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Abstract 
Contraction of resilience on generation side due to the introduction of inflexible renewable energy 
sources is demanding more elasticity on consumption side. It requires more intelligent systems to 
be implemented to maintain power balance in the grid and to fulfill the consumer needs. This pa-
per is concerned about the energy balance management of the system using intelligent agent- 
based architecture. The idea is to limit the peak power of each individual household for different 
defined time regions of the day according to power production during those time regions. Monte 
Carlo Simulation (MCS) has been employed to study the behavior of a particular number of house- 
holds for maintaining the power balance based on proposed technique to limit the peak power for 
each household and even individual load level. Flexibility of two major loads i.e. heating load (heat 
storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side pro-
portionally with the generation in real time. Different parameters related to heating and Electric 
Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak 
demand hours have been studied and a technique is proposed to mitigate the imbalance of power 
intelligently. 
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1. Introduction 
Wide penetration of non-flexible intermittent renewable energy sources in the power grid is going to reduce the 
flexibility for power balance between generation and consumption of electrical power in real time. One way is to 
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manage the power consumption according to the generation by shifting some of the flexible loads, i.e. Demand 
Side Management (DSM). Altering generation with the demand to keep frequency of the network in acceptable 
limit was the old concept of matching demands with supplies. Presently, there is a need to solve several prob-
lems simultaneously related to these intermittent renewable energy sources in the power grid and the penetration 
of more flexible loads in the network like EVs. In order to capture more EV penetration in the market we should 
first provide with their charging solutions in each scenario, i.e. for normal trips and long trips. Charging solu-
tions for EVs on highways have been studied in detail in [1]. With the increased penetration of EVs in the mar-
ket it would be wise to schedule their charging to support the grid in managing intermittent generation [2]. EVs 
have a very great potential in them since besides the environmental benefits [3] achieved from them, they are 
aimed to deliver more in context of optimized energy usage [4] and active participation in demand response 
[5]-[7]. Now with the advent of more intelligent systems and advanced communication technologies, it has en-
couraged researchers why not to control these flexible loads to optimize the energy usage. With this regard we 
suggest to introduce a domestic energy management system at consumer level based on intelligent agents. Three 
layers demand side management architecture is proposed in which the first layer agents are the EV agent, heat-
ing load agent, non-flexible load agent and domestic energy management agent. Second layer agents are the lo-
cal market agents while the third layer agents are the distributed generation agents including forecast agents, en-
vironmental agents and source agents. Generation forecast agent estimates the generation for the upcoming time 
slots based on the installed capacity and the weather forecast (in case of PV or wind turbine units) and gives the 
information to local market agent. Local market agent then sets the pricing based on generation forecast and 
demand forecast from DEM agent. DEM agent then controls the flexible loads according to generation forecast 
and price of energy for particular time slot. Every agent has some degree of freedom, allowed by the environ-
ment and system which helps it to make decisions. Degree of freedom is a power to determine actions without 
restraints given to agents for making decisions on consumer’s behalf. It is obvious that we don’t expect the agent 
to make stupid decisions to sacrifice consumer’s comfort but to be on the safer side in more advanced Multi- 
Agent Systems (MAS) degree of freedom could be adjusted in order to fix the risk factor. Risk factor increases 
with the increase in degree of freedom. This paper has been divided into different sections starting with nomen-
clature and introduction to idea; it follows the basics for multi-agent systems and demand response. A case study 
is then simulated using Monte Carlo simulations in Matlab. 

