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Abstract 
In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition 
for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The 
properties of B-spline wavelet packets are also investigated. 

 
Keywords 
B-Splines, Spline Wavelets, Wavelet Packets 

 
 

1. Introduction 
Spline wavelet is one of the most important wavelets in the wavelet family. In both applications and wavelet 
theory, the spline wavelets are especially interesting because of their simple structure. All spline wavelets are 
linear combination of B-splines. Thus, they inherit most of the properties of these basis functions. The simplest 
example of an orthonormal spline wavelet basis is the Haar basis. The orthonormal cardinal spline wavelets in 

( )2L   were first constructed by Battle [2] and Lemarié [3]. Chui and Wang [4] found the compactly supported 
spline wavelet bases of ( )2L   and developed the duality principle for the construction of dual wavelet bases 
[1] [5]. 

Wavelets are a fairly simple mathematical tool with a variety of possible applications. If ( )22 2 ,j j x kψ −
k ∈ is an orthonormal basis of ( )2L  , then ψ  is called a wavelet. Usually a wavelet is derived from a 
given multiresolution analysis of ( )2L  . The construction of wavelets has been discussed in a great number of 
papers. Now, considerable attention has been given to wavelet packet analysis as an important generalization of 
wavelet analysis. Wavelet packet functions consist of a rich family of building block functions and are localized 
in time, but offer more flexibility than wavelets in representing different kinds of signals. The main feature of 
the wavelet transform is to decompose general functions into a set of approximation functions with different 
scales. Wavelet packet transform is an extension of the wavelet transform. In wavelet transformation signal de-
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composes into approximation coefficients and detailed coefficients, in which further decomposition takes place 
only at approximation coefficients whereas in wavelet packet transformation, detailed coefficients are decom-
posed as well which gives more wavelet coefficients for further analysis. 

For a given multiresolution analysis and the corresponding orthonormal wavelet basis of ( )2L  , wavelet 
packets were constructed by Coifman, Meyer and Wickerhauser [6] [7]. This construction is an important gene-
ralization of wavelets in the sense that wavelet packets are used to further decompose the wavelet components. 
There are many orthonormal bases in the wavelet packets. Efficient algorithms for finding the best possible basis 
do exist. Chui and Li [8] generalized the concept of orthogonal wavelet packets to the case of nonorthogonal 
wavelet packets. Yang [9] constructed a scale orthogonal multiwavelet packets which were more flexible in ap-
plications. Xia and Suter [10] introduced the notion of vector valued wavelets and showed that multiwavelets 
can be generated from the component functions in vector valued wavelets. In [11], Chen and Cheng studied 
compactly supported orthogonal vector valued wavelets and wavelet packets. Other notable generalizations are 
biorthogonal wavelet packets [12], non-orthogonal wavelet packets with r-scaling functions [13]. 

The outline of the paper is as follows. In §2 , we introduce some notations and recall the concept of B-splines 
and wavelets. In §3 , we discuss the B-spline wavelet packets and the corresponding dual wavelet packets. 

2. Preliminaries 
In this Section, we introduce B-spline wavelets (or simply B-wavelets) and some notions used in this paper. 

Every mth order cardinal spline wavelet is a linear combination of the functions ( ) ( )2 2m
mN x j− . Here the 

function mN  is the mth order cardinal B-spline. Each wavelet is constructed by spline multiresolution analysis. 
Let m be any positive integer and let mN  denotes the mth order B-spline with knots at the set   of integers 
such that  

( ) [ ]supp 0, .mN m=  

The cardinal B-splines mN  are defined recursively by the equations  

( ) [ ] ( )

( ) ( )( ) ( )
1 0,1

1
1 1 10

,

d ,     2,3, .m m m

N x x

N x N N x N x t t m

χ

− −

=

= ∗ = − =∫ 

 

We use the following convention for the Fourier transform,  

( ) ( )ˆ e d .i tf f t tωω
∞ −

−∞
= ∫  

The Fourier transform of the scaling function mN  is given by  

( ) 1 eˆ .
mi

mN
i

ω

ω
ω

− −
=  
 

                                  (1) 

For each ,  j k ∈ , we set ( ); , 2 j
m j k mN N x k= − , and for each j∈ , let m

jV  denotes the 2L -closure of 
the algebraic span of { }; ,m j kN . Then mN  is said to generate spline multiresolution analysis if the following 
conditions are satisfied. 

