative Predictors 
3.1. Illustrative Example 
A manufacturing company produces touch-screen panels on a massive scale to deliver to a customer company, 
who produces smart phones and tablet PCs. Currently, resistive touch-screen panels (TSP) are being widely used. 
The company plans to produce capacitive TSP (CTSP) to minimize the thickness. However, the following prob-
lems may be caused during the fabrication of CTSP. For example, after performing the screen printing process, 
when an Ag paste is cured at a high temperature, cracks may occur in a fine indium tin oxide (ITO) line. More-
over, many defects such as air bubbles, alien substances and scratches, may take places during the interlayer la-
mination process. The defective items are the major source of failure cost of the product.  

An experimenter is seeking a method of fabricating the CTSP that can efficiently reduce the cost of CTSP fa-
brication, which can be assessed in terms of yield rate or fraction non-conforming. There are four patented me-
thods of fabrication and four types of facilities available for the process operation. The experimenter is con-
cerned with handling with explanatory variables that are qualitative and contain three or more levels. 

3.2. Units of Nonconforming 
Since the example lends itself to the problem of two-way binary data, let us consider two qualitative factor ex-
periments with 4l =  levels of factor A  (facility), 3m =  levels of factor B  (manufacturing method), and 

100k =  replicates except the current manufacturing condition with 500k =  replicates. The units of product 
data either conforming or nonconforming are given in Table 2. The data are grouped as frequencies for each 
combination of factor levels. There are sixteen cells within the table, each of which corresponds to a certain 
manufacturing condition. A fixed effect model seems to be appropriate for the data, since the levels of factors 
are not randomly chosen. 

Expressed in terms of the combination of factor levels, the subgroup 1 1A B  is the referent cell representing 
current manufacturing condition. The referent cell, also called the control subgroup ( )1 1A B  of this experiment, 
consists of the individual Bernoulli trials. The trials belonging to the cells other than the referent cell are mem-
bers of the corresponding experiment subgroup or experiment cell. Let ijπ  denote the fraction of each subgroup 
where units of product will not conform to specification. The quantity ( )1 ijπ−  is so called yield rate of each 
process corresponding to the combination of factor levels.   

The experimenter is concerned about the optimal subgroup and the significance of the fractions of these expe-
rimental subgroups, eventually to find out the improved experimental subgroup, if any, which gives the lowest 

ijπ  in the statistical sense.  

3.3. ANOVA with Logistic Transformation 
The logistically transformed log-odds data shown in Table 3 can be regarded as a two-way layout without  
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Table 2. Units of product nonconforming.                                                                     

Mfg Method 
Facility 

1B  2B  3B  

Number 
Of Units 

Units  
Non-Conforming 

Number 
Of Units 

Units  
Non-Conforming 

Number 
Of Units 

Units  
Non-Conforming 

1A  500 25 100 10 100 37 

2A  100 6 100 20 100 53 

3A  100 8 100 3 100 21 

4A  100 20 100 22 100 38 

 
Table 3. Logistically transformed data.                                                                       

Work Method Machine 1B  2B  3B  Mean 

1A  −2.94444 −2.19722 −0.53222 −1.89129 

2A  −2.75154 −1.38629 0.12014 −1.33923 

3A  −2.44235 −3.47610 −1.32493 −2.41446 

4A  −1.38629 −1.26567 −0.48955 −1.04717 

Mean −2.38115 −2.08132 −0.55664 −1.67304 
 
replications.  

The following model seems to be relevant as far as the ANOVA is concerned. 

( )2~ 0, 1,2,3,4 1,2,3ij i j ii jj ew a b NI i jµ ε ε σ= + + + = =                  (25) 

Since this is a two-way layout without replication, the interactions are not considered in the model. Based on 
the model, the ANOVA can be conducted as in Table 4. 

Factor B  looks significant at 95% significance level, factor A  does not. The smaller the nonconforming 
fraction is, the better its performance is. The minimum point estimate for nonconforming fraction can be calcu-
lated by: 

( )331 3 11ˆ ˆ 2.38115 2.41446 1.67304 3.12257A B w w wµ µ= = + − = − − + = −
 

            (26) 

Since the number of effective replication is given by: 

( ) ( )1 4 3 4 3 1 2en lm l m= + − = × + − =                           (27) 

The 95% confidence interval for ( )3 1A Bµ  can be calculated as: 

( ) ( )0.9753.12258 6 2 3.12258 2.447 0.43850 4.19557, 2.04957Et MS− ± = − ± × = − −         (28) 