2. Intelligent Agent and Multi-Agent System (MAS) 
An agent can be a piece of hardware or software whose presence in a system makes the system more intelligent 
and autonomous [8]. Agents are intelligent and rational entities, i.e. they perform right things at right times [9] 
[10]. Generally, an agent-based system is composed of more than one agent and is called Multi-Agent System 
(MAS). In this way, the control is distributed among different agents in the same system. In MAS, each agent 
has its unique ID for communication between the agents. MAS is implemented to break a complex problem 
(which is supposed to be done by a single entity), into many simple tasks to be handled by many entities in order 
to achieve distributed processing [8]. An agent-based system is one in which the core entity used is an agent. 
Conventionally, Supervisory Control and Data Acquisition (SCADA) system have been used for the control and 
communication in power system [11]. Multi-Agent Systems (MAS) have many advantages over the SCADA 
system for the implementation of smart grid because of its distributed control nature. We will propose a model 
to control the loads at domestic level using intelligent agent-based system. Consider an example scenario of a 
colony of consumers where each household has intelligent agent-based energy management system installed in 
its premises containing, Heat Load (HL) agent, Electric Vehicle (EV) agent, Non-Flexible Load agent and Do-
mestic Energy Management (DEM) agent. These agents are considered to be the first layer or component level 
agents whereas DEM agent is the second layer agent. Now we will proceed by explaining the functionality of 
these four agents: 
• Electric Vehicle (EV) Agent: Its goal is to coordinate with DEM agent to store power from the source in 

low demand times or deliver power to the load in case of low generation times when the source is not able to 
provide the demanded power to the load. It keeps record of the daily vehicle usage for transportation and the 
time of use. EV agent could also help to provide DEM agent with the available capacity of EV to support the 
household for electricity use irrespective of use of EV as vehicle.  

• Heating Load (HL) Agent: Optimized usage of energy for climate control is the ultimate goal of HL agent. 
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It controls the temperature of the environment in the house within acceptable pre-set limits and fetch energy 
continuously either to store it for peak demand hours or for real time consumption for heating depending 
upon available charging power. It coordinates with the DEM to inform about its flexibility to shift charging 
in accordance with its State of Charge (SOC) and weather forecast from forecast agent. 

• Non-Flexible Load Agent: It gives information to DEM agent about the connected load which is most crit-
ical load in a particular household in real time. Degree of flexibility of various critical loads could also be 
estimated by this agent based on past knowledge and experiences of this agent.  

• Domestic Energy Management (DEM) Agent: It is a second layer agent in Domestic Energy Management 
(DEM) system; all the three first layer agents communicate with DEM agent in order to inform it of their 
status, demands and needs. DEM agent performs the status check of three agents and collects information 
about their demand for the near future. For instance, EV agent provides with the available capacity and SOC, 
HL agent tells DEM agent about its capacity and stored energy which would be available and Non-flexible 
load agent based on connect load sends demand request. Now having all this required information from the 
sub-agents, game of making final decision comes to DEM agent, and after coordinating with the upper level 
local market agent for available peak power in during next time window DEM agent accepts or delays the 
charging power for EV and HL agent. DEM agent could also change the level of charging for both the flexi-
ble charging loads in order to meet the requirement of LM agent.  

• Local Market (LM) Agent: It keeps all information regarding generation capacity of the source, expected 
generation in the near future, coordinates with the forecast agent to know about the weather condition and 
other related metrological data. It also communicates with the DEM agent on second layer to inform about 
the available power during the next time stamp. Figure 1 depicts the interaction of these agents to carry on 
the demand response. There are some terms which need to be addressed before we move further towards 
demand response using intelligent agents. 

 

 
Figure 1. Coordination of agents to make a Domestic Energy Management System (DEMS). 
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2.1. Load Addressing or Tagging System 
Loads even at appliances level could be controlled and shifted better by assigning them a proper addressing or 
tagging. Nomenclature for loads suggested is to be standardized in order to get more control on them. Loads at 
appliances level when tagged can help agent-based energy management system to adjust power balance in the 
entire system. 

2.2. Prioritizing the Loads in Agent’s Mind 
Prioritizing the loads as important, critical or noncritical helps load agent to shift and switch loads accordingly. 
This thing not only has to do with the energy management system but also in case of emergency measures and 
abnormal conditions in the system, like faults or very low generation. After having a prioritized list of loads in 
mind, agents can better consider consumers comfort as well as economics of the electricity and can participate 
efficiently in the electricity market.  