1) 1 0 1
m m mV V V−⊂ ⊂ ⊂ ⊂    

2) 
( ) ( )2

2clos m
jL

j
V L

∈

 
= 

 








;  

3) { }0m
j

j
V

∈

=




,  

4) for each j , { }; ,m j kN  is a Riesz basis of m
jV .  

Following Mallat [14], we consider the orthogonal complementary subspaces 1 0 1,  ,  ,  m m mW W W−   that is;  
5) 1 ,     m m m

j j jV V W j+ = ∀ ∈⊕  .  

6) ,     m m
j kW W k j⊥ ∀ ≠ .  

7) ( )2 m
j

j
L W

∈
= ⊕



 .  



S. Khan, M. K. Ahmad 
 

 
3003 

These subspaces ,  m
jW j∈ , are called the wavelet subspaces of ( )2L   relative to the B-spline mN . Since 

( ) m
m jN x V∈  and 1

m m
j jV V +⊂ , we have  

( ) ( )2m k m
k

N x p N x k
∈

= −∑


,                                 (2) 

where { }kp  is some sequence in 2
 . Taking the Fourier transform on both sides of (2), we obtain  

( ) 21ˆ ˆe
2 2

ik
m k m

k
N p Nω ωω −

∈

 =  
 

∑


.                               (3) 

Substituting the value of ( )ˆ
mN ω  from (1) into (3), we have  

2
2 2

2
0

1 1 e 2 1 ee 2 e
2 21 e

m mmi i m
ik m ik

k i
k k

mip
ki

ω ω
ω ω

ω

ω
ω

− −
− − −

−
∈ =

     − + = = =      −      
∑ ∑


. 

This gives  

12 for  0

0 otherwise.

m

k

m
k m

p k
− +  

≤ ≤  =   



                              (4) 

So, (2) can be written as  

( ) ( )1

0
2 2

m
m

m m
k

m
N x N x k

k
− +

=

 
= − 

 
∑ , 

which is called the two scale relation for cardinal B-splines of order m . 
Chui and Wang [1], introduced the following mth order compactly supported spline wavelet or B-wavelet  

( ) ( ) ( ) ( ) ( )
2 2

2 21
0

1 1 1 2
2

m j m
m m mm

j
x N j N x jψ

−

−
=

= − + −∑ ,                       (5) 

with support [ ]0,2 1m −  that generates 0
mW  and consequently all the wavelet spaces ,  m

jW j∈ . To verify 
that mψ  is in 1

mV , we need the spline identity  

( ) ( ) ( ) ( )2
0

1
m jm

m m
j

m
N x N x j

j=

 
= − − 

 
∑ .                            (6) 

So, substituting (6) into (5), we have the two scale relation  

( ) ( )
3 2

0
2

m

m k m
k

x q N x kψ
−

=

= −∑ ,                               (7) 

where,  

( ) ( )21
0

1
1

2

k m

k mm
j

m
q N k j

j−
=

−  
= − + 

 
∑ .                             (8) 

Let  

( ) ( )2m k m
k

x h N x kψ −= −∑  

 ,                               (9) 

with the corresponding two scale sequence { }kh− . If mψ  is a wavelet, then there exists another mψ  called the 
dual wavelet of mψ  such that  

( ) ( ) ,. , . ,     ,  m m j lj l j lψ ψ δ− − = ∀ ∈
 .                         (10) 

For the scaling function mN , we define its dual mN  by  

( ) ( )2m k m
k

N x g N x k−
∈

= −∑


 

 ,                              (11) 



S. Khan, M. K. Ahmad 
 

 
3004 

such that  

( ) ( ) ,. , . ,     ,  m m j lN j N l j lδ− − = ∀ ∈

 .                           (12) 

Now, we have  

( ) ( )

( ) ( )
0

2 ,

2 .

m

m k m
k

m k m
k

N x p N x k

N x g N x k
=

−
∈

= −

= −

∑

∑


 



                               (13) 

Taking the Fourier transform of (13), we have  

( )

( )

ˆ ˆ ,
2 2

ˆ ˆ .
2 2

m m

m m

N N

N N

ω ωω

ω ωω

   =    
   
   =    
   

 




