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Abstract

Let X be a Markov process, which is assumed to be associated with a (non-symmetric) Dirichlet
form (8 ,D(E )) on L2 (E;m).For ueD (€ )e , the extended Dirichlet space, we give necessary and

sufficient conditions for a multiplicative functional to be a positive local martingale.
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1. Introduction

Let X :(QIF’(}:)M (X)) (P),c. | bea (non-symmetric) Markov process on a metrizable Lusin space
E and m be a o -finite positive measure on its Borel o -algebra B(E). Suppose that (E,D(S)) is a
quasi-regular Dirichlet form on L* (E;m) associated with Markov process X (we refer the reader to [1] [2]
for notations and terminologies of this paper). To simplify notation, we will denote by u e D(E)e its & -quasi-
continuous m-version. If ue D(S)e, then there exist unique martingale additive functional (MAF in short)
MU of finite energy and continuous additive functional (CAF in short) N ) of zero energy such that

u(Xt)—u(X0)= Mt[U] +NI[U]

Let (N (x,dy), Ht) be a Lévy system for X and v be the Revuz measure of the positive continuous ad-
ditive functional (PCAF in short) H . For t>0, we define the [0,]-valued functional

A= ([ (70 1 (u(y) ~u (X)) )N (X, ) ),
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This paper is concerned with the following multiplicative functionals for X :

) A

Z'=e ' 2 : M)
where <M “’C>l is the sharp bracket PCAF of the continuous part M“° of M"

. e M S(mee) iy .
In [3] under the assumption that X is a diffusion process, then Z' =e ' 2< >‘ is a positive local martin-

gale and hence a positive supermartingale. In [4], under the assumption that u is bounded or €' e D(é‘) itis
shown that (Z;', % ) is a positive local martingale and hence induces another Markov process Y , which is
called the Glrsanov {ransformed process of X (see [5]). Chen et al. in [5] give some necessary and sufficient
conditions for (Zl W ) to be a positive supermartingale when the Markov processes are symmetric. It is
worthy to point out that the Beurling-Deny formula and Lyons-Zheng decomposition do not apply well to non-
symmetric Dirichlet forms setting. For the non-symmetric situations, u e D(E) an interesting and important
question is that under what condition is (Z“ }‘)t . a positive local martingale?

In this paper, we will try to give a complete answer to this question when the Dirichlet forms are non-sym-
metric. We present necessary and sufficient conditions for (Zt R )t>0 to be a positive local martingale.

2. Main Result

Recall that a positive measure x on (E,B(E)) is called smooth with respect to (£,D(&)) if u(N)=0
whenever N eB(&) is & -exceptional and there existsan £ -nest {F,}  of compact subsets of E such that

u(F) <o forall k=1

nx1

Let J(dx,dy) =%N (x,dy)v(dx), k(dx)=N(x,8)v(dx), We know from [6] that J, k are Randon measures.
Let ueD(&),, Z be defined as in (1). Denote

H, (dx) = j ( ~1-(u(y)-u(x ))) (dx, dy)+ ( ™ _1+u(x ))k(dx),
Bt”:Z[e(”(XS)'”(X*))—1—(u(XS)—u(Xs_))] t>0,

s<t

Now we can state the main result of this paper.
Theorem 1 The following are equivalent:
0] (Zt“,]{)po is a positive P, -local martingale on [0,¢) for ge. xeE.

(i) (Bt“)t>o iislocally P, -integrable on [0,) for ge. xeE.

(iii) u, isasmooth measure on (E,B(E)).

Proof. (iii) = (ii) Suppose that z, is a smooth measure on (E,B(E)) and {Fn}nZl isan & -nest such

that g, (Fn)< oo and I -u, isof finite energy integral for n >1. Similar to Lemma 2.4 of [4],
h"":=E, [(IFn A )J is quasi-continuous and hence g.. finite. Denote 7, :=inf {t > 0| X, & Fn} . Then for
t>0,

_ {jj. e (s)—1—(u(y)—u(xs))]N(Xs,dy)dHS}
<E (15 -A"), | <o

u

Hence by proposition 1V 5.30 of [1] (Bt )po is locally P, -integrable on [0,;) for ge. xekE.

(i) = (i) Assume that (Bt“ )DO is locally P, -integrable on [0,¢) for ge. xe€E. One can check that for
ge. xeE the dual predictable projection of (Bt” )t>0 on [0,¢) is A'.We set
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B’ =B'-A,
M, =M, +B’.
Then M, isa local martingale on [0,¢) and the solution V" of the stochastic differential equation (SDE)
Ve =1+ [V dM,

is a local martingale on [0,@“). Moreover, by Doleans-Dade formula (cf. 9.39 of [7]), Note that
<M°>t :<M“’°>t , we have that

s<t

s<t

=exp{Mt” —%<M “o) —A'+B! +z(u(xs)_u(x5)+1_eu<xs)u<xs>)}
:exp{Mt“ —%<M “vC>t —Au}: z"

So (Zt“,]{)tzo isa P, -local martingale.