2.3. Supply Forecasting on the Basis of Environment Agent 
Source agent is assisted by environment agent in order to estimate its generation in the near future. Environment 
agent forecast the weather conditions based on the metrological data, for example in case of solar panels, it in-
forms source agent about the expected solar insolation and for wind turbine it estimates the speed of wind and 
other necessary parameters which help source agent to have an estimate of its generation for upcoming time 
slots.  

3. Demand Response and Flexible Loads 
According to [12] [13] Demand Response (DR) is defined as “changes in electricity usage by end-use customers 
from their normal consumption patterns in response to changes in the price of electricity, or to incentive pay-
ments designed to induce lower electricity use at time of high wholesale market prices or when system reliability 
is jeopardized”. Flexibility to alter the time of energy consumption for different is load important in demand re-
sponse. In household there are two major loads that could help achieve demand response effectively i.e. heating 
load and electric vehicle load. 

Heating Load: In order to maintain the climate control in the household continuous energy is needed either 
for cooling or heating the space. The heating load is flexible because we could have a temperature range to sa-
tisfy the comfort level and also with heat storage tank this flexibility could be extended. Time of charging for 
the heat storage tank could be shifted to achieve demand response.  

EV Load: How much an EV in a particular household could support demand response depends on the capac-
ity of the battery and the daily usage of EV as vehicle. Most of the time EVs are parked and this thing allow the 
flexibility to shift the charging time for different EVs depending upon the usage pattern of the EV. Flexibility to 
shift charging time is also dependent on the SOC of the battery. 

4. Case Study 
In this case study we have considered 100 households all of them having both EV and space heating load. We 
studied the behavior of limiting the peak power demand according to available generation. Monte Carlo Simula-
tion has been employed to study different parameters involving demand response.  

4.1. Monte Carlo Simulation (MCS) 
Whole day has been divided into three Time Regions (TRs) i.e. TR-1 (from 17:00 to 22:00), TR-2 (from 22:00 
to 07:00) and TR-3 (07:00 to 17:00). Each time region has been assigned a maximum peak power, in order to 
ensure consumption to be limited during each time region to a particular value. After fixing the peak power for 
the overall system now the allowed peak for individual households could be assigned equally to all households 
under consideration e.g. if the peak power for the system is 1 MW then it could 10 kW for individual households 
(in case of 100 households). This assumption was considered for the sake of simplicity in the simulation. In a 
real case allowed peak could be different for different households. Number of time regions could be increased to 
get higher resolution. Depending upon the generation forecast during each time slot peak power limits could be 
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adjusted proportionally. In this case study our focus is on two flexible loads i.e. heating load and EV load. It has 
been considered that during Time Region-1 both the loads would be present along with other loads (lightning 
etc.) so less peak power is allowed to feed heating and EV load but during Time Region-2 other loads start to 
decrease the allowed peak power limit for heating and EV load could be increased. But during Time Region-3 
there is no EV charging load but only heating of these two loads so the peak power limit could be reduced dur-
ing this time. Important thing is that both heating and EV loads have the storage capacities which allow us to 
charge them or get back energy when needed. Flexibility of different charging rates could help in limiting peak 
powers according to generation. Figure 2 illustrates the idea of limiting peak powers for different time regions.  

