
Applied Mathematics, 2014, 5, 2764-2770
Published Online October 2014 in SciRes. http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.517264

How to cite this paper: El-Sherbeny, N.A. (2014) The Algorithm of the Time-Dependent Shortest Path Problem with Time
Windows. Applied Mathematics, 5, 2764-2770. http://dx.doi.org/10.4236/am.2014.517264

The Algorithm of the Time-Dependent
Shortest Path Problem with Time Windows
Nasser A. El-Sherbeny1,2
1Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
2Mathematics Department, Faculty of Applied Medical Science, Taif University, Turabah, KSA
Email: nasserelsherbeny@yahoo.com

Received 15 August 2014; revised 2 September 2014; accepted 9 September 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we present a new algorithm of the time-dependent shortest path problem with time
windows. Give a directed graph (),G V E= , where V is a set of nodes, E is a set of edges with a

non-negative transit-time function ()ec t . For each node v V∈ , a time window [],v va b within
which the node may be visited and v va t b≤ ≤ , t T∈ is non-negative of the service and leaving
time of the node. A source node s, a destination node d and a departure time t0, the time-
dependent shortest path problem with time windows asks to find an s, d-path that leaves a source
node s at a departure time t0; and minimizes the total arrival time at a destination node d. This
formulation generalizes the classical shortest path problem in which ce are constants. Our
algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for
the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].

Keywords
Shortest Path, Time-Dependent Shortest Path, ALT Algorithm, A* Algorithm, Time Windows

1. Introduction
The shortest path problem on graphs is a problem with many real-life applications such as: route planning in an
internet, car navigation system, traffic simulation or logistic optimization. The shortest path problem is a clas-
sical combinatorial optimization problem. It has countless applications and so far numerous algorithms have
been proposed (see Ahuja et al. [4]) including the well-known Dijkstra’s algorithm. Recently, because some of
the new improvement becomes fairly difficult, researchers began to study variants of this problem which include
the time-dependent and the time windows generalization.

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.517264
http://dx.doi.org/10.4236/am.2014.517264
http://www.scirp.org/
mailto:nasserelsherbeny@yahoo.com
http://creativecommons.org/licenses/by/4.0/

N. A. El-Sherbeny

2765

Give a directed graph (),G V E= , where V is a set of nodes, E is a set of edges, ()ec t is a non-negative
transit-time function. For each node v V∈ , a time window [],v va b within which the node may be visited and

v va t b≤ ≤ , t T∈ is non-negative of the service and leaving time of the node. A source node s V∈ with time
window [],s sa b , a destination node d V∈ with time window [],d da b , and a departure time ot . The
time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at
time ot and minimizes the total arrival time at a destination node d which satisfies the set of all constraints (see
El-Sherbeny [5], El-Sherbeny and Tuyttens [6], Tuyttens et al. [7] and El-Sherbeny [8]). One can notice that the
undirected graphs can be treated by replacing each undirected edge with two reverse directed edges. Without
losing of the generalization, we suppose that a destination node d is reachable from a source node s. For simplic-
ity, we suppose that the domain of the definition for all ()ec t is +ℜ , but our algorithms work for the discrete
version too. We also assume the time complexity to calculate a ()ec t which is bounded by some constant α .
This formulation generalizes the classical shortest path problem with constant ()ec t and ot . It can further
handle time-variable edge costs, thus it has more application than the classical one, which is also referred to as
the static problem in contrast.

In Cook and Halsey [9], it has considered and given a dynamic programming algorithm which is not poly-
nomial-time at all. Dreyfus [2] suggested a polynomial-time straightforward generalization of the Dijkstra’s al-
gorithm. However, he did not notice that it works correctly only for instances satisfying the First-In First-Out
(FIFO) property, i.e., for any edge (),e v w E= ∈ and v wt t≤ , it holds that () ()v e v w e wt c t t c t+ ≤ + . In other
words, the arrival-time function ()et c t+ is non-decreasing. With this property, we can ensure that there is no
cycle of negative transit-time, hence a simple optimal solution exists. This was pointed out and discussed later
(see Halpern [10], Kaufman and Smith [11] and Orda and Rom [12]).

On the other hand, the general problem without the FIFO constraint is NP-hard if the waiting at nodes is not
allowed (see Sherali et al. [13]). In Orda and Rom [12], it showed that, if the waiting at nodes is allowed, which is
natural in transportation systems, any instance can be converted to an equivalent instance that satisfies the FIFO
property; hence, no waiting is needed, and that can be done in polynomial time (if ()ec t can be calculated in
polynomial time). Thus, in the following, we will only consider instances that satisfy the FIFO property.