The result of Minitab processing can be obtained as in Figure 2. 
The point estimate for ( )3 1A Bπ  can be given by: 

( )
31

31 31

ˆ

31 ˆ ˆ 3.12258

e 1 1 0.0424185 4.24185 %
1 e1 e 1 e

µ

µ µπ −= = = = =
++ +

                 (30) 

Likewise, the 95% confidence interval for ( )3 1A Bπ  can be calculated as: 

( ) ( )0.014840,0.114086 1.4840%,11.4086%=                        (30) 

The result is quite plausible in that the interval is narrower than before and the lower limit can never be a neg-
ative. However, the optimal manufacturing condition of ANOVA is 3 1A B , not 3 2A B . Moreover, we have some 
misgivings about the fact that since the sample size is ignored. Some of the sample information must be lost 
during the course of the analyzing process. For this reason, we are encouraged to give a try to logistic regres-
sion. 

3.4. Logistic Regression for the Illustrative Example 
The data structure for the illustrative example shown in Table 2 is identified as follows: 
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( ) ( )logit ln 1 1,2,3,4 1,2,3ij ij ij i j ij i jπ π π α β γ δ = − = + + + = =              (31) 

where iβ  and jγ  denotes the main effects of factor A  and B , respectively. As a preliminary model, ijδ  
is needed to represent potential interaction effect. In a logistic regression, if we adopt the logit link function, 
then the model for the data in Table 2 can be stated as in the following equation. This is an extension of one 
predictor model in Agresti [10] and a leverage of two predictor model in Strokes et al. [13]. This is what we call 
ANOVA-model like parameterization of logistic regression. 

( ) ( ) ( )
4 3 4 3

1 1 1 1
logit ln 1 model 1ij ij ij ij i i j j ij i j

i j i j
x v x vπ π π α β γ δ

= = = =

  ′= − = = + + +  ∑ ∑ ∑∑x β        (32) 

where β  is the column vector of model parameters and ij′x  is the row vector of corresponding indicator val-
ues. This model is also subject to the following constraints. 

4 4 4 3

1 1 1 1
0 0 0, 1, 2,3 0, 1, 2,3, 4i j ij ij

i j i j
j iβ γ δ δ

= = = =

= = = = = =∑ ∑ ∑ ∑              (33) 

There are several ways of handling these constraints as in Dobson and Barnett [11]. One of those methods is 
to set to zero the first term of each constraint. That is, 

1 1 12 111 3 21 31 410, 0, 0β γ δ δ δ δ δ δ= = = = = = = =                     (34) 

If α  in the model is so determined, then α  in represents the mean of the referent subgroup 1 1A B . The 
parameters 2β , 3β  and 4β  are the incremental main effects for method 2, 3 and 4, respectively as compared 
to referent subgroup. Likewise, 2γ  and 3γ  are the incremental main effects for facility 2 and 3, respectively. 
The interactions are also incremental. Expressed in terms of matrix and vector notation, the incremental effect 
parametric logistic regression model is analogous to the conventional model of = +y Xβ ε . 

Let ij′x  denote the row vector of the design matrix X  corresponding to the combination of factor levels 
i jA B . The sample logit vector y , the design matrix X , and the parameter vector β  are as follows. 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

11

12

13

21

22

23

31

32

33

41

42

43

ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit
ˆlogit

π
π
π
π
π
π
π
π
π
π
π
π

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

y  

23 32 33 42 3 4 2 3 22 2 43

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 0 0 0 0 1

α β β β γ γ δ δ δ δ δ δ

 
 
 
 
 



= 







 

X















 3

22

23

32

33

42

4

2

3

4

2

3

α
β
β
β
γ
γ
δ
δ
δ
δ
δ
δ

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

β        (35) 

The explanatory variables are all indicators. Notice that the columns corresponding to 1β , 2γ , 11δ , 12δ  
and 21δ  are eliminated to avoid the redundancy of column vectors. Some columns of the matrix are orthogonal 
to each other and some columns are interrelated. It is interesting to note that the design matrix enjoys a special 
structure. The adoption of some parameters is a matter of choice. For instance, we can eliminate 4β , 42δ  and 

43δ  columns and the corresponding rows 41π̂ , 42π̂  and 43π̂  from the design matrix X  simultaneously 
without affecting the estimates of the rest of the parameters. 