                                (14) 

where, 

( )

( )
0

1 e ,
2
1 e .
2

m
i k

k
k

i k
k

k

p

g

ω

ω

ω

ω

−

=

−
−

∈

=

=

∑

∑







                                  (15) 

A necessary and sufficient condition for the duality relationship (12) is that ( )ω  and ( )ω  are dual two 
scale symbols in the sense that  

( ) ( ) ( ) ( ) 1,     ω ω ω ω ω+ − − = ∈    .                          (16) 

A proof of this statement is given in ([15], Theorem 5.22). Also from (7) and (9), we have  

( )

( )

ˆˆ ,
2 2

ˆˆ .
2 2

m m

m m

N

N

ω ωψ ω

ω ωψ ω

   =    
   
   =    
   








                                (17) 

where, 

( )

( )

3 2

0

1 e ,
2
1 e .
2

m
i k

k
k

i k
k

k

q

h

ω

ω

ω

ω

−
−

=

−
−

∈

=

=

∑

∑







                                  (18) 

We observe that  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

0

0,     .

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω ω

+ − − =

+ − − =

+ − − =

+ − − = ∈

   

   

   

   

                      (19) 

See ([15], Section 5.3). 
If ( )mN x  is an orthogonal scaling function, then  

( ) ( ) 0,. , . ,     m m lN N l lδ− = ∀ ∈ .                            (20) 

We say that ( )m xψ  is orthogonal (o.n) B-wavelet function associated with orthogonal scaling function 

( )mN x  if  
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( ) ( ). , . 0,     m mN l lψ − = ∀ ∈ ,                             (21) 

and ( ) ,  m x l lψ − ∈  is an orthonormal basis of 0
mW , so we have  

( ) ( ) 0,. , . ,     m m ll lψ ψ δ− = ∀ ∈ .                             (22) 

Lemma 1 Let ( ) ( )2
mN x L∈  . Then ( )mN x  is an orthonormal family if and only if  

( ) ( )ˆ ˆ2π 2π 1,     m m
l

N l N lω ω ω+ + = ∈∑  .                          (23) 

Proof See ([15], page no. 75].  
Theorem 1 Let ( )mN x  defined by (13) is an orthonormal scaling function. Assume that ( ) ( )2

m x Lψ ∈   
whereas ( )ω  and ( )ω  are defined by (15) and (18) respectively. Then ( )m xψ  is an orthonormal 
wavelet function associated with ( )mN x  if and only if  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

π π 0, ,

π π 1, .

ω ω ω ω ω

ω ω ω ω ω

+ + + = ∈

+ + + = ∈





   

   
                        (24) 

Proof Let us suppose that ( )m xψ  is an orthonormal wavelet function associated with ( )mN x . By Lemma 1 
and (21), we have  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

ˆ ˆ0 2 2π 2 2π

ˆ ˆ  π π π π

ˆ ˆ  π π 2 π π 2 π π

  π π .

m m
l

m m
l

m m

N l l

l N l N l l

N N
ρ ν

ω ψ ω

ω ω ω ω

ω ρ ω ρ ν ω ρ ν ω ρ

ω ω ω ω

∈

∈

= ∈

= + +

= + + + +

= + + + + + +

= + + +

∑

∑

∑ ∑







 

 

   

 

Again by Lemma 1 and (22), we have  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

ˆ ˆ1 2 2π 2 2π

ˆ ˆ  π π 2 π π 2 π π

  π π .

m m
l

m m

l l

N N
η ν

ψ ω ψ ω

ω η ω η ν ω η ν ω η

ω ω ω ω

∈

= ∈

= + +

= + + + + + +

= + + +

∑

∑ ∑





 

   

 

On the other hand, let (24) holds. 
Now,  

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

2π 1 2
2π

π 2
0

1 ˆ ˆ. , . , e
2π
1 ˆ ˆ                           e d
2π
1 ˆ ˆ                           2 2 e d
π
1 ˆ ˆ                           2 2 π 2 2 π e d
π

  

i l
m m m m

i l
m m

i l
m m

i l
m m

N l N

N

N

N

ω

ω

ν ω
ν

ν

ω

ν

ψ ω ψ ω

ω ψ ω ω

ω ψ ω ω

ω ν ψ ω ν ω

−

∞

−∞

+

∈

∈

− =

=

=

= + +

∫

∑∫

∑∫





                         0.=

 

Also,  

( ) ( ) ( ) ( ) [ ]π 2
0,0

1 ˆ ˆ. , . 2 2 π 2 2 π e d     by Lemma 1 .
π

i l
m m m m ll ω

ν
ψ ψ ψ ω ν ψ ω ν ω δ

∈

− = + + =∑∫


 

Thus, ( )mN x  and ( )m xψ  are orthogonal and ( )m xψ  is an orthonormal wavelet function associated with 
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( )mN x .  