Even with the FIFO constraint, unlike the static case, studies are not rich. Dreyfus’s proposal of the genera-
lized Dijkstra’s algorithm, despite of many studies (see Dean [14], Ding et al. [15], Halpern [10], Kanoulas et al.
[16], Kaufman and Smith [11] and Orda and Rom [12]), there was no significant advancement in solving the
problem more efficiently.

In this paper, we give a new algorithm of the time-dependent shortest path problem with time windows that
generalizes the ALT algorithm (see Goldberg and Harralson [1]) and A* algorithm for the static problem, unlike
the generalized Dijkstra’s algorithm, which uses a function h to estimate the distances between nodes in the
graph in Section 2. In Section 3, we give an application instance of our algorithm and a generalization of the
ALT algorithm (see Goldberg and Harralson [1], Dreyfus [2] and Hart et al. [3]) that is based on the static A*
algorithm and is faster than the Dijkstra’s algorithm using preprocessing. Thus, we have found the first algo-
rithm for the time-dependent shortest path problem with time windows that speeds up the calculation using pre-
processing and we have observed that it is several time faster than the generalized Dijkstra’s algorithm. Finally,
the conclusion is given in Section 4.

2. The Algorithm of the Time-Dependent Shortest Path Problem with Time Windows
We start from the classical and well-known Dijkstra’s algorithm. For each edge (),e v w E= ∈ , we suppose that ()e ec t c= is a constant. The service and leaving time to node v V∈ is t T∈ and [],v va b a time window
where, v va t b≤ ≤ . If 0ot = , the Dijkstra’s algorithm tries to find a shortest , s d -path in greedy manner. Let
()p v denote the precedent node of a node ν of the shortest s, ν-path found so far. The Dijkstra’s algorithm

maintains for each node ν a status ()v ∈ {“unlabeled”, “labeled”, “finished”} and a distance label ()g v . At the
beginning, ()g s is the set to 0 and all status ()v is initialized to “unlabeled” except that s is “labeled”. Then it
repeatedly find a “labeled” node ν with the smallest ()g v (such ν is called the active node) until v d= ; then
it tries to relax all non “finished” neighbors w of ν, i.e., if status ()w = “unlabeled” then the set it to “labeled”
and let () () (),v wg w g v c= + , ()p w v= ; otherwise status ()w = “labeled”. The time window of the node
w V∈ is [],w wa b , where w wa t b≤ ≤ , t T∈ . Let () () (),v wg w g v c= + , ()p w v= if () () (),v wg w g v c+

;

N. A. El-Sherbeny

2766

after all these have done, set status ()v to “finished” and continue. See Table 1 for the pseudo-code.
The our algorithm of the A* algorithm given in (Table 2) follows the same fashion except that it employs an

estimator ()h v for all v V∈ with the time window [],v va b and chooses the active node by the smallest
() ()g v h v+ . A good estimator ()h v for all v V∈ can be used to reduce the search space (i.e. the set of

nodes that have to be explored before the solution is found) of the shortest path queries effectively. Notice that
how to determine ()h v is not part of the algorithm. It must be obtained by some other method, and the choice
of h determines the correctness and the efficiency of the A* algorithm (a good lower-bound on the , v d -dis-
tance is preferred). Clearly the Dijkstra’s algorithm is a special case with 0h = .

Remark: The Dijkstra’s algorithm is a special case of 0h = . For general h , however, the correctness is not
guaranteed.

Now we are ready to describe our generalized A* algorithm. It generalizes ()h v by the time dependent ver-
sion (),h v t with [],v va b is the time windows of a node ν where v va t b≤ ≤ , t T∈ is the service and leav-
ing time of the node. Thus in Table 3, we use ()(),h v g v to replace ()h v . Notice the rule for choosing the
active node (Line 2) has been changed in addition.

Definition 2.1. Given a directed graph (),G V E= , a non-negative transit-time function ()ec t of each edge
(),e v w E= ∈ , and [],v va b , is a time windows, v va t b≤ ≤ , t T∈ is the service and leaving time to node ν,

then for all edges () () ()(), ,e eh v t c t h w t c t≤ + + is called a triangle condition.