3.5. Estimation of Parameters 
The full pattern of model 1 is fitted into the data in Table 2. Minitab logistic regression output is displayed in 
Figure 3. 
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Table 4. ANOVA table.                                              

Source SS dof MS 0F  p-value 

A  3.3014 3 1.10048 2.86 0.126 

B  7.6579 2 3.82894 9.96* 0.012 

E  2.3071 6 0.38456   

T  13.2664 11    

S = 0.620098   R-square = 82.61%   R-square(adj) = 68.12% 
*: significant at 5% **: significant at 1% 

 
Fitted Value        SE             95% CI               95% PI 
   −3.12258      0.438475   (−4.19549, −2.04967)   (−4.98091, −1.26424) 

Figure 2. 95% confidence and prediction interval (Minitab).                 
 

Prediction                                            90% CI 
Variables  Coeff      SE       Z       P      OR   Lower  Upper 
Const    −2.94444   0.205196  −14.35  0.000 
x2      0.192904   0.468412    0.41   0.680    1.21   0.56    2.62 
x3      0.502092   0.421871    1.19   0.234    1.65   0.83    3.31 
x4      1.55814    0.323427    4.82   0.000    4.75   2.79    8.09 
v2      0.747214   0.391429    1.91   0.056    2.11   1.11    4.02 
v3       2.41222   0.291557    8.27   0.000    11.16  6.91    18.03 
x2v2    0.618027   0.626914    0.99   0.324    1.86   0.66    5.20 
x2v3    0.459457   0.549959    0.84   0.403    1.58   0.64    3.91 
x3v2    −1.78097   0.795442   −2.24   0.025    0.17   0.05    0.62 
x3v3    −1.29480   0.530238   −2.44   0.015    0.27   0.11    0.66 
x4v2    −0.626586  0.523442   −1.20   0.231    0.53   0.23    1.26 
x4v3    −1.51548   0.435833   −3.48   0.001    0.22   0.11    0.45 

Figure 3. Parameter estimates for model 1.                               
 

The p-values and the CI’s of odds ratios can be regarded as measures of the significance tests of regression 
parameters. Some parameters look significant, but others do not. As a matter of fact, regardless of whether pa-
rameters are significant or not, we can eliminate any rows or columns from the table on purpose without affect-
ing the estimation of other parameters, owing to the incremental effect parameterization. 

For example, we are interested in comparison of reference subgroup and strong candidate subgroup for 
optimality. Since the combination 3 2A B  is the strong candidate for optimality, we can eliminate row 2 and 4 
and also columns 3 from Table 2. By doing so, we can drastically reduce the data table until it becomes as small 
as 2 2× , 2 1×  or 1 2× . If we had known the fact, we could have started with the data table of size 2 2× , 
2 1×  or 1 2× . In this case, the resultant table is 2 2×  as shown in Table 5. Note that the table includes both 
referent and candidate subgroups. 

Likewise, the logistic regression model reduces to the following. 

( ) ( ) ( )3 3 2 2 32 3 2logit ln 1 model 2ij ij ijij x v x vπ π π α β γ δ  ′= − = = + + +  x β             (36) 

The design matrix X  and the parameter vector β  are identified as follows. 

3 2 32

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

α β γ δ

 
 
 =
 
 
 

X
, 3

2

32

α
β
γ
δ

 
 
 =
 
 
 

β                              (37) 
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Table 5. First reduced table.                                                                                

Working Method Machine 
1B  2B  

Number of Units Units Non-Conforming Number of Units Units Non-Conforming 

1A  500 25 100 10 

3A  100 8 100 3 

 
The parameter estimates are shown in Figure 4. It is worthy to note that the parameter estimates remain the 

same. We can ensure that the elimination of rows and columns does not affect the parameter estimates. The 
phenomenon that makes matters simple is the major difference between ANOVA-type and incremental effect 
modeling. 

On the one hand, 3β̂  seems insignificant because the corresponding p-value 0.234 is greater than 0.10 and 
the 90% confidence interval for odds ratio (0.83, 3.31) contains one. On the other hand, 32δ̂  is affirmatively 
significant in that the upper and lower limits of 90% CI are smaller than one. We decide to eliminate the 3β  
column and the corresponding row from the design matrix for the parsimony of the model. The model becomes 

( ) ( ) ( )2 2 3 32 2logit ln 1 model 3ij ij ij ij v x vπ π π α γ δ  ′= − = = + +  x β               (38) 

The design matrix X  and the parameter vector β  are reduced and identified as follows: 

2 32

1 0 0
1 1 0
1 1 1

α γ δ

 
 =  
  

X
, 2

32

α
γ
δ

 
 =  
  

β                               (39) 

The parameter estimates are shown in Figure 5. 
The estimate for 32δ̂  changes, but still 2γ̂  does not. The estimates for 2γ  and 32δ  seem to be significant 

at 10%. Note that the equation of model 3 could be the final one, because all parameter estimates are significant 
at 10%. We can draw a conclusion that the model is appropriate.  