4.2. Assumptions 
There are some parameters and assumptions which have been considered for Monte Carlo simulations:  
• Number of households taken into account are 100. 
• Time window is 15 minutes, i.e. four slots per hour. 
• SOCEV may have any value from 5% to 95%. 
• SOCHT may have any value between 5% and 95% because heating system is continuously fetching energy. 
• BC could have any value between 20 kWh and 30 kWh. 
• HC could have any value from 20 kWh to 30 kWh. 
• HD the average heating demand per hour may vary from 1 kWh to 2 kWh. 
• EVDU daily usage of individual EVs may vary from 30 km/day to 50 km/day. 
• Mileage of individual EVs may vary between 5 km/kWh and 6 km/kWh.  
• Time Region-1 is from 17:00 to 22:00 which is the most peak load region on the distribution transformer. 
• Time Region-2 is from 22:00 to 07:00 which could be the best charging region for EV and heat storage. 
• Time Region-3 is from 07:00 to 17:00 which does not containing any EV charging load only heat storage 

load. 
• maxP1 is set to 2 kW, maxP2 is set to 4 kW and maxP3 is set to 3 kW (could be any value depends on gener-

ation forecast for upcoming time slot). 
• Level of charging power for heat storage depends on SOCHT and peak allowed power for particular time re-

gion. 
• Level of charging power for EV depends on SOCEV and peak allowed power for particular time region. 
 

 
Figure 2. Division of the whole day into different regions to limit the power during each time region. 



F. H. Malik et al. 
 

 
675 

• Charging power decreases with the increase in state of charge. 
• Priority is given to charging of heat storage during Time Region-1 and to charging of EV during Time Re-

gion-2. 
• There is no EV charging load during Time Region-3. 

Table 1 is a lookup table to select the charging power level for both EV and heating load with respect to the 
state of charge of both storages. The less is the state of charge the higher would be the charging power. Charging 
power decreases with the improvement in state of charge of storages (EV and heat storage).  

4.3. Control Algorithm for Demand Response  
Figure 3 shows the flow chart of the simulation model. For Monte Carlo simulation we have considered 100 
households and assumed that each of the household under consideration has both EV and heating loads along 
with other loads.  

Different parameters (SOCEV, SOCHT, BC, HC, HD, EVDU and M) for all households are fetched using pseudo-
random numbers within predefined range using uniform distribution. Time window for the simulation is 15 mi-
nutes, meaning that it fixes the selected charge power for next 15 minutes. Time counter starts at 17:00 hours 
and increments after every 15 minutes until 24 hours have been completed. Peak power Pmax is set based on 
generation forecast for next time slot. After fixing the peak power for the whole system of 100 households it as-
signs the peak power to each of the individual households for next time slot. Parameters value for the kth 
household are fetched and time region is also recognized from the time counter, then based on state of charge 
the charging power for EV and heating is selected from the lookup table. If the sum of both selected charging 
powers is within the assigned peak power then it starts charging otherwise it would select the next lower level of 
charging power of one of the loads from lookup table until it satisfies the peak power limit. After charging pow-
ers have been finalized for a particular time slot it updates the state of charge for both loads and then moves to 
the next household with the same procedure. At the end of each time slot it increments the time counter until one 
day has completed.  

4.4. Simulation Results 
Figure 4 shows the simulation result of the technique to limit the peak demand power according to generation. 
The result is obvious, at 17:00 when both charging loads are in the system, a fraction of available power is given 
to both charging loads while giving priority to heating load over the EV load during Time Region-1 until 22:00 
hour. At the start of Time Region-2 we can see a sharp rise of power which is because of the increased allowed 
peak power during this time region and the priority of EV charging load over the heating load. It is clear that as 
the EV batteries are getting fully charged they are going out of the system by switching off their chargers as seen 
with the negative slop of power curve during Time Region-2. During Time Region-3 only heating load out of  
 
Table 1. Lookup table to select the charging power for EV and heating load based on SOC.  