In a directed graph (),G V E= , a non-negative transit-time function ()ec t of each edge (),e v w E= ∈ ,
with [],v va b is a time windows, v va t b≤ ≤ , t T∈ is the service and leaving time to node ν, a source node
s , a destination node d and a departure time 0t at a source node s of the time-dependent shortest path prob-
lem with time windows such that the FIFO properly is satisfies and d is reachable from s , the generalized of
A* algorithm in Table 3 finds an optimal solution if h satisfies the three conditions:
• For all vertices , v w V∈ and v wt t≤ , () (), ,v v w wt h v t t h w t+ ≤ + is the FIFO time windows condition

(2.1).
• For all edges (),e v w E= ∈ and t T∈ , () () ()(), ,e eh v t c t h w t c t≤ + + is a triangle condition (2.2).

• For all vertices , v w V∈ and v wt t≤ , [] [], ,v v w wa b a b≤ is the time windows condition (2.3).

Table 1. Pseudo-code of the Dijkstra’s algorithm for the static shortest path problem time windows.

1) status () :s = “labeled”, () : 0g s = , status () :v = “unlabeled” for all v s≠

2) Let v be a “labeled” node with the time window (i.e., [], , , v v v va b a t b t T≤ ≤ ∈) and the smallest

()g v (the active node). IF v d= GOTO 11)
3) FOR all edges (),v w E∈ DO

4) IF status ()w = “unlabeled” THEN

5) status () :w = “labeled” with the time window (i.e., [], , , w w w wa b a t b t T≤ ≤ ∈),

() () (),: v wg w g v c= + , () :p w v=

6) ELSE IF status ()w = “labeled” AND () () (),v wg w g v c+ THEN

7) () () (),: v wg w g v c= + , () :p w v=

8) END IF
9) DONE
10) status () :v = “finished”. GOTO 2)

11) OUTPUT ()g d and the s, d -path found with [] [], , , , , s s d d d da b a b a t b t T≤ ≤ ∈ are the time
windows of the source node s and a destination node d respectively (i.e. the reverse of

() ()(), , , , d p d p p d s).

Table 2. Pseudo-code of the A∗ algorithm for the static problem time windows.

Table 1
2) Let v be a “labeled” with time window [], , , v v v va b a t b t T≤ ≤ ∈ and the smallest () ()g v h v+ . IF v d= GOTO 11)
Table 1

N. A. El-Sherbeny

2767

Table 3. Pseudo-code of A∗ algorithm for the time-dependent shortest path problem with time windows.

1) Status () :s = “labeled”, () 0:g s t= , status () :v = “unlabeled” for all v s≠

2) Let v be a “labeled” node with time window [],v va b , v va t b≤ ≤ , and t T∈ is the service and leaving

time at node v , the smallest () ()(),g v h v g v+ . In the case that there are multiple candidates, choose one

with the smallest ()g v . IF v d= GOTO 11)

3) FOR all edges (),v w E∈ DO

4) IF status ()w is “unlabeled” THEN

5) status () :w = “labeled”, () () () ()(),: v wg w g v c g v= + , with time windows
[],w wa b , w wa t b≤ ≤ , t T∈ , () :p w v=

6) ELSE IF status ()w is “labeled” AND () () () ()(),v wg w g v c g v+ THEN

7) () () () ()(),: v wg w g v c g v= + , () :p w v=

8) END IF
9) DONE
10) status () :v = “finished”. GOTO 2)

11) OUTPUT ()g d and the , s d -path found with [] [], , , , , s s d d d da b a b a t b t T≤ ≤ ∈ are the time
windows of the source node s and a destination node d respectively (i.e. the reverse of

() ()(), , , , d p d p p d s).

The triangle condition (2.2) (see Figure 1) is a natural generalization from the classical A* algorithm whereas

the FIFO condition is only available in the time-dependent and time windows case. The generalized Dijkstra’s
algorithm is nothing but the simplest case with 0h = , and the generalization of Kanoulas et al. [16], on the oth-
er hand, simply uses a constant function () (),h v t h v= , with the time windows [],v va b and v va t b≤ ≤ ,
t T∈ is the service and leaving time to a node v V∈ thus, it also a simple special-case of our algorithm.

Roughly speaking, it says the supposed transit-time (),h v t from ν to d is no more than () ()(),e ec t h w t c t+ + ,
i.e. the supposed transit-time of the , v d -path v w d→ → . Notice that, ()(), eh w t c t+ is the supposed tran-
sit-time from w to d by leaving w at time ()et c t+ with the time windows [],w wa b and w wt t b≤ ≤ , t T∈ .