3.6. Existence of Interactions 
Notice that the estimate for the interaction 32δ  is significant at 10%. The last line of Figure 5 gives the infor-
mation on the point estimate and CI for 32δ . The estimate for 32eδ  is 0.28, which is the quantity of 

( )32 31 12OR OR OR⋅ . The 90% CI for 32eδ  is (0.09, 0.84) as in Figure 5, the upper and lower limits of which 
are smaller than 1 and hence affirmatively significant. Therefore, it is the evidence that there exists interaction. 
In this case, 3

ˆ 0β = , thus we can make sure that 

( )
( )

3 2 32 3 2
3 2 32 3 232 32

32 31 12
11 11

1 e e ee e
1 e e e

OR OR OR
α β γ δ α β α γ

β γ δ β γ
α α α

π π
π π

+ + + + +
+ + +−

= = = ≠ = ⋅ = ⋅
−

        (40) 

Usually, equality does not hold, unless 32 0δ = . In other words, there is the evidence that interaction exists if 
and only if 32 0δ ≠  or the antilog of 32δ  is other than 1. If the interaction does not exist, then 

3 2 32
32

3 20
032

31 12

e: e e 1
e e

OR
H

OR OR

β γ δ
δ

β γ

+ +

= = = =
⋅ ⋅

                        (41) 

3.7. Estimation of Confidence Intervals 
We can ensure that the point estimates for each fraction can be obtained as follows: 

( ) ( )
( ) ( )

1

11

1 11 11 ˆˆ ˆ ˆlogit ln 1 2.94444

ˆˆ 1 1 exp 1 1 exp 2.94444 0.05

π π π α

π α

= − = = −  
⇒ = + − = + =      
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Prediction                                              90% CI 
Variables  Coeff       SE       Z      P       OR   Lower   Upper 
Const   −2.94444    0.205196  −14.35  0.000 
x3     0.502092    0.421870    1.19   0.234    1.65    0.83     3.31 
v2     0.747214    0.391421    1.91   0.056    2.11    1.11     4.02 
x3v2   −1.78097    0.795423   −2.24   0.025    0.17    0.05     0.62 

Figure 4. Parameter estimates for model 2.                               
 

Prediction                                           90% CI 
Variables  Coeff      SE        Z     P     OR   Lower   Upper 
Const    −2.94444  0.205196  −14.35  0.000 
v2      0.747214  0.391429    1.91   0.056   2.11   1.11    4.02 
x3v2    −1.27887  0.674354   −1.90   0.058   0.28   0.09    0.84 

Figure 5. Parameter estimates for model 3.                               
 

( ) ( )
( ) ( )

2

1

12 12

2

12

2

ˆ ˆˆ ˆ ˆlogit ln 1 2.94444 0.747214 2.197226

ˆ ˆˆ 1 1 exp 1 1 exp 2.197226 0.10

π π π α γ

π α γ

= − = + = − + = −  
⇒ = + − − = + =      

 

( ) ( )

( ) ( )
32 32 32 32

32 32

2

2

ˆˆ ˆˆ ˆ ˆlogit ln 1 2.94444 0.747214 1.27887 3.476096

ˆˆ ˆˆ 1 1 exp 1 1 exp 3.476096 0.03

π π π α γ δ

π α γ δ

 = − = + + = − + − = − 
 ⇒ = + − − − = + =   

 

From a conventional statistical view point, we might like to calculate the confidence intervals. To find confi-
dence intervals, we have to know the standard errors ( )SE ⋅  of the model parameter estimates. The parameter 
estimates reported in Figure 5 are just the square roots of the main diagonal elements of the variance-covariance  
matrix ( ) ( ) 1ˆVar −′= X VXβ . The confidence interval for 11π  can be calculated as follows: 

90% CI for α : ( ) ( )0.95ˆ ˆ 2.94444 1.645 0.205196 3.281947, 2.60685z SEα α± × = − ± × = − −  

90% CI for 11π : ( )( ) ( )( ) ( )1 1 exp 3.281947 ,1 1 exp 2.60685 0.036194,0.068694 + + =   