3. B-Spline Wavelet Packets and Their Duals 
Following Coifman and Meyer [6] [7], we introduce two sequences of 2L  functions { },n m  and { },n m

  de-
fined by  

( ) ( ) ( )2 , , 2 ,     0,1n m k n m
k

x x kλ
λ ζ λ+

∈

= − =∑


                          (25) 

( ) ( ) ( )2 , , 2 ,     0,1n m k n m
k

x x kλ
λ γ λ+ −

∈

= − =∑


                           (26) 

where 0,1,n =   
When 0λ =  and 0n = , we have  

( )

( )

0
0,

0
0,

,     

,     ,

k k m m

k k m m

p N

g N

ζ

γ − −

= =

= = 






 

and for 1λ =  and 0n = , we have  
( )

( )

1
1,

1
1,

,     ,

,     .

k k m m

k k m m

q

h

ζ ψ

γ ψ− −

= =

= = 






 

We call { },n m  the sequence of B-spline wavelet packets induced by the wavelet mψ  and its correspond-
ing scaling function mN  whereas { },n m

  denotes the corresponding sequence of dual wavelet packets. By 
applying the Fourier transformation on both sides of (25), we have  

( ) ( )
2 , ,

ˆ ˆ
2 2n m n m

λ
λ

ω ωω+
   =    
   

                              (27) 

where,  

( ) ( ) ( )1 e
2

ik
k

k

λ λ ωω ζ −

∈

= ∑


                                (28) 

( ) ( ) ( ) ( ) ( ) ( )0 1,     .ω ω ω ω= =                             (29) 

So, (24) can be written as  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 0 1

1 1 1 1

π π 0,     ,

π π 1,     .

ω ω ω ω ω

ω ω ω ω ω

+ + + = ∈

+ + + = ∈





   

   
                (30) 

Similarly, taking the Fourier transformation on both sides of (26), we have  

( ) ( )
2 , ,

ˆ ˆ ,
2 2n m n m

λ
λ

ω ωω+
   =    
   

                                 (31) 

where,  

( ) ( ) ( )1 e
2

ik
k

k

λ λ ωω γ −
−

∈

= ∑


                                  (32) 

( ) ( ) ( ) ( ) ( ) ( )0 1,     .ω ω ω ω= =                               (33) 

Using these conditions we can write  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,     ,     ,  0,1.λ µ λ µ

λ µω ω ω ω δ ω λ µ+ − − = ∈ =                   (34) 

We are now in a position to investigate the properties of B-spline wavelet packets. 
Theorem 2 Let ( )0,m x  be any orthonormal scaling function and ( ){ },n m x  its corresponding family of 
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B-spline wavelet packets. Then for each n +∈ , we have  

( ) ( ), , 0,. , . ,     .n m n m kk kδ− = ∈                               (35) 

Proof Since ( ) ( )0,m mx N x=  satisfies (35) for 0n = . We may proceed to prove (35) by induction. 
Suppose that (35) holds for all n , where 0 2rn≤ < , r  a positive integer and 12 2r rn +≤ < . We have  

12 2
2

r rn−  ≤ <  
, where [ ]x  denote the largest integer not exceeding x . By induction hypothesis and Lemma 1, 

we have  

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )0,2 , 2 , 2 , 2 ,
ˆ ˆ. , . 2 π 2 π 1.kn m n m n m n mk

ν
δ ω ν ω ν

∈

− = ⇔ + + =∑


                 (36) 

By using (27), (30) and (36), we obtain  

( ) ( )

( ) ( ) [ ] ( ) [ ] ( ) ( ) ( )