Theorem 2.1. Let 1 2, , , kp v v v=  be a path with the time windows
1 1
,v va b   and

1 1v va t b≤ ≤ , t T∈ is

the service and leaving time at node 1v . Define 1 0σ = and () ()
1

1
1 ,j j

i
i jj v v

c tσ σ
+

−

=
= +∑ be the transit-time from

1v to , 2, ,iv i k=  . Then it holds that () ()1, ,k k kh v t h v tσ σ≤ + + .
Proof. By the above conditions (2.1), (2.2) and (2.3). We show by the induction that, every active node ν

must get the optimal distance label (the induction variable is the number of nodes in the shortest path), i.e., the
earliest arrival time at node ν for leaving s at time 0t .

Let ν be an active node satisfies the time windows [],v va b and v va t b≤ ≤ , t T∈ is the service and leav-
ing time of this node. If v s= , we are done. Otherwise, let p be a simple optimal , s v -path (it exists) and
w be the first node on p such that status ()w ≠ “finished”. Clearly w must exist and w s≠ (it can be ν)
see Figure 2.

Figure 1. The triangle condition with time windows for the function h.

Figure 2. An optimal s, v-path with time windows is being considered. s, u: finished
nodes; w: the first non-finished node; v: the active node.

N. A. El-Sherbeny

2768

Let g∗ denote the optimal distance (i.e. the earliest arrival time). It is obvious that () ()g w g w∗= because
w was relaxed when the precedent node u of w was active and at that time () ()g u g u∗= by the induc-
tion hypothesis. Let () ()g v g wσ ∗ ∗= − be the shortest transit-time from w to ν at departure time ()g w∗
(notice 0σ ≥). By applying the above conditions (2.1), (2.2) and (2.3) to the , w v -path with time windows on
p with ()t g w∗= we have

()() ()() () () ()(), ,h w g w h v g w g v g w h g vσ σ∗ ∗ ∗ ∗ ∗≤ + + = − + (2.4)

That is equivalent to

() ()() () ()(), ,g w h w g w g v h w g v∗ ∗ ∗ ∗+ ≤ + (2.5)

Then, since ν is the active node with the time windows [],v va b (thus has the smallest () ()(),g v h v g v+)
we have

() ()() () ()() () ()() () ()(), , , ,g v h v g v g w h w g w g w h w g w g v h w g v∗ ∗ ∗ ∗+ ≤ + = + ≤ + (2.6)

On the other hand, by the FIFO condition and () ()g v g v∗ ≤ (the optimality of g∗), we have

() ()() () ()(), ,g v h v g v g v h v g v∗ ∗+ ≤ + (2.7)

Therefore we get the next fact by combining (2.6) and (2.7), we get

() ()() () ()() () ()() () ()(), , , ,g v h v g v g w h w g w g w h w g w g v h v g v∗ ∗+ ≤ + = + ≤ + (2.8)

This means the equalities hold, hence () ()() () ()(), , .g v h v g v g w h w g w+ = + Then by our choice of the
active node, () ()g v g w≤ must hold. Thus () () ()g v g w g v∗ ∗≤ ≤ hence () ().g v g v∗=

Remark: The analogously to the static version, an h with (), 0h d t = implies (),h v t where ν satisfies the
time windows [],v va b and v va t b≤ ≤ , t T∈ is a lower bound on the shortest transit-time from ν to d with
leaving time ()g v (by Theorem 2.1). Moreover, it is not difficult to show that with an h satisfying (), 0h d t =
and 0h ≥ , the search space (the set of active nodes) of the generalized A* algorithm is no longer than that the
generalized Dijkstra’s algorithm. Using this observation, we will give our algorithm in the next section that is
practically faster than the generalized Dijkstra’s algorithm.

3. Application Instance
The time complexity of the generalized Dijkstra’s algorithm is ()logO n n mα+ by using a Fibonacci heap (we
note it was ()()logO m n n α+ in (Ding et al. [15]), where , , m n α are the number of edges, the number of
nodes, and the time complexity to calculate ()ec t , respectively. While we cannot improve this theoretical
bound, let us give a practically faster algorithm that is based on our A* algorithm and generalizes the static
landmark-based ALT algorithm (Goldberg and Harrelsin [1], Dreyfus [2], and Hart et al. [3]).

The ALT algorithm is such as an algorithm that is supposed to answer the shortest-path queries for a known
graph. This means we can preprocess the graph beforehand and use it to answer a query faster than a normal
calculation by the Dijkstra’s algorithm. Of course there is a trivial method of saving solutions for all possible
queries and answers a query in ()1O time, but the 2n order (for the static case) is big (if not impossible) for
large graphs, usually a road network is spares (i.e., m kn≤ for some small k) and has several millions of
nodes. So researchers are seeking efficient algorithm that uses ()O n storage, see Wagnar and Willhalm [17]
for a review. While this is an extremely hot topic for the static problem of these several years, for the time-de-
pendent case, as far as we know, there was no proposal before our work.