In the same way, we can calculate the confidence intervals for 12π  and 32π . By the way, we need to know 
the information on the variance-covariance of parameter estimates, which can be obtained in the form of va-
riance-covariance matrix. But the calculations are not that simple due to the fact that 

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆ ˆ ˆ ˆVar Var Var 2Cov ,α γ α γ α γ+ = + +                        (42) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 32 2 32 2 32 2 32
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆVar Var Var Var 2Cov , 2Cov , 2Cov ,α γ δ α γ δ α γ α δ γ δ+ + = + + + + +    (43) 

In general, the standard errors corresponding to 11π , 12π  and 32π  can be calculated by 

( ) ( ) 1
0 0 0

ˆVar −′ ′ ′=x x X VX xβ                              (44) 

where 0′x  is a row vector of X  corresponding to 11π , 12π  or 32π . There exists commercialized program 
such as SAS PROC LOGISTIC and/or MINITAB, which performs those cumbersome calculations for us. Once 
we have those computer programs at our finger tips and the knack of modeling, it is no big deal to calculate the 
confidence intervals. The point and interval estimates for fractions can be reported as in Table 6, which is a 
translation of MINITAB output. 

The confidence intervals can provide us with the information on whether the sample size is large enough or 
not. For example, the interval estimates for 11π  and 32π  in Table 6 overlap considerably and hence the inter-
val estimates are not discriminative, seemingly because of the fact that the number of replication of subgroup 

3 2A B  is not large enough. But we have to bear in mind that this is the conventional way of interpreting the re-
sult. We do not have to see the problem in this manner. 
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Table 6. Point and interval estimates for fractions of model 3.                                                     

Factor Levels 1 2v  3 2x v  Observed Fractions Estimated Fractions 90% CI 

i  j  α  
2γ  32δ  ij ijy n  ˆijπ  Lower Limit Upper Limit 

1 1 1 0 0 25/500 0.05 0.0361594 0.068694 

1 2 1 1 0 10/100 0.10 0.0603408 0.161252 

3 2 1 1 1 3/100 0.03 0.0116546 0.075030 

3.8. Collection of More Data 
Sometimes we might have to see the problem in another way. In order to make the two subgroups 1 1A B  and 

3 2A B  contrasting, we construct a 2 1×  data table as in Table 7. 
The logistic regression model becomes as simple as the following. 

( ) ( ) ( )logit ln 1 model 4ij ij ij ij xπ π π α η  ′= − = = +  x β                 (45) 

The parameter η  is adopted as a combination of 2γ  and 32δ .The following is the corresponding design 
matrix and parameter vector. 

1 0
1 1

α η

 
=  
 

X
, 

α
η
 

=  
 

β                                  (46) 

The parameter estimates are shown in Figure 6.  
The interval estimate (0.21, 1.63) for η  contains 1, which means η̂  is insignificant. We need more replica-

tions especially with the 3 2A B  subgroup. There exist related sample size formulae for comparing proportions 
in order to calculate the required sample size for a simple logistic regression model in Hsieh et al. [16]. 

A simulated data are given in Table 8 where the numbers of replications are increased up to 1000 with the 
referent subgroup 1 1A B  and up to 500 with the experimental subgroup 3 2A B , while the fractions remain the 
same. 

Model 4 is fitted into the data. The design matrix X  and the parameter vector β  are the same with model 
4. The parameter estimates are shown in Figure 7. 

The estimate η̂  is significant at 10% and both the lower and upper limits are smaller than 1. We can say 
with 95% confidence that 32 11π π<  as explained before. Seen from the last line of Figure 7, we can ascertain 
that the odds ratio is less than one, since we know that if 32 1OR < , then 

( ) ( )32 32 11

32 11

111 1π π π π

π π

− < −

<
                               (47) 

If we are sure that the upper and lower limits of 32OR  is smaller than one with 90% confidence, then we can 
say that the upper limit of two-sided 90% confidence interval corresponds to that of one-sided 95% confidence 
interval.  

Seen from the conventional view point of statistics, the point and interval estimates for fractions can be given 
as in Table 9. Since the confidence intervals overlap, the intervals are not discriminative enough. 

In this manner, an experimenter can decide on whether parameter estimates are significant, whether the model 
is appropriate, whether sample size is large enough, and whether the fraction of candidate subgroup is smaller, 
until he or she is convinced that the candidate subgroup is superior to the current one. 