Let W, =[], (1+M,-M_)e" ™ . Note that M, is a cadlag process, there are at most countably

many points at which M, —M,_=0. Since by Lemma 7.27 of [7] (M, - MS,)Z <o P -ae., there are
only finitely many points s at which |Ms - Msf| >1/2, which give a finite non-zero contribution to the prod-

uct. Using the inequality |In(1+ x)—x| <x* when |x|<1/2, we get

w,= I @+M-M_)e"™ T (@+M,-M_)e"™
s<t{Mg-Mg_|<1/2 s<t{Mg-M_|>1/2
> e’(Ms’MS—)Z H (1+ Ms _ MSi)eMsf’Ms
s<t{Mg-M_|<1/2 s<tiMg-M_|>1/2
~X(Ms-Mg)° Mo
>g st IT @+M=m )e" ™ >o0.

s<tiMs—M,_|>1/2

Therefore (Zt“,]{)po is a positive P, -local martingale on [0,¢) for ge. xeE.
(i) = (iii) Assume that (Zt”,]-'t)t . is a positive P, -local martingale on [0,&) for ge. xeE, by
Lemma 2.2 and Lemma 2.4 of [8], -

L = j;ziudzt“

" o Lot 1 " Z" ZY
=InZ -InZ, +EIO—<Z:)2 d<Z °>S —é[ln Zsj_ +1—Z—§_J

1

(z)

:Mt“——<M“’°>t—A“+%J; d(z") +B.

is a local martingale on [0,¢’). We set
N, =L -M!

_ pu u 1 u,c 1t 1 u,c H H d

then N, =B'-A _E<M >t +§j°(zu )2 d<Z >S is also a local martingale on [0,¢). Denote N is the
-

purely discontinuous part of N, , by Theorem 7.17 of [7], there exist a locally bounded martingale U, and a
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local martingale of integrable variation V, such that N = NJ +U, +V,. Since u is E -quasi-continuous, take

an & -nest {Fn}nZl consisting of compact sets such that Cap(E\Fn)s

and U is continuous hence

3n+l F

bounded q.e. foreach n>1. Denote

D(€),, {feD(5)|f=Om—a.e.onE\Fk},
D(€), , =D(€), NB(E),.

R .b Fy

Takea pel?(E;m), O<p<1.Set h:=Gygp, where (G,) _ is the family of resolvents associated with
(8, D(é‘)). Since |J,.D(€)., isdensein D(&) wrt the £Y2-norm, by proposition I11. 3.5 and 3.6 of

[1], there exists an & -nest {Fn’}nZl consisting of compact sets and a sequence {fk}kZl c Unle(g)F , such

that Cap(E\Fn’)ggn—lﬂ, @‘F,{Zé‘n for some 5,>0 and f,_ converges to Gy uniformly on F, as

k—>oo for each n>1. Set F'=F,F . So there exists an non-negative h, e(J, _D(€). , and constant

a, >0 suchthat h >a, on F'.Suppose h, eD(&), . then

(VoM™ ] =3NS =N (M-

s<t

=3 (U U ) (MP=ME )Y (Vv ) (h (X,)-h, (X,))

s<t s<t

2 T2
SIS YRS HIE B )

s<t s<t

where ||||0c denotes the supremum norm. Recall that a locally bounded martingale U, is a locally square in-
tegrable martingales, M/ is a locally square integrable martingales and V, is a local martingale of integrable
variation. Therefore the quadratic variation [ N, M™ | is P, -locally integrable for g.e.x € E, hence there
exist a predictable dual projection <N MM >t which is'a CAF of finite variation. Since

(v ] =3 (B - ) (M -
:é(eU(Xs)*U(XsJ_1—(u(Xs)—U(Xsf)))(hn(XS)_hn(Xy)).

the Revuz measure of <N ¢ MM >t is
”<Nd,Mhn> = 2.[{yeE:y¢X}(hn (y)-h, (x))(e(”(y)'”(x)) —1—(u(y)—u(x)))J (dx,dy)
+(e‘“(x) —1+u (x))k(dx).
Let {F},., be a generalized £-nest associated with ,u<Nrj ) such that ,u<Nd Mhn>(Fk’”)<oo for each k>1.

n>1 Dp,b’

Denote D, :=F,/[F,”, then Cap(E\Dn)ssin and {UE:le} is an & -nest. Hence for any g e D(&)

we have J’Eg(x)dy<Nd'Mhn> <oo. On the other hand, as | is bounded, there exists a positive constant b,

Fa

such that e"()0 ~1-(u(y)-u(x))

and e™ —-1+u(x)

are not larger than b, . Because
anFkn

J(dx,dy), k(dx) are Radon measure and h,, g are bounded,

D, ﬂFkn
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.[ExE\dg(X)hn y) ( ))‘](dx'dy)
+% ()9 (x)e “(X)_1+u(x))k(dx)—%ng(x)dy<Nd )
= o 8OO (V) (0 -2 (u(y) ~u(x))) 3 (¢, )
+%J'DnﬂFkn n(x)g(x)(e () 1+u(x))k(dx)——ng(x) s ) <

As inequality e"")® -1—(u(y)-u(x))=0 on E and h >a, on F,we have for any non-negative
fe D(E)

[Lf () a1, (dx)
=2f . FO0(e ™ —1-(u(y)-u(x) ) 3 (dx,dy)+ [ (x)(e* ~1+u(x))k(dx)
Sz(aﬂ)ilj‘onxadh"(x)f(x)(eU(Y)_U(X)_l ( )))‘] dx dy I f (e ) 1+U( ))k(dx)<oo

we can construct an & -nest

For {UE_le} is an & -nest consisting of compact sets, similar to h,,
- nx1
U:ZID; consisting of compact sets such that D, c D, for each n>1. And there exists a sequence non-

negative {hrj}nzlcUmD(S)Dkyb such that h!>c, on D/ for each n>1 and some positive ¢, >0.
Since ﬂu(ULle')S ::;”c;le(hk,(x))yu (dx)<oo, 4, isasmooth measure on (E,B(E)).
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