Now let us describe the detail of our generalized ALT algorithm. Let (), ,v w tτ ∗ denote the shortest tran-
sit-time from a node ν with the time windows [],v va b to anther node w with a time windows [],w wa b , a
service and leaving time , w wt T a t b∈ ≤ ≤ , hence we want to find an , s d -path of transit-time ()0, ,v w tτ ∗

Suppose we have a node z with time windows [],z za b and the values (), ,z v tτ ∗ for all nodes v and all t
(z is called a landmark). Also, suppose we can calculate a t̂ (if exists) that

(){ }ˆ max : , ,t t t z v t tτ ∗′ ′ ′= + ≤ (3.1)

N. A. El-Sherbeny

2769

In other words, t̂ is the latest leaving time in order to get ν before t (from z). Define h by:

() () (){ }ˆ ˆ, max , , , , ,0zh v t z d t z v tτ τ∗ ∗= − if t̂ exists, 0 otherwise (i.e., t̂ does not exist) (3.2)

It is clear that (), 0zh d t = and 0.zh ≥ Actually this definition is a generalization from the static case, i.e.,
zh is an estimation (a lower bound) on the , v d transit-time, which is no shorter than the right side of (3.2)

(by the triangle inequality due to the optimality of τ ∗). Moreover, we can show that zh satisfies the FIFO
condition, the triangle condition and the time windows condition at the same time, too. The proof is not trivial
nor difficult, but due to the page limit, we omit it in this work. We note it is important to choose t̂ to be the
maximum.

We still have to show how to calculate t̂ , which usually is difficult if there is no explicit expression for
(), , .z v tτ ∗ Moreover, in general it is difficult to hold all values of (), , .z v tτ ∗ Fortunately, however, we can

show that sampling of time works, i.e., we can calculate and hold values (), , iz v tτ ∗ only for some
1 2 kt t t  and define t̂ , if it exists, by

(){ }ˆ max : , ,i i it t t z v t tτ ∗= + ≤ (3.3)

Again, we can show the function zh defined by (3.2) with the above t̂ satisfies the FIFO conditions, the
triangle condition, the time windows condition, and (), 0zh d t = , 0zh ≥ . Moreover, we can employ more than
one land marks to get a better estimation (notice the maximum of all zh s works). Applying this generalized
ALT algorithm to a number of US road networks (obtained from the web site of the 9th DIMACS implementa-
tion challenge http://www.dis.uniromal.it/~challenge9/, where 320,000 1,210,000n≤ ≤ and ()3m n≤ with
periodic piecewise-linear transit-time functions (with 9 samples a day), we have noticed that it ran at an average
of about 4 times faster than the generalized Dijkstra’s algorithm with 16 landmarks and 2 time samplings.

A comparison example of the search space between the generalized Dijkstra’s algorithm and the generalized
ALT algorithm for the time dependent shortest path problem time windows and our ALT algorithm for an in-
stance with the number of nodes are 321,270 and the number of edges are 800,172. The number of landmarks is
16 and the number of time samplings is 2. The search space of the ALT algorithm is 0.055 smaller and the run-
ning time is 7.4 times faster.

4. Conclusion
In this paper, we present a new algorithm framework of A* algorithm for the time-dependent shortest path prob-
lem with time windows. By constructing some appropriate estimator h, it is possible to get an algorithm that is
faster than a normal generalized Dijkstra’s algorithm. As an example, we have generalized the landmark based
ALT algorithm, which we believe is the first algorithm that uses preprocessing to speed up the calculation of
time-dependent shortest paths problem with time windows. Our experimental result shows that it is several times
faster than a normal generalized Dijkstra’s algorithm for large road networks.

Acknowledgements
The author would like to thank an anonymous referee for some useful comments.