Level SOCEV Max. PCH_EV 
Energy per 15  

minutes SOCHT Max. PCH_HEAT 
Energy per 15  

minutes 

1 <20% 4 kW 1 kWh <20% 4 kW 1 kWh 

2 20% to 30% 3.5 kW 0.875 kWh 20% to 30% 3.5 kW 0.875 kWh 

3 30% to 40% 3 kW 0.75 kWh 30% to 40% 3 kW 0.75 kWh 

4 40% to 50% 2.5 kW 0.625 kWh 40% to 50% 2.5 kW 0.625 kWh 

5 50% to 60% 2 kW 0.5 kWh 50% to 60% 2 kW 0.5 kWh 

6 60% to 70% 1.5 kW 0.375 kWh 60% to 70% 1.5 kW 0.375 kWh 

7 70% to 80% 1 kW 0.25 kWh 70% to 80% 1 kW 0.25 kWh 

8 80% to 95% 0.5 kW 0.125 kWh 80% to 95% 0.5 kW 0.125 kWh 

9 >95% 0 kW 0 kWh >95% 0 kW 0 kWh 
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Figure 3. Algorithm for Demand Side Management (DSM). 
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these two loads (EV and heating) is present so it would try to charge the heat storage tank until 95% state of 
charge along with the constant power consumption for maintaining the temperature.  

Figure 5 and Figure 6 clearly reveal the behavior of state of charge for EV and heating storage at two differ-
ent times of the day. It is important to note that at 17:00 when EVs arrive back home the SOC is very low de-
pending upon the individual usage of EVs but at 7:00 in the morning the batteries are almost fully energized and 
almost all of them have more than 80% of the charge of the full capacity of the battery. In case of heat storage 
the overall SOC for heat storage tank remains between 40% to 60% of the full capacity of heat storage tank on 
average, the reason for this is that heating SOC is more dynamic throughout the day. Heat storage needs conti-
nuous feeding of power to maintain the climate control and also to keep the SOC level for the heat storage tank 
in reasonable limits.  

5. Conclusion 
This paper discussed the demand response at domestic level utilizing the flexibility of EV charging and space  
 

 
Figure 4. Example case scenario for demand response by the limiting the 
peak power and varying the charging rate for EV and heating load. 

 

 
Figure 5. Behavior of SOC_EV at 17:00 and 7:00 hours for each household. 
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Figure 6. Behavior of SOC_Heat at 17:00 and 7:00 hours for each household. 

 
heating load in context of intelligent agents. Agent-based three-layer demand response architecture was pro-
posed. In example case scenario one day has been divided into three time regions assigning different power 
peaks and prioritizing the loads for each region. Based on real-time generation forecast we could have more de-
fined time regions with shorter time slots with more realistic demand response behavior from both generation 
and consumption side. Allowed peak power for different households could be different for individual house-
holds depending upon the daily energy usage pattern of the household. Varying charging rate for both EV and 
heating load allows us to schedule not only the charging time but also the level of charging for both loads de-
pending upon the available power in real time. Limiting the peak power for each time region ensures the genera-
tion to match with the consumption with optimized utilizing of energy without altering the generation side i.e. 
when the generation is high increasing the charging level of each of the flexible EV or heating load and vice 
versa. 
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Nomenclature 
MAS  Multi-Agent System 
DR  Demand Response 
DSM  Demand Side Management 
DEMS  Domestic Energy Management System 
HL  Heating Load 
EV  Electric Vehicle 
k   Number of Households in Consideration 
SOCEV  State of Charge of Electric Vehicle 
SOCHT  State of Charge of Heat Storage 
BC   Battery Capacity of Electric Vehicle (kWh) 
HC   Heat Storage Capacity of Heat Storage Tank (kWh) 
HD   Average Heat Demand (kWh per hour)  
EVDU  Electric Vehicle Daily Usage (km) 
M   Mileage of EV (km/kWh) 
PCH-EV  Charging Power of EV 
PCH-HEAT Charging Power for Heat Storage 
TR1  Time Region-1 of the day 
TR2  Time Region-2 of the day 
TR3  Time Region-3 of the day 
maxP1  Maximum allowed Peak Power during Time Region-1 for each household 
maxP2  Maximum allowed Peak Power during Time Region-2 for each household 
maxP3  Maximum allowed Peak Power during Time Region-3 for each household 
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