4. Conclusion and Further Study 
In reality, there are many cases where an experimenter has to analyze fraction data, usually provided in the form 
of percentages or yield rates as the outcomes of an experiment. The input variables are quantitative, qualitative, 
or both. In this study, the case that the two input variables are all qualitative and the responses are countable is 
considered for study in order to extend the model in Agresti [10] and leverage the logistic model in Strokes et al. 
[13]. That is to say, an attempt is given to the problem of binary outcomes with two categorical predictors by  
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Table 7. Second reduced table.                                        

Manufacturing Condition Number of Units Units Non-Conforming 

1 1A B  500 25 

3 2A B  100 3 

 
Table 8. Simulated data table.                                         

Manufacturing Condition Number of Units Units Non-Conforming 

1 1A B  1000 50 

3 2A B  500 15 

 
Table 9. Point and interval estimates for fractions of model 3.                

Factor  
Levels 1 x  Observed 

Fractions 
Estimated 
Fractions 90% CI 

i  j  α  η  
ij ijy n  ˆijπ  Lower Limit Upper Limit 

1 1 1 0 50/1000 0.05 0.0398067 0.0626332 

3 2 1 1 15/500 0.03 0.0196985 0.0454389 

 
Prediction                                             90% CI 
Variables  Coeff      SE       Z     P       OR    Lower  Upper 
Const   −2.94444  0.205196  −14.35  0.000 
x      −0.531660  0.621085   −0.86  0.392    0.59    0.21    1.63 

Figure 6. Parameter estimates for model 4.                               
 

Prediction                                              90% CI 
Variables  Coeff      SE        Z       P      OR   Lower   Upper 
Const   −2.94444  0.145095   −20.29    0.000 
x      −0.531660  0.299635   −1.77     0.076   0.59    0.36     0.96 

Figure 7. Parameter estimates for model 4.                               
 
utilizing logistic regression. In this study, we excluded ANOVA-type analyses, but we adopted ANOVA-model 
like parameterization, that is, incremental effect modeling. 

The optimal manufacturing condition can be ensured, mainly by testing the significance of regression para-
meters, testing the existence of interactions, estimating related confidence intervals, testing the difference of 
mean values, and so on. The conventional ANOVA-type analyses are based on the assumption of normality, in-
dependence, and equality of variances of experimental observations. For this reason, the ANOVA-type model 
entails much detrimental to the goodness-of-fit test and the efficient and precise estimation of regression para-
meters, mainly because the additive property of fraction data is no longer valid, especially when the fractions are 
close to zero or is near one, as discussed by Jaeger [6].  

As it is always the case with logistic regression, the point estimates are more accurate than those of ANOVA- 
type modeling. Not only is the lower limit always positive, but also the upper limit is always less than one. The 
significance test of a parameter can be performed by checking whether the confidence interval of the corres-
ponding odds ratio contains one or not, based on the assumption that the null hypothesis ( )0H  is true. The in-
terpretation from the viewpoint of logistic regression is not only different from, but also superior to that of 
ANOVA-type analysis in the statistical sense, as far as the fraction data are concerned. We have to see the mod-
el and interpret the result as it is. The model may not be seen from conventional statistical view point. 

When dealing with logistic regression with categorical predictors, the generalized estimating equations (GEE) 
must be utilized to estimate the parameters. These demerits, nevertheless, can be easily overcome by making use 
of commercialized computer programs such as SAS PROC LOGISTIC and MINITAB. The analyzing process is 
somewhat different from the conventional statistical analysis method. We might have to abandon our conven-
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tional ANOVA-type of way to interpret the analysis result. 
The use of logistic regression has its merits: 1) the analyzer can never get a yield rate or defective rate esti-

mate either above 1 or below 0, 2) the estimates for parameters are more efficient and accurate compared to 
those of the ANOVA-type model since the logistic regression model describes more accurately the intrinsic na-
ture of the count data, and 3) the significance test of regression parameters is easily performed by checking the 
interval estimates for odds ratios. 

There exist other types of transformations, not mentioned in this study, such as probit and complementary 
log-log transformations, which seems to be worthy of trying. The logistic regression model is sometimes called 
ordinary logit model to distinguish it from what they call mixed logit model. The mixed logit model could be the 
next topic of this study. 

The analyses method discussed throughout this study can be extended to the case of multiple qualitative pre-
dictors for count data, just as there are a variety of models available in the literature, especially in the area of 
experimental design and regression analysis. 
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