( ) ( ) [ ] ( ) [ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, ,

2 , 2 ,

1

2 , 2 ,
0

ˆ ˆ2 2 π 2 2 π

ˆ ˆ    π π π π

ˆ ˆ    π π 2 π π 2 π π

    π π 1.

n m n m

n m n m

n m n m
k

k k

ν

λ λ

ν

λ λ

ρ

λ λ λ λ

ω ν ω ν

ω ν ω ν ω ν ω ν

ω ρ ω ρ ω ρ ω ρ

ω ω ω ω

∈

∈

= ∈

+ +

= + + ⋅ + +

= + + + ⋅ + + +

= + + + =

∑

∑

∑ ∑







 

   

   

   

 

Hence, by Lemma 1, (35) follows.  
Theorem 3 Let ( ){ },n m x  be a B-spline wavelet packet with respect to the orthonormal scaling function 
( ) ( )0,m mN x x= . Then for every n +∈ , we have  

( ) ( )2 , 2 1,. , . 0,   .n m n m k k+ − = ∈                               (37) 

Proof By (27), (30) and (36), for k ∈  we have  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 , 2 1, 2 , 2 1,

0 1
, ,

0
, ,

1 ˆ ˆ. , . e d
2π
1 ˆ ˆ                                       e d

2π 2 2 2 2
1 ˆ ˆ                                       
π

i k
n m n m n m n m

i k
n m n m

n m n m

k ω

ω

ω ω ω

ω ω ω ω ω

ω ω

+ +− =

       =        
       

=

∫

∫

∫







   

   

   ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

2π 1 0 1 2
, ,2π

2π 0 1 2
, ,0

e d

1 ˆ ˆ                                       e d
π
1 ˆ ˆ                                       2 π 2 π e d
π

                    

i k

i k
n m n m

i k
n m n m

ω

ν ω
ν

ν

ω

ν

ω ω ω

ω ω ω ω ω

ω ω ν ω ν ω ω

+

∈

∈

=

 = + + 
 

∑∫

∑∫







   

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )π 0 1 0 1 2
0

1                   π π e d 0.
π

i kωω ω ω ω ω = + + + =  ∫    

 

For the family of B-spline wavelet packets ( ){ },n m x  corresponding to some orthonormal scaling function 
0,m mN= , consider the family of subspaces  

( ) ( )2
, 2

,: clos 2 2 : ,     ,   n m j j
j n mL

W x k k j nτ += − ∈ ∈ ∈


    

generated by { },n m . We observe that  
0,

1,

,     

,     ,

m m
j j

m m
j j

V j

W j

τ

τ

= ∈

= ∈





 

where { }m
jV  is the MRA of ( )2L   generated by 0,m mN= , and { }m

jW  is the sequence of orthogonal 
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complementary (wavelet) subspaces generated by the wavelet 1,m mψ= . Then the orthogonal decomposition  

1 ,     m m m
j j jV V W j+ = ∀ ∈⊕   

may be written as  
0, 0, 1,

1 ,     m m m
j j j jτ τ τ+ = ∀ ∈⊕  . 

A generalization of the above result for other values of n  can be written as  
, 2 , 2 1,
1 ,     n m n m n m

j j j jτ τ τ +
+ = ∀ ∈⊕  . 

Theorem 4 For the B-spline wavelet packets, the following two scale relation  

( ) ( ) ( ){ }1
, 2 2 , 2 2 1,

12 2 2
2

j j j
n m l k n m l k n m

k
x l p x k q x k+

− − +− = − + −∑                (38) 

holds for all l∈ .  
Proof In order to prove the two scale relation, we need the following identity, see ([15], Lemma 7.9)  

{ }2 2 2 2 ,2 .r k l k r k l k r l
k

p p q q δ− − − −+ =∑                            (39) 

Taking the right-hand side of (38), and applying the identity (39), we have  

( ) ( ){ } { } ( )

{ } ( )

1
2 2 , 2 2 1, 2 2 ,

1
2 2 2 2 ,

1 12 2 2 2
2 2

1                                                                                 2
2

       

j j j
l k n m l k n m l l k l l k n m

k k l

j
t k l k t k l k n m

k t

p x k q x k p p q q x k l

p p q q x t

+
− − + − −

+
− − − −

− + − = + − −

= + −

∑ ∑∑

∑∑

  