References
[1] Goldberg, A. and Harrelson, C. (2005) Computing the Shortest Path: A* Search Meets Graph Theory.

http://research.microsoft.com/pubs/154937/soda05.pdf
[2] Dreyfus, S. (1969) An Appraisal of Some Shortest-Path Algorithms. Operations Research, 17, 395-412.

http://dx.doi.org/10.1287/opre.17.3.395
[3] Hart, P., Nilsson, N. and Raphael, B. (1968) A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Transactions Systems Science and Cybernetics, 4, 100-107. http://dx.doi.org/10.1109/TSSC.1968.300136
[4] Ahuja, R., Magnanti, T. and Orlin, J. (1993) Network Flows: Theory, Algorithms, and Applications. Prentice-Hall,

Upper Saddle River.
[5] El-Sherbeny, N. (2001) Resolution of a Vehicle Routing Problem with Multiobjective Simulated Annealing Method.

Ph.D. Dissertation of Faculty of Science, Mons University, Mons.

http://www.dis.uniromal.it/%7Echallenge9/
http://research.microsoft.com/pubs/154937/soda05.pdf
http://dx.doi.org/10.1287/opre.17.3.395
http://dx.doi.org/10.1109/TSSC.1968.300136

N. A. El-Sherbeny

2770

[6] El-Sherbeny, N. and Tuyttens, D. (2001) Optimization Multicriteria of Routing Problem. Troisieme Journee de Travail
sur la Programming Mathematique Multi-Objective, Faculte Polytechnique de Mons, Mons.

[7] Tuyttens, D., Teghem, J. and El-Sherbeny, N. (2004) A Particular Multiobjective Vehicle Routing Problem Solved by
Simulated Annealing. Lecture Notes in Economics and Mathematical Systems, 535, 133-152.
http://dx.doi.org/10.1007/978-3-642-17144-4_5

[8] El-Sherbeny, N. (2011) Imprecision and Flexible Constraints in Fuzzy Vehicle Routing Problem. American Journal of
Mathematical and Management Sciences, 31, 55-71. http://dx.doi.org/10.1080/01966324.2011.10737800

[9] Cook, K. and Halsey, E. (1966) The Shortest Route through a Network with Time-Dependent Intermodal Transit.
Journal of Mathematical Analysis and Applications, 14, 493-498. http://dx.doi.org/10.1016/0022-247X(66)90009-6

[10] Halpern, H. (1977) Shortest Route with Time Dependent Length of Edges and Limited Delay Possibilities in Nodes.
Operations Research, 21, 117-124.

[11] Kaufman, D. and Smith, R. (1993) Fastest Paths in Time-Dependent Networks for Intelligent Vehicle-Highway Sys-
tems Application. Journal of Intelligent Transportation Systems, 1, 1-11.

[12] Orda, A. and Rom, R. (1990) Shortest-Path and Minimum-Delay Algorithms in Networks with Time-Dependent Edge-
Length. Journal of the ACM, 37, 607-625. http://dx.doi.org/10.1145/79147.214078

[13] Sherali, H., Ozbay, K. and Subramanian, S. (1998) The Time-Dependent Shortest Pair of Disjoint Paths Problem:
Complexity, Models, and Algorithms. Networks, 31, 259-272.
http://dx.doi.org/10.1002/(SICI)1097-0037(199807)31:4<259::AID-NET6>3.0.CO;2-C

[14] Dean, B. (1999) Continuous-Time Dynamic Shortest Path Algorithms. Master’s Thesis, MIT.
[15] Ding, B., Xu, J. and Qin, L. (2008) Finding Time-Dependent Shortest Paths over Large Graphs. Proceedings of the

11th International Conference on Extending Database Technology, 25-30 March 2008, 205-216.
[16] Kanoulse, E., Du, Y., Xia, T. and Zhang, D. (2006) Finding Fastest Paths on a Road Network with Speed Patterns.

Proceedings of the 22nd International Conference on Data Engineering, Atlanta, 3-7 April 2006, 10-19.
[17] Wagner, D. and Willhalm, T. (2007) Speed-Up Techniques for Shortest-Path Computations. Lecture Notes in Comput-

er Science, 4393, 23-36. http://dx.doi.org/10.1007/978-3-540-70918-3_3

http://dx.doi.org/10.1007/978-3-642-17144-4_5
http://dx.doi.org/10.1080/01966324.2011.10737800
http://dx.doi.org/10.1016/0022-247X(66)90009-6
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1002/(SICI)1097-0037(199807)31:4%3C259::AID-NET6%3E3.0.CO;2-C
http://dx.doi.org/10.1007/978-3-540-70918-3_3

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	The Algorithm of the Time-Dependent Shortest Path Problem with Time Windows
	Abstract
	Keywords
	1. Introduction
	2. The Algorithm of the Time-Dependent Shortest Path Problem with Time Windows
	3. Application Instance
	4. Conclusion
	Acknowledgements
	References