[ ] ( )1
2 2 2 2 ,

1                                                                          2
2

                                                                                 

j
t k l k t k l k n m

t k
p p q q x t+

− − − −
 = + − 
 

∑ ∑ 

( )1
, , 2 .j

t l n m
t

x tδ += −∑ 

  (40) 

( )1
, 2 j

n mt l x l+= ⇒ −  This completes the proof of the theorem.  
Next, we discuss the duality properties between the wavelet packets { },n mW  and { },n mW . 
Lemma 2 For all ,  k l∈  and n +∈ ,  

( ) ( ), , ,. , . ,     n m n m k lk l kδ− − = ∈

  .                           (41) 

Proof We will prove (41) by induction on n . The case 0n =  is the same as our assumption (12) on the dual 
scaling functions 0,m mN=  and 0,m mN=  . Suppose that (41) holds for all n  where 0 2rn≤ < ,  

where r  is a positive integer. Then for 12 2r rn +≤ < , we can write 2
2
nn λ = +  

 for some { }0,1λ ∈ ,  

according to the proof of Theorem 7.24 in [15]. From the Fourier transform formulations of equations (25) and 
(26) and using (34) we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,

, ,
2 2

1 ˆˆ. , . e d
2π
1 ˆˆ                                       e d

2π 2 2 2 2

1                                       
2π

i l k
n m n m n m n m

i l k
n nm m

k l ω

λ λ ω

ω ω ω

ω ω ω ω ω

−

−
   
      

− − =

       =        
       

=

∫

∫





 



   

   

( ) ( ) ( )4π

0 , ,
2 2

ˆˆe 2π 2π d .
2 2 2 2

i l k
n nm mj

j jω λ λω ω ω ω ω−
   
   ∈    

       + ⋅ +       
       

∑∫


   

 

Since 2
2 2

rn n  ≤ <  
, it follows from the induction hypothesis that ( ) ( ) ,

, ,
2 2

. , . k ln nm m
k l δ   

      

− − =   for all 

,  k l∈ , and this is equivalent to  
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, ,
2 2

ˆˆ 2π 2π 1    . ..
2 2n nm mj

j j a eω ω
   
   ∈    

   + + =   
   

∑


                            (42) 

Thus, we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4π
, , 0

2π

0

0

1. , . e d
2π 2 2
1                                       e d
2π 2 2 2 2
1                                       
2π

i l k
n m n m

i l k

k l ω λ λ

ω λ λ λ λ

ω ω ω

ω ω ω ω ω

−

−

   − − =    
   

        = + − −                

=

∫

∫

   

   

( )2π
,e d .i l k

k l
ω ω δ− =∫

 

This shows that (41) also holds for 12 2r rn +≤ < .  
Lemma 3 For all ,  k l∈  and n +∈ , and { },  0,1λ µ ∈ , with λ µ≠ ,  

( ) ( )2 , 2 ,. , . 0,     .n m n mk l kλ λ+ +− − = ∈

                              (43) 

Proof By applying the Fourier transform formulations of Equations (25) and (26) and using (42) and (34), we 
have as in the proof of Lemma 2 that  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 , 2 , 2 , 2 ,

, ,

1 ˆˆ. , . e d
2π
1 ˆˆ                                                e d

2π 2 2 2 2

                                    

i l k
n m n m n m n m

i l k
n m n m

k l ω
λ λ λ λ

λ λ ω

ω ω ω

ω ω ω ω ω

−
+ + + +

−

− − =

       =        
       

∫

∫





 



   

   

( ) ( ) ( )

( ) ( ) ( )

4π
, ,0

4π

0

1 ˆˆ            e 2π 2π d
2π 2 2 2 2
1                                                e d

2π 2 2

                             

i l k
n m n m

j

i l k

j jω λ λ

ω λ λ

ω ω ω ω ω

ω ω ω

−

∈

−

       = + +       
       

   =    
   

∑∫

∫



   

 

( ) ( ) ( ) ( ) ( )

( )

2π

0

2π
, , ,0

1                   e d
2π 2 2 2 2
1                                                e d 0,     ,   .

2π

i l k

i l k
k l k l

ω λ λ λ λ

ω
λ µ λ µ

ω ω ω ω ω

δ ω δ δ λ µ

−

−

        = + − −                

= = = ≠ =

∫

∫

